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Abstract

A combinatorial characterization of a non–singular Hermitian variety of the finite
3-dimensional projective space via its intersection numbers with respect to lines and
planes is given.
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1 Introduction

Ever since the celebrated theorem of B. Segre [10] on (q+1)–arcs of PG(2, q), q odd, people
have tried to characterize classical objects of finite projective geometry via their combina-
torial properties. Intersection numbers with respect to the subspaces of a given dimension
of the d–dimensional projective space PG(d, q) of order q have been used frequently for
this purpose.

Let us fix some notation. Let P = PG(d, q) and let m1, . . ., ms be s integers such that
0 6 m1 < . . . < ms. For any integer h, 1 6 h 6 r − 1, let Ph denote the family of all
h–dimensional subspaces of P. A subset K of points of P has class [m1, . . . ,ms]h for some s
if |K∩π| ∈ {m1, . . . ,ms} for any π ∈ Ph. Moreover, if for every mj ∈ {m1, . . . ,ms} there
is at least one subspace π ∈ Ph such that |K ∩π| = mj the set K is of type (m1, . . . ,ms)h.
In this case, the non–negative integers m1, . . . ,ms are the intersection numbers of K (with
respect to Ph). If h = 1 or h = 2, we speak of the line–type or plane–type, respectively.

A wide literature is devoted to the theory of sets of a given type, some of which is
listed in the references. The interest in studying such sets, in particular for the case of two
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intersection numbers with respect to hyperplanes is motivated in part by their connection
with coding theory (cf e.g. [4, 7, 15]).

A non–singular hermitian variety of PG(3, q2) has size (q3 + 1)(q2 + 1) [6]. Any line
intersects the variety in either 1, or q + 1, or q2 + 1 points. A plane intersects in either
q3 + 1 or q3 + q2 + 1 points.

In this paper, we will give a new combinatorial characterization of a non–singular
hermitian variety of the finite 3-dimensional projective space. This result generalizes an
earlier result due to Schillewaert and Thas [8].

Theorem I Let K be a set of k = m(q + 1) points of PG(3, q), for some integer m.
Assume that the line type of K is (1, s+ 1, q+ 1)1, for some integer s with 1 6 s 6 q− 1.
Assume further that the plane type is (m,h)2 for some integer h, then q = s2 and K is a
hermitian surface of PG(3, s2).

As is costumary in the literature, a j–line is a line intersecting K in exactly j points.
A j–plane is a plane intersecting K in exactly j points. For simplicity, a 1–line is called
a tangent line.

1.1 Basic equations of k–sets of type (m,h)2 in PG(3, q)

De Finis [3] studied combinatorial properties of sets in PG(3, q). Assume that K is a set
of k points in PG(3, q) with plane type (m,h)2, for two distinct integers m and h. Then
k is a solution to the equation

k2(q + 1)− k[(h+m)(q2 + q + 1)− q2] + hm(q + 1)(q2 + 1) = 0. (1)

As a preparation for the arguments in the remainder of this paper, we outline a proof of
this result:
Let cj be the number of j–planes of K. Double counting gives

cm + ch = (q2 + 1)(q + 1)

mcm + hch = k(q2 + q + 1)

m(m− 1)cm + h(h− 1)ch = k(k − 1)(q + 1)

from which the quadratic equation for k follows.

We observe the following:

Observation 1: If h = m+ q the quadratic equation (1) has the two solutions

k = m(q + 1) and k =
(q2 + 1)(q +m)

q + 1
.

Observation 2: If k = m(q + 1) the quadratic equation (1) implies that h = m+ q.

The present paper is concerned with only the first case of the two cases occuring in
(1) when h = m+ q.
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IfK is a k–set of PG(3, q) with intersection numbersm andm+q with respect to planes,
it follows from the basic equations above that k = m(q+1) or k = (q2 +1)(q+m)/(q+1).
Hence, in PG(3, q2), from m = q3 + 1 it follows that k = (q3 + 1)(q2 + 1) = m(q2 + 1) and
so Theorem I generalizes Theorem 4.1 of [8].

Let us end this section with some remarks. In PG(3, q) a set of line type (n)1 is either
the empty set or the whole space, and a set of line type (m, q+ 1)1 is either PG(3, q) less
a point (m = q) or a plane (m = 1) (cf e.g. [13]). If K is a set of points of PG(3, q) of line
type (1, n)1 then by results in [13] n = q + 1 and so K is a plane. Thus, to study subsets
of PG(3, q) of class [1, a, q + 1]1 means to study sets of line type (1, a, q + 1)1.

2 The proof

Throughout this section, K is a set of points of PG(3, q) of size k = m(q + 1) with line
type (1, s + 1, q + 1)1 and with plane type (m,h)2, s > 1. It follows from Observation 2
that h = m+ q.

Lemma 1. If ` is a (q + 1)–secant line then all the planes containing ` are h–planes.

Proof. Let α denote the number of m–planes through `. Counting k via the planes on `
gives

m(q + 1) = k = q + 1 + α(m− q − 1) + (q + 1− α)(m− 1)

so
m(q + 1) = m(q + 1)− αq

from which it follows that α = 0.

Corollary 2. There are no (q + 1)–lines contained in m–planes.

Lemma 3. Any m–plane contains at least one tangent line.

Proof. Recall that every line intersects K in either 1, s + 1, or q + 1 points for some s
with 1 6 s 6 q − 1. Assume that there is an m–plane π containing no tangent line. If π
contains a (q+ 1)–line, then by Lemma 1, π is an h–plane. This contradiction shows that
all lines of π are (s+ 1)–secant lines. Let p be a point of K∩ π. Counting m via the lines
on p gives m = 1 + (q + 1)s = sq + s + 1. Counting the incident point–line pairs (p, `),
p ∈ π ∩ K gives

(sq + s+ 1)(q + 1) = m(q + 1) = (q2 + q + 1)(s+ 1)

and so s = q, which is a contradiction. Hence any m–plane contains at least one tangent
line.

Lemma 4. m 6 sq + 1.

the electronic journal of combinatorics 22(1) (2015), #P1.22 3



Proof. Let π be an m–plane and ` be a line of π tangent to K ∩ π at the point p. Let x
be the number of tangent lines on p. Counting points of K ∩ π via the lines on p gives

m = 1 + (q + 1− x)s,

since x > 1 it follows that m 6 sq + 1.

Lemma 5. m = sq + 1.

Proof. Assume that m 6 sq. Thus, h = m + q 6 (s + 1)q. Assume that there exists a
h–plane π containing two or more (q + 1)–secant lines. Let x be a point of π not in K.
All lines of π on x, except possibly for one, intersect K∩π in at least two and hence in at
least s + 1 points, so h > 1 + q · (s + 1), a contradiction. Hence, every h–plane contains
at most one (q + 1)–line. Let ` be a (q + 1)–line, let π be an h–plane through ` and let x
be a point of K∩π outside `. Counting points of K∩π via the lines of π passing through
x gives h = 1 + (q + 1)s = sq + s+ 1.

Let α be an m–plane and K′ = K ∩ α. The set K′ has size m and is of line type
(1, s + 1)1. Let p be a point of K′, and x be the number of tangent lines on p. Counting
points of K ∩ α via the lines on p gives m = 1 + (q + 1− x)s, so

sq + s+ 1− q = h− q = m = 1 + sq + s− xs

that is,

x =
q

s
.

Let b1 and bs+1 denote the number of tangent lines and (s+ 1)–lines of α, respectively.
Then

m
q

s
= b1,

that is, mq = sb1.
On the other hand, b1 + bs+1 = q2 + q + 1 and b1 + (s+ 1)bs+1 = m(q + 1). These last

two equations imply that

sb1 = (s+ 1)(q2 + q + 1)−m(q + 1).

Therefore,
mq = (s+ 1)(q2 + q + 1)−m(q + 1)

and so

2q + 1 =
(s+ 1)(q2 + q + 1)

m
=

(s+ 1)(q2 + q + 1)

sq + s+ 1− q
.

Thus,

2q =
sq2 + q2 + 2q

sq + s+ 1− q

sq2 + 2sq − 3q2 = 0
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from which it follows that s = 2 and q = 4. Therefore, m = 7, h = 11 and k = 35. Let
bi, i ∈ {1, 3, 5}, denote the number of i–lines of PG(3, 4). The usual counting arguments
give: 

b1+ b3+ b5 = (q2 + 1)(q2 + q + 1) = 357
b1+ 3b3+ 5b5 = k · (q2 + q + 1) = 735

6b3+ 10b5 = k(k − 1) = 1190
,

so, subtracting the first equation from the second one and dividing the third equation
above by 2 give

b3 + 2b5 = 189 and 3b3 + 5b5 = 595

which is a contradiction.

Lemma 6. q = s2.

Proof. Let π be an m–plane, p be a point of π ∩ K, and let x be the number of tangent
lines of π passing through p. Counting points of K ∩ π via the lines on p gives

sq + 1 = m = 1 + (q + 1− x)s

and so x = 1. Thus, every point of π in K is on exactly one tangent line. So the numbers
b1 of tangents and bs+1 of (s+1)–lines of π are b1 = m = sq+1 and bs+1 = q2 + q+1−m,
respectively. Counting the incident point–line pairs (p, `) of π, p ∈ K, ` a (s + 1)–secant
line gives

(sq + 1)q = (s+ 1)bs+1,

from which it follows that

bs+1 = q2 − q(q − 1)

s+ 1
.

Hence,

q2 − q(q − 1)

s+ 1
= bs+1 = q2 + q + 1− sq − 1

(s− 1)q =
q(q − 1)

s+ 1

s2 − 1 = q − 1.

Thus, m = s3 + 1, h = s3 + s2 + 1, k = (s3 + 1)(s2 + 1) and each line intersects K in 1,
s+1 or s2+1 points. Hence, K is a kn,3,q set in PG(3, q) (cf [6]) with k = (q

√
q+1)(q+1),

n = s + 1 and q = s2. So, since K contains no plane, n 6= 1, q, any point of K is on at
least one (s + 1)–secant line and for q = 4 no 13–plane contains three 5–lines forming a
triangle and k = 45, it follows by the results in ([6], Section 19.5 Theorem 19.5.13) that
K is a Hermitian variety of PG(3, s2).
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Corrigendum added March 29 2019

A step in the proof of Theorem I is Lemma 5, which by contradiction gives that
m = sq + 1. In the proof of Lemma 5, the author first proves that if m 6 sq then K
is a hypothetical set of points of PG(3, 4) of size 35, intersected by any plane in m = 7
or h = 11 points and by every line in 1, 3 or 5 points. Then using the usual incidence
equations, with one of them written in a wrong way, he proves that such a set cannot
exist, believing wrongly to have obtained the final contradiction. Indeed, in the last part
of the proof of Lemma 5 the following system of linear equations and argument are used.

Let bi, i ∈ {1, 3, 5}, denote the number of i–lines1. The usual point–line incidence
counting arguments give:

b1+ b3+ b5 = (q2 + 1)(q2 + q + 1) = 357
b1+ 3b3+ 5b5 = k · (q2 + q + 1) = 735

6b3+ 10b5 = k(k − 1) = 1190

so, subtracting the first equation from the second one and dividing the third equation above
by 2 give

b3 + 2b5 = 189 and 3b3 + 5b5 = 595

which is a contradiction.
The mistake is that the third equation should be 6b3 + 20b5 = 1190, and so the above

argument does not work.
Now, let us consider the previous system with the correct third equation. Thus, b5 = 7

and b1 = b3 = 175.
Let ` and `′ two 5–lines and assume that they intersect each other in a point p. The

plane π containing ` and `′ is an h–plane since has at least 9 points. Let x be a point of
` \ {p}, the lines on x in π and different from ` have at least three points in K∩ π and so
K intersects π in at least 5 + 4 · 2 = 13 > 11 = h points, a contradiction.

Hence the seven 5–lines are pairwise skew and so they form a partial spread of PG(3, 4).
These lines partition the set of points of K, and since K is of line type (1, 3, 5)1 it follows
that there is no line skew to all of them. Therefore such a partial spread is maximal. But
this is a contradiction, since the number of lines of a maximal partial spread in PG(3, q)
is at least 2q (cf [2, 1]), and so in this case it should be 7 > 2q = 8. Hence, the case s = 2,
q = 4, m = 7, h = 11 and k = 35 cannot occur and so Lemma 5 is valid.

Let us end, by recalling that in [3] Hirschfeld and Hubaut gave the complete list of
sets of line–type (1, 3, 5)1 in PG(3, 4) and that list contains no set of size 35, so one may
obtain the validity of Lemma 5 also via that result.

Additional correction to text: line 7, Section 1: ‘1 6 h 6 r− 1’ should be ‘1 6 h 6 d− 1’.
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