A characterization of the Hermitian variety in
finite 3-dimensional projective spaces

Vito Napolitano*

Dipartimento di Matematica e Fisica
Seconda Universita degli Studi di Napoli
Caserta, ITALY.

vito.napolitano@unina2.it

Submitted: May 30, 2013; Accepted: Jan 24, 2015; Published: Feb 9, 2015
Mathematics Subject Classifications: 05B25, 51E20

Abstract

A combinatorial characterization of a non—singular Hermitian variety of the finite
3-dimensional projective space via its intersection numbers with respect to lines and
planes is given.
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1 Introduction

Ever since the celebrated theorem of B. Segre [10] on (¢+1)-arcs of PG(2, q), ¢ odd, people
have tried to characterize classical objects of finite projective geometry via their combina-
torial properties. Intersection numbers with respect to the subspaces of a given dimension
of the d—dimensional projective space PG(d, q) of order ¢ have been used frequently for
this purpose.

Let us fix some notation. Let P = PG(d, q) and let my, ..., m, be s integers such that
0 <my <...<m Forany integer h, 1 < h < r — 1, let Py, denote the family of all
h—dimensional subspaces of P. A subset K of points of P has class [my, ..., m], for some s
if |IKN7| € {mq,...,m,} for any m € P),. Moreover, if for every m; € {m4,...,m,} there
is at least one subspace 7 € Py, such that | N7w| = m; the set K is of type (my, ..., ms)s.
In this case, the non—negative integers my, . .., m are the intersection numbers of K (with
respect to Py). If h =1 or h = 2, we speak of the line-type or plane-type, respectively.

A wide literature is devoted to the theory of sets of a given type, some of which is
listed in the references. The interest in studying such sets, in particular for the case of two
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intersection numbers with respect to hyperplanes is motivated in part by their connection
with coding theory (cf e.g. [4, 7, 15]).

A non-singular hermitian variety of PG(3, ¢?) has size (¢ + 1)(¢> + 1) [6]. Any line
intersects the variety in either 1, or ¢ + 1, or ¢> + 1 points. A plane intersects in either
¢+ 1 or ¢+ ¢*> + 1 points.

In this paper, we will give a new combinatorial characterization of a non—singular
hermitian variety of the finite 3-dimensional projective space. This result generalizes an
earlier result due to Schillewaert and Thas [8].

Theorem I Let K be a set of k = m(q + 1) points of PG(3,q), for some integer m.
Assume that the line type of K is (1,s+1,q+ 1)1, for some integer s with 1 < s < q— 1.
Assume further that the plane type is (m,h)s for some integer h, then q = s* and K is a
hermitian surface of PG(3,s%).

As is costumary in the literature, a j—line is a line intersecting K in exactly j points.
A j—plane is a plane intersecting IC in exactly j points. For simplicity, a 1-line is called
a tangent line.

1.1 Basic equations of k—sets of type (m, h)2 in PG(3, q)

De Finis [3] studied combinatorial properties of sets in PG(3, ¢). Assume that K is a set
of k points in PG(3, ¢) with plane type (m, h),, for two distinct integers m and h. Then
k is a solution to the equation

E(q+1) —k[(h+m)(@®+q+1)— ¢ +hm(g+1)(¢*+1)=0. (1)

As a preparation for the arguments in the remainder of this paper, we outline a proof of
this result:
Let ¢; be the number of j-planes of K. Double counting gives

Cm+en= (" +1)(g+1)
MC + hew = k(2 +q+1)
m(m —1)¢p, +h(h —1)e, = k(k—1)(g+ 1)
from which the quadratic equation for k follows.
We observe the following;:
Observation 1: If h = m + ¢ the quadratic equation (1) has the two solutions
(¢° +1)(g +m)

qg+1
Observation 2: If k = m(q + 1) the quadratic equation (1) implies that A = m + q.

k=m(g+1)and k =

The present paper is concerned with only the first case of the two cases occuring in
(1) when h =m +q.
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If € is a k—set of PG(3, ¢) with intersection numbers m and m+¢q with respect to planes,
it follows from the basic equations above that k = m(¢+1) or k = (¢*+1)(g+m)/(q+1).
Hence, in PG(3, ¢?), from m = ¢* + 1 it follows that k = (¢*+1)(¢* + 1) = m(¢* + 1) and
so Theorem I generalizes Theorem 4.1 of [8].

Let us end this section with some remarks. In PG(3, ¢) a set of line type (n); is either
the empty set or the whole space, and a set of line type (m, ¢+ 1); is either PG(3, q) less
a point (m = ¢q) or a plane (m = 1) (cf e.g. [13]). If K is a set of points of PG(3, ¢) of line
type (1,7n); then by results in [13] n = ¢ + 1 and so K is a plane. Thus, to study subsets
of PG(3,q) of class [1,a,q + 1]; means to study sets of line type (1,a,q + 1);.

2 The proof

Throughout this section, K is a set of points of PG(3,q) of size k = m(q + 1) with line
type (1,s + 1,q + 1); and with plane type (m,h)s, s > 1. It follows from Observation 2
that h =m +q.

Lemma 1. If ( is a (q+ 1)-secant line then all the planes containing ¢ are h—planes.

Proof. Let a denote the number of m—planes through ¢. Counting k via the planes on ¢
gives
mig+1)=k=q+1+am—-—q—1)+(q+1—a)(m—1)

SO
m(qg+1) =m(q+1) —aq

from which it follows that a = 0. O
Corollary 2. There are no (q+ 1)-lines contained in m—-planes.
Lemma 3. Any m—plane contains at least one tangent line.

Proof. Recall that every line intersects K in either 1,s + 1, or ¢ + 1 points for some s
with 1 < s < g — 1. Assume that there is an m—plane 7 containing no tangent line. If 7
contains a (¢ + 1)-line, then by Lemma 1, 7 is an h—plane. This contradiction shows that
all lines of 7 are (s + 1)-secant lines. Let p be a point of KN 7. Counting m via the lines
on p gives m =14 (¢ + 1)s = s¢ + s + 1. Counting the incident point-line pairs (p, ¢),
p € mNK gives

(sg+s+1(g+1) =mg+1) = (" +q+1)(s+1)

and so s = ¢, which is a contradiction. Hence any m—plane contains at least one tangent
line. O

Lemma 4. m < sq + 1.
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Proof. Let m be an m-plane and ¢ be a line of 7 tangent to IC N 7 at the point p. Let z
be the number of tangent lines on p. Counting points of K N 7 via the lines on p gives

m=1+(¢+1—21)s,
since x > 1 it follows that m < sq + 1. ]
Lemma 5. m = sq+ 1.

Proof. Assume that m < sq. Thus, h = m + ¢ < (s + 1)g. Assume that there exists a
h-plane 7 containing two or more (q 4+ 1)-secant lines. Let = be a point of 7 not in K.
All lines of 7 on x, except possibly for one, intersect X N7 in at least two and hence in at
least s 4+ 1 points, so h > 1+ ¢ - (s + 1), a contradiction. Hence, every h—plane contains
at most one (q + 1)-line. Let ¢ be a (¢ + 1)-line, let 7 be an h—plane through ¢ and let x
be a point of K N7 outside . Counting points of K N7 via the lines of 7 passing through
rgivesh=14+(¢g+1)s=s¢+s+ 1.

Let a be an m-plane and XK' = K N «a. The set K’ has size m and is of line type
(1,54 1);. Let p be a point of K, and x be the number of tangent lines on p. Counting
points of K N « via the lines on p gives m =1+ (¢ + 1 — x)s, so

sq+s+1—q=h—q=m=14+sq+s—xs

that is,
q
T =-.
s
Let by and by denote the number of tangent lines and (s+ 1)-lines of «, respectively.
Then

777,g :bl,
S

that is, mq = sb;.
On the other hand, b; + bsy1 = ¢* + ¢+ 1 and by + (s + 1)bsy1 = m(q+ 1). These last
two equations imply that

sbi=(s+1)(¢*+q+1)—m(g+1).

Therefore,
mq=(s+1)(¢"+q+1)—m(g+1)
and so
5 +1_(s+1)(q2+q—|—1)_(s+1)(q2+q+1)
q B m  sq4+s+1—q
Thus,
s+ ¢+ 2
sq+s+1—gq

s¢* +2s¢q—3¢° =0
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from which it follows that s = 2 and ¢ = 4. Therefore, m = 7,h = 11 and k£ = 35. Let
bi, i € {1,3,5}, denote the number of i—lines of PG(3,4). The usual counting arguments
give:

b+ bs+ by = (P+1)(P+q+1) =357
bi+ 3bs+ 5bs = k- (@F+q+1)=73
6bs+ 1005 = k(k—1)=1190

so, subtracting the first equation from the second one and dividing the third equation
above by 2 give
bg + 2()5 =189 and 3b3 + 5b5 = 9595

which is a contradiction. ]
Lemma 6. ¢ = 5.

Proof. Let m be an m—plane, p be a point of 7 N K, and let x be the number of tangent
lines of 7 passing through p. Counting points of JC N 7 via the lines on p gives

sg+1l=m=1+(¢g+1—2x)s

and so x = 1. Thus, every point of 7 in I is on exactly one tangent line. So the numbers
by of tangents and by, of (s+1)-lines of m are by = m = sq+1 and b,y 1 = ¢>+q+1—m,
respectively. Counting the incident point-line pairs (p,¢) of 7, p € K, { a (s + 1)-secant
line gives

(sq+1)g = (s+ 1)bss1,

from which it follows that

q(g—1)
b1 = 2t

+1—=d s 1

Hence,
2 q(q—l) 2
s 11 +1=¢q¢ +q+ sq

q(qg—1)

—1Ng =22~/

(s )Ja s+1

s —1=q—1.

Thus, m =s*+1, h =53+ s*+1, k= (s*+1)(s*+ 1) and each line intersects K in 1,
s+1or s°+1 points. Hence, K is a k;, 3 4 set in PG(3, ¢) (cf [6]) with k = (¢\/g+1)(¢+1),
n=s+1and ¢ = s%. So, since K contains no plane, n # 1, ¢, any point of K is on at
least one (s + 1)-secant line and for ¢ = 4 no 13-plane contains three 5-lines forming a
triangle and k = 45, it follows by the results in ([6], Section 19.5 Theorem 19.5.13) that
K is a Hermitian variety of PG(3, s?). O
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Corrigendum added March 29 2019

A step in the proof of Theorem I is Lemma 5, which by contradiction gives that
m = sq + 1. In the proof of Lemma 5, the author first proves that if m < sq then K
is a hypothetical set of points of PG(3,4) of size 35, intersected by any plane in m =7
or h = 11 points and by every line in 1, 3 or 5 points. Then using the usual incidence
equations, with one of them written in a wrong way, he proves that such a set cannot
exist, believing wrongly to have obtained the final contradiction. Indeed, in the last part
of the proof of Lemma 5 the following system of linear equations and argument are used.

Let b;, i € {1,3,5}, denote the number of i-lines'. The usual point-line incidence
counting arguments give:

b+ b+ by = (P+1)(¢*+q+1) =357
bi+ 3bs+ 5bs = k- (¢*+q+1)=735
6bs+ 10b; = k(k—1)=1190

so, subtracting the first equation from the second one and dividing the third equation above
by 2 give

bs + 2b5 = 189 and 3bs + Hbs = 595
which 1s a contradiction.

The mistake is that the third equation should be 6b3 + 20b5 = 1190, and so the above
argument does not work.

Now, let us consider the previous system with the correct third equation. Thus, b5 = 7
and b1 = b3 = 175.

Let ¢ and ¢ two 5-lines and assume that they intersect each other in a point p. The
plane 7 containing ¢ and ¢ is an h—plane since has at least 9 points. Let x be a point of
¢\ {p}, the lines on z in 7w and different from ¢ have at least three points in N7 and so
KC intersects m in at least 544 -2 = 13 > 11 = h points, a contradiction.

Hence the seven 5-lines are pairwise skew and so they form a partial spread of PG(3,4).
These lines partition the set of points of I, and since K is of line type (1, 3,5); it follows
that there is no line skew to all of them. Therefore such a partial spread is maximal. But
this is a contradiction, since the number of lines of a maximal partial spread in PG(3, q)
is at least 2¢ (cf [2, 1]), and so in this case it should be 7 > 2¢ = 8. Hence, the case s = 2,
q=4, m="7h=11 and k = 35 cannot occur and so Lemma 5 is valid.

Let us end, by recalling that in [3] Hirschfeld and Hubaut gave the complete list of
sets of line-type (1,3,5); in PG(3,4) and that list contains no set of size 35, so one may
obtain the validity of Lemma 5 also via that result.

Additional correction to text: line 7, Section 1: ‘1 < h <r—1"should be ‘1 <h<d—1".
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LAn i-line (or i—plane) is a line (plane) intersecting K in exactly i—points.
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