A characterization of the Hermitian variety in finite 3-dimensional projective spaces

Vito Napolitano*

Dipartimento di Matematica e Fisica Seconda Università degli Studi di Napoli Caserta, ITALY.

vito.napolitano@unina2.it

Submitted: May 30, 2013; Accepted: Jan 24, 2015; Published: Feb 9, 2015 Mathematics Subject Classifications: 05B25, 51E20

Abstract

A combinatorial characterization of a non–singular Hermitian variety of the finite 3-dimensional projective space via its intersection numbers with respect to lines and planes is given.

Keywords: projective space; intersection number; hermitian variety

1 Introduction

Ever since the celebrated theorem of B. Segre [10] on (q+1)-arcs of PG(2, q), q odd, people have tried to characterize classical objects of finite projective geometry via their combinatorial properties. Intersection numbers with respect to the subspaces of a given dimension of the d-dimensional projective space PG(d, q) of order q have been used frequently for this purpose.

Let us fix some notation. Let $\mathbb{P} = \mathrm{PG}(d, q)$ and let m_1, \ldots, m_s be s integers such that $0 \leq m_1 < \ldots < m_s$. For any integer $h, 1 \leq h \leq r-1$, let \mathcal{P}_h denote the family of all h-dimensional subspaces of \mathbb{P} . A subset \mathcal{K} of points of \mathbb{P} has class $[m_1, \ldots, m_s]_h$ for some s if $|\mathcal{K} \cap \pi| \in \{m_1, \ldots, m_s\}$ for any $\pi \in \mathcal{P}_h$. Moreover, if for every $m_j \in \{m_1, \ldots, m_s\}$ there is at least one subspace $\pi \in \mathcal{P}_h$ such that $|\mathcal{K} \cap \pi| = m_j$ the set \mathcal{K} is of type $(m_1, \ldots, m_s)_h$. In this case, the non-negative integers m_1, \ldots, m_s are the intersection numbers of \mathcal{K} (with respect to \mathcal{P}_h). If h = 1 or h = 2, we speak of the line-type or plane-type, respectively.

A wide literature is devoted to the theory of sets of a given type, some of which is listed in the references. The interest in studying such sets, in particular for the case of two

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P1.22

^{*}Supported by G.N.S.A.G.A. of INdAM.

intersection numbers with respect to hyperplanes is motivated in part by their connection with coding theory (cf e.g. [4, 7, 15]).

A non-singular hermitian variety of $PG(3, q^2)$ has size $(q^3 + 1)(q^2 + 1)$ [6]. Any line intersects the variety in either 1, or q + 1, or $q^2 + 1$ points. A plane intersects in either $q^3 + 1$ or $q^3 + q^2 + 1$ points.

In this paper, we will give a new combinatorial characterization of a non-singular hermitian variety of the finite 3-dimensional projective space. This result generalizes an earlier result due to Schillewaert and Thas [8].

Theorem I Let \mathcal{K} be a set of k = m(q+1) points of PG(3,q), for some integer m. Assume that the line type of \mathcal{K} is $(1, s+1, q+1)_1$, for some integer s with $1 \leq s \leq q-1$. Assume further that the plane type is $(m, h)_2$ for some integer h, then $q = s^2$ and \mathcal{K} is a hermitian surface of $PG(3, s^2)$.

As is costumary in the literature, a j-line is a line intersecting \mathcal{K} in exactly j points. A j-plane is a plane intersecting \mathcal{K} in exactly j points. For simplicity, a 1-line is called a *tangent* line.

1.1 Basic equations of k-sets of type $(m, h)_2$ in PG(3, q)

De Finis [3] studied combinatorial properties of sets in PG(3, q). Assume that \mathcal{K} is a set of k points in PG(3, q) with plane type $(m, h)_2$, for two distinct integers m and h. Then k is a solution to the equation

$$k^{2}(q+1) - k[(h+m)(q^{2}+q+1) - q^{2}] + hm(q+1)(q^{2}+1) = 0.$$
(1)

As a preparation for the arguments in the remainder of this paper, we outline a proof of this result:

Let c_j be the number of *j*-planes of \mathcal{K} . Double counting gives

$$c_m + c_h = (q^2 + 1)(q + 1)$$
$$mc_m + hc_h = k(q^2 + q + 1)$$
$$m(m-1)c_m + h(h-1)c_h = k(k-1)(q+1)$$

from which the quadratic equation for k follows.

We observe the following:

Observation 1: If h = m + q the quadratic equation (1) has the two solutions

$$k = m(q+1)$$
 and $k = \frac{(q^2+1)(q+m)}{q+1}$.

Observation 2: If k = m(q+1) the quadratic equation (1) implies that h = m + q.

The present paper is concerned with only the first case of the two cases occuring in (1) when h = m + q.

If \mathcal{K} is a k-set of PG(3, q) with intersection numbers m and m+q with respect to planes, it follows from the basic equations above that k = m(q+1) or $k = (q^2+1)(q+m)/(q+1)$. Hence, in PG(3, q²), from $m = q^3 + 1$ it follows that $k = (q^3+1)(q^2+1) = m(q^2+1)$ and so Theorem I generalizes Theorem 4.1 of [8].

Let us end this section with some remarks. In PG(3,q) a set of line type $(n)_1$ is either the empty set or the whole space, and a set of line type $(m, q + 1)_1$ is either PG(3,q) less a point (m = q) or a plane (m = 1) (cf e.g. [13]). If \mathcal{K} is a set of points of PG(3,q) of line type $(1, n)_1$ then by results in [13] n = q + 1 and so \mathcal{K} is a plane. Thus, to study subsets of PG(3,q) of class $[1, a, q + 1]_1$ means to study sets of line type $(1, a, q + 1)_1$.

2 The proof

Throughout this section, \mathcal{K} is a set of points of PG(3,q) of size k = m(q+1) with line type $(1, s+1, q+1)_1$ and with plane type $(m, h)_2$, $s \ge 1$. It follows from Observation 2 that h = m + q.

Lemma 1. If ℓ is a (q+1)-secant line then all the planes containing ℓ are h-planes.

Proof. Let α denote the number of *m*-planes through ℓ . Counting *k* via the planes on ℓ gives

$$m(q+1) = k = q+1 + \alpha(m-q-1) + (q+1-\alpha)(m-1)$$

 \mathbf{SO}

$$m(q+1) = m(q+1) - \alpha q$$

from which it follows that $\alpha = 0$.

Corollary 2. There are no (q+1)-lines contained in m-planes.

Lemma 3. Any *m*-plane contains at least one tangent line.

Proof. Recall that every line intersects \mathcal{K} in either 1, s + 1, or q + 1 points for some s with $1 \leq s \leq q - 1$. Assume that there is an m-plane π containing no tangent line. If π contains a (q+1)-line, then by Lemma 1, π is an h-plane. This contradiction shows that all lines of π are (s+1)-secant lines. Let p be a point of $\mathcal{K} \cap \pi$. Counting m via the lines on p gives m = 1 + (q+1)s = sq + s + 1. Counting the incident point-line pairs (p, ℓ) , $p \in \pi \cap \mathcal{K}$ gives

$$(sq + s + 1)(q + 1) = m(q + 1) = (q^{2} + q + 1)(s + 1)$$

and so s = q, which is a contradiction. Hence any *m*-plane contains at least one tangent line.

Lemma 4. $m \leq sq + 1$.

The electronic journal of combinatorics 22(1) (2015), #P1.22

Proof. Let π be an *m*-plane and ℓ be a line of π tangent to $\mathcal{K} \cap \pi$ at the point *p*. Let *x* be the number of tangent lines on *p*. Counting points of $\mathcal{K} \cap \pi$ via the lines on *p* gives

$$m = 1 + (q + 1 - x)s,$$

since $x \ge 1$ it follows that $m \le sq + 1$.

Lemma 5. m = sq + 1.

Proof. Assume that $m \leq sq$. Thus, $h = m + q \leq (s + 1)q$. Assume that there exists a h-plane π containing two or more (q + 1)-secant lines. Let x be a point of π not in \mathcal{K} . All lines of π on x, except possibly for one, intersect $\mathcal{K} \cap \pi$ in at least two and hence in at least s + 1 points, so $h \geq 1 + q \cdot (s + 1)$, a contradiction. Hence, every h-plane contains at most one (q + 1)-line. Let ℓ be a (q + 1)-line, let π be an h-plane through ℓ and let x be a point of $\mathcal{K} \cap \pi$ outside ℓ . Counting points of $\mathcal{K} \cap \pi$ via the lines of π passing through x gives h = 1 + (q + 1)s = sq + s + 1.

Let α be an *m*-plane and $\mathcal{K}' = \mathcal{K} \cap \alpha$. The set \mathcal{K}' has size *m* and is of line type $(1, s + 1)_1$. Let *p* be a point of \mathcal{K}' , and *x* be the number of tangent lines on *p*. Counting points of $\mathcal{K} \cap \alpha$ via the lines on *p* gives m = 1 + (q + 1 - x)s, so

$$sq + s + 1 - q = h - q = m = 1 + sq + s - xs$$

that is,

$$x = \frac{q}{s}.$$

Let b_1 and b_{s+1} denote the number of tangent lines and (s+1)-lines of α , respectively. Then

$$m\frac{q}{s} = b_1$$

,

that is, $mq = sb_1$.

On the other hand, $b_1 + b_{s+1} = q^2 + q + 1$ and $b_1 + (s+1)b_{s+1} = m(q+1)$. These last two equations imply that

$$sb_1 = (s+1)(q^2+q+1) - m(q+1).$$

Therefore,

$$mq = (s+1)(q^2 + q + 1) - m(q+1)$$

and so

$$2q + 1 = \frac{(s+1)(q^2 + q + 1)}{m} = \frac{(s+1)(q^2 + q + 1)}{sq + s + 1 - q}.$$

Thus,

$$2q = \frac{sq^2 + q^2 + 2q}{sq + s + 1 - q}$$
$$sq^2 + 2sq - 3q^2 = 0$$

The electronic journal of combinatorics $\mathbf{22(1)}$ (2015), #P1.22

from which it follows that s = 2 and q = 4. Therefore, m = 7, h = 11 and k = 35. Let $b_i, i \in \{1, 3, 5\}$, denote the number of *i*-lines of PG(3, 4). The usual counting arguments give:

$$\begin{cases} b_1 + b_3 + b_5 &= (q^2 + 1)(q^2 + q + 1) = 357 \\ b_1 + 3b_3 + 5b_5 &= k \cdot (q^2 + q + 1) = 735 \\ 6b_3 + 10b_5 &= k(k-1) = 1190 \end{cases},$$

so, subtracting the first equation from the second one and dividing the third equation above by 2 give

$$b_3 + 2b_5 = 189$$
 and $3b_3 + 5b_5 = 595$

which is a contradiction.

Lemma 6. $q = s^2$.

Proof. Let π be an *m*-plane, *p* be a point of $\pi \cap \mathcal{K}$, and let *x* be the number of tangent lines of π passing through *p*. Counting points of $\mathcal{K} \cap \pi$ via the lines on *p* gives

$$sq + 1 = m = 1 + (q + 1 - x)s$$

and so x = 1. Thus, every point of π in \mathcal{K} is on exactly one tangent line. So the numbers b_1 of tangents and b_{s+1} of (s+1)-lines of π are $b_1 = m = sq + 1$ and $b_{s+1} = q^2 + q + 1 - m$, respectively. Counting the incident point-line pairs (p, ℓ) of $\pi, p \in \mathcal{K}, \ell$ a (s+1)-secant line gives

$$(sq+1)q = (s+1)b_{s+1}$$

from which it follows that

$$b_{s+1} = q^2 - \frac{q(q-1)}{s+1}$$

Hence,

$$q^{2} - \frac{q(q-1)}{s+1} = b_{s+1} = q^{2} + q + 1 - sq - 1$$
$$(s-1)q = \frac{q(q-1)}{s+1}$$
$$s^{2} - 1 = q - 1.$$

Thus, $m = s^3 + 1$, $h = s^3 + s^2 + 1$, $k = (s^3 + 1)(s^2 + 1)$ and each line intersects \mathcal{K} in 1, s+1 or s^2+1 points. Hence, \mathcal{K} is a $k_{n,3,q}$ set in PG(3, q) (cf [6]) with $k = (q\sqrt{q}+1)(q+1)$, n = s + 1 and $q = s^2$. So, since \mathcal{K} contains no plane, $n \neq 1, q$, any point of \mathcal{K} is on at least one (s+1)-secant line and for q = 4 no 13-plane contains three 5-lines forming a triangle and k = 45, it follows by the results in ([6], Section 19.5 Theorem 19.5.13) that \mathcal{K} is a Hermitian variety of PG(3, s^2).

Acknowledgements

The author would like to thank the anonymous Referee for a careful reading of the original manuscript and making suggestions which have improved the presentation.

The electronic journal of combinatorics 22(1) (2015), #P1.22

References

- [1] L. Berardi, T. Masini. On sets of type $(m, n)_{r-1}$ in PG(r, q). Discrete Math., 309:1629–1636, 2009.
- [2] A. Bichara. Sui k-insiemi di $S_{3,q}$ di tipo $((n-1)q+1, nq+1)_2$. Rend. Acc.Naz. Lincei, 628(60):480–488, 1977.
- [3] M. de Finis. On k-sets of type (m, n) in PG(3, q) with respect to planes. Ars Combin., 21:119–136, 1986.
- [4] R. Calderbank, W. M. Kantor. The geometry of two-weight codes. Bull. London Math. Soc., 18:97–122, 1986.
- [5] O. Ferri. Le calotte a due caratteri rispetto ai piani in uno spazio di Galois $S_{r,q}$. Riv. Mat. Univ. Parma, IV (6):55–63, 1980.
- [6] J. W. P. Hirschfeld. *Finite projective spaces of three dimensions*. Oxford University Press, 1985.
- [7] V. Napolitano, D. Olanda, Sets of type (3, h)₂ in PG(3, q). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 22:1–9, 2012.
- [8] J. Schillewaert, J. A. Thas, Characterizations of Hermitian varieties by intersection numbers. Des. Codes Cryptogr., 50:41–60, 2009.
- [9] J. Schillewaert, A Characterization of quadrics by intersection numbers. *Des. Codes Cryptogr.*, 47:165–175, 2008.
- [10] B. Segre, Ovals in a finite projective plane. Canad. J. Math., 7:414–416, 1955.
- [11] G. Tallini, Some new results on sets of type (m, n) in projective planes. J. Geom., 29:191–199, 1987.
- [12] M. Tallini Scafati, Caratterizzazione grafica delle forme hermitiane di un $S_{r,q}$. Rend. Mat. Roma, 26:273–303, 1967.
- [13] M. Tallini Scafati, Sui k-insiemi di uno spazio di Galois $S_{r,q}$ a due soli caratteri nella dimensione d. Rend. Acc.Naz. Lincei, 8(60):782–788, 1976.
- [14] J. A. Thas, A combinatorial problem. Geom. Dedicata, 1(2):236–240, 1973.
- [15] J. H. Van Lint, A. Schrijver, Constructions of strongly regular graphs, two-weight codes and partial geometries by finite fields. *Combinatorica*, 1:63–73, 1981.

Corrigendum added March 29 2019

A step in the proof of Theorem I is Lemma 5, which by contradiction gives that m = sq + 1. In the proof of Lemma 5, the author first proves that if $m \leq sq$ then \mathcal{K} is a hypothetical set of points of PG(3, 4) of size 35, intersected by any plane in m = 7 or h = 11 points and by every line in 1, 3 or 5 points. Then using the usual incidence equations, with one of them written in a wrong way, he proves that such a set cannot exist, believing wrongly to have obtained the final contradiction. Indeed, in the last part of the proof of Lemma 5 the following system of linear equations and argument are used.

Let b_i , $i \in \{1, 3, 5\}$, denote the number of i-lines¹. The usual point-line incidence counting arguments give:

$$\begin{cases} b_1 + b_3 + b_5 &= (q^2 + 1)(q^2 + q + 1) = 357\\ b_1 + 3b_3 + 5b_5 &= k \cdot (q^2 + q + 1) = 735\\ 6b_3 + 10b_5 &= k(k-1) = 1190 \end{cases}$$

so, subtracting the first equation from the second one and dividing the third equation above by 2 give

 $b_3 + 2b_5 = 189$ and $3b_3 + 5b_5 = 595$

which is a contradiction.

The mistake is that the third equation should be $6b_3 + 20b_5 = 1190$, and so the above argument does not work.

Now, let us consider the previous system with the correct third equation. Thus, $b_5 = 7$ and $b_1 = b_3 = 175$.

Let ℓ and ℓ' two 5-lines and assume that they intersect each other in a point p. The plane π containing ℓ and ℓ' is an h-plane since has at least 9 points. Let x be a point of $\ell \setminus \{p\}$, the lines on x in π and different from ℓ have at least three points in $\mathcal{K} \cap \pi$ and so \mathcal{K} intersects π in at least $5 + 4 \cdot 2 = 13 > 11 = h$ points, a contradiction.

Hence the seven 5-lines are pairwise skew and so they form a partial spread of PG(3, 4). These lines partition the set of points of \mathcal{K} , and since \mathcal{K} is of line type $(1,3,5)_1$ it follows that there is no line skew to all of them. Therefore such a partial spread is maximal. But this is a contradiction, since the number of lines of a maximal partial spread in PG(3,q) is at least 2q (cf [2, 1]), and so in this case it should be $7 \ge 2q = 8$. Hence, the case s = 2, q = 4, m = 7, h = 11 and k = 35 cannot occur and so Lemma 5 is valid.

Let us end, by recalling that in [3] Hirschfeld and Hubaut gave the complete list of sets of line–type $(1,3,5)_1$ in PG(3,4) and that list contains no set of size 35, so one may obtain the validity of Lemma 5 also via that result.

Additional correction to text: line 7, Section 1: ' $1 \leq h \leq r-1$ ' should be ' $1 \leq h \leq d-1$ '.

Acknowledgements

I would like to thank Professor Michel Lavrauw and his student Çiğdem Çelik who let me know of the error in the above incidence equation.

¹An *i*-line (or *i*-plane) is a line (plane) intersecting \mathcal{K} in exactly *i*-points.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P1.22

References

- A. A. Bruen, J. A. Thas, Partial Speads, Packings and Hermitian manifold in PG(3,q). Math. Z. 151 (1976), 207–214.
- [2] D. G. Glynn, A lower bound for maximal partial spreads in PG(3, q). Ars Combinatoria 13 (1982), 39–40.
- [3] J. W. P. Hirschfeld, X. Hubaut, Sets of Even Type in PG(3,4), alias the Binary (85,24) Projective Geometry Code. J. Combin. Theory A 29 (1980), 101–112