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Abstract

We define a vector crank to provide a combinatorial interpretation for a certain
Ramanujan type congruence modulo 7.
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1 Introduction

In [7], one of the authors established several new Ramanujan type identities and con-
gruences modulo 3, 5 and 7 for certain types of partition functions. For example, define
Qpo,p(n) as the number of partitions of n into two colors, where the red colored parts form
a partition into odd parts and the blue colored parts form an overpartition. Using the
standard notation

(a; q)n =
n−1∏
j=0

(1− aqj),

(a; q)∞ = lim
n→∞

(a; q)n,

(a1, . . . , am; q)∞ = (a1; q)∞ · · · (am; q)∞,
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for |q| < 1 and a, a1, . . . , am 6= 0, we can write the generating function of Qpo,p(n) as

∞∑
n=0

Qpo,p(n)qn =
1

(q; q2)∞
× (−q; q)∞

(q; q)∞
=

(−q,−q; q)∞
(q; q)∞

.

Toh [7] proved that
∞∑
n=0

Qpo,p(7n+ 2)qn ≡ 0 (mod 7). (1)

Zhou [9] subsequently provided alternative proofs of all of the congruences in [7] with
the exception of (1). She re-interpreted these partition functions as partitions into multi-
colors, introduced what she termed as multiranks – which are essentially vector cranks as
defined by Garvan [4] – and proved that these vector cranks divided the partitions into
equinumerous parts. The aim of this article is to define a vector crank that will explain
(1) combinatorially.

2 A vector crank

If λ is a partition, we define σ(λ) and n(λ) as the sum of the parts and the number of parts
of λ respectively. Let D,O, P denote the sets of partitions into distinct parts, partitions
into odd parts, and unrestricted partitions respectively. Define the cartesian product

V = D ×D ×O ×O × P × P .

For a vector partition ~λ = (λ1, λ2, λ3, λ4, λ5, λ6) ∈ V define a sum of parts s, a weight w
and a crank r by

s(~λ) = 2σ(λ1) + σ(λ2) + σ(λ3) + σ(λ4) + 2σ(λ5) + 2σ(λ6), (2a)

w(~λ) = (−1)n(λ1), (2b)

r(~λ) = 2n(λ3)− 2n(λ4) + n(λ5)− n(λ6). (2c)

The weighted count of vector partitions of n with crank m, denoted by NV(m,n), is
given by

NV(m,n) =
∑
~λ∈V
s(~λ)=n

r(~λ)=m

w(~λ). (3)

We also define the weighted count of vector partitions of n with crank congruent to k
modulo t by

NV(k, t, n) =
∞∑

m=−∞

NV(mt+ k, n) =
∑
~λ∈V
s(~λ)=n

r(~λ)≡k (mod t)

w(~λ). (4)
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Finally, we have the following generating function for NV(m,n),

∞∑
m=−∞

∞∑
n=0

NV(m,n)zmqn =
(q2; q2)∞(−q; q)∞

(z2q; q2)∞(z−2q; q2)∞(zq2; q2)∞(z−1q2; q2)∞
. (5)

Theorem 1. The following equation holds for all nonnegative integers n.

NV(0, 7, 7n+ 2) = NV(1, 7, 7n+ 2) = · · · = NV(6, 7, 7n+ 2) =
Qpo,p(7n+ 2)

7
.

The main ingredient in the proof of the theorem is Winquist’s identity [8], which is
a variant of the B2 case of the Macdonald identities [5]. We state the identity in the
following symmetric form [6, Eq. (3.1)]. If we define

F1(x) =
∞∑

j=−∞

(−1)jq3j
2

(x3j + x−3j), (6a)

F2(x) =
∞∑

k=−∞

(−1)kq3k
2+2k(x3k+1 + x−3k−1), (6b)

we have

F1(x)F2(y)− F1(y)F2(x) = −2

x

(
xq,

q

x
, yq,

q

y
, xy,

q2

xy
,
x

y
,
yq2

x
, q2, q2; q2

)
∞
. (6c)

Proof of Theorem 1. If we set ζ = exp(2πi/7) in (5), we obtain

6∑
t=0

ζt
∞∑
n=0

NV(t, 7, n)qn

=
∞∑

m=−∞

∞∑
n=0

NV(m,n)ζmqn

=
(q2; q2)∞

(q, ζ2q, q/ζ2, ζq2, q2/ζ; q2)∞

=
(ζq, q/ζ, ζ3q, q/ζ3; q2)∞

(q7; q14)∞
× (q2, q2, ζ2q2, q2/ζ2, ζ3q2, q2/ζ3; q2)∞

(q14; q14)∞

=
F1(ζ

3)F2(ζ)− F1(ζ)F2(ζ
3)

2ζ(1− ζ2)(1− ζ3)(q7; q7)∞
,

where we used (6c) with x = ζ3 and y = ζ.
Since 3j2 ≡ 0, 3, 5, 6 (mod 7) and 3k2 + 2k ≡ 0, 1, 2, 5 (mod 7), the power of q in

q3j
2+3k2+2k is congruent to 2 modulo 7 exactly when j ≡ 0 (mod 7) and k ≡ 2 (mod 7).

This means that the coefficient of q7n+2 in

F1(ζ
3)F2(ζ)− F1(ζ)F2(ζ

3)
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is zero since

(−1)j+k(ζ9j + ζ−9j)(ζ3k+1 + ζ−3k−1)− (−1)j+k(ζ3j + ζ−3j)(ζ9k+3 + ζ−9k−3) = 0

when j ≡ 0 (mod 7) and k ≡ 2 (mod 7). Thus

6∑
t=0

NV(t, 7, 7n+ 2)ζt = 0. (7)

Since the minimal polynomial for ζ over the rational numbers is

p(x) = 1 + x+ x2 + · · ·+ x6,

we conclude that

NV(0, 7, 7n+ 2) = NV(1, 7, 7n+ 2) = · · · = NV(6, 7, 7n+ 2).

We end by indicating how one may prove (1) directly as the details were omitted in
[7]. This can be done by observing that

∞∑
n=0

Qpo,p(n)qn =
(q2; q2)2∞
(q; q)3∞

≡ (q2; q2)9∞
(q; q)3∞

× 1

(q14; q14)∞
(mod 7). (8)

Thus (1) is equivalent to proving the coefficients of q7n+2 in

(q2; q2)9∞
(q; q)3∞

are all divisible by 7. We offer three alternative ways of doing this. The easiest way is to
appeal directly to [3, Th. 2]. Alternatively, we can use one of the Macdonald identities
associated with the C∨2 root system [5, p. 137] or [6, Eq. 3.12], to express

(q2; q2)9∞
(q; q)3∞

=
∑

α≡1 (mod 8)
β≡3 (mod 8)

1

8
(β2 − α2)q

α2+β2−10
16 .

If the exponent of q is congruent to 2 modulo 7, we have

α2 + β2 ≡ 16(2) + 10 ≡ 0 (mod 7).

Since −1 is a quadratic nonresidue modulo 7, 7 must divide both α and β. The third way

is to apply the Hecke operator T7 to η(16τ)9

η(8τ)3
, a weight 3 cusp form of level 128. One can

refer to [1] for examples of how this may be done.
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Proposition 2. If |q|, |t| < 1 then

(at; q)∞
(a; q)∞(t; q)∞

=
1

(a; q)∞
+
∞∑
n=1

tn

(aqn; q)∞(q; q)n
.
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