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Abstract

Diwan and Mubayi asked how many edges of each color could be included in a
3-edge-colored multigraph containing no rainbow triangle. We answer this question
under the modest assumption that the multigraphs in question contain at least one
edge between every pair of vertices. We also conjecture that this assumption is, in
fact, without loss of generality.
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1 Introduction

In a yet unpublished manuscript, Diwan and Mubayi [1] asked the following question.

Question 1 (Diwan, Mubayi - [1]). Let R, G, and B be graphs on the same vertex set of
size n. How large must min{e(R), e(G), e(B)} be to guarantee that R ∪ G ∪ B contains
a rainbow triangle?

A graph (or multigraph) with no rainbow triangle is called Gallai-colored (or simply
G-colored) in honor of Gallai’s seminal work in [2].

Theorem 2 (Gallai - [2]). Every G-colored complete (simple) graph has a partition of the
vertices into at least two parts such that on the edges between the parts there are at most
two colors and on the edges between each pair of parts, there is only one color.

Let G be a G-colored multigraph on n vertices using three colors. For this paper,
we will not allow more than one edge of a single color between any pair of vertices. Let
m(G) be the minimum number of edges in a single color in G. Let m = m(n) be limit
of the maximum value of m(G) over all Gallai colored multigraphs G on n vertices as

the electronic journal of combinatorics 22(1) (2015), #P1.28 1



n → ∞. Here, the limit is taken simply to avoid rounding in subsequent arguments.
Then a relaxed version of Question 1 can be stated as ‘find m’.

Pairs of vertices connected by two edges are said to have a double edge between them.
Similarly define a triple edge to be a pair of vertices with three edges connecting them.
A subgraph is called a double clique if all pairs of vertices in the subgraph have a double
edge between them.

Trivially, m > n2

4
by considering two double cliques A and B each of order n/2 and

each using colors red and blue with all edges in between using green. This colored graph
contains no rainbow triangle and each color has approximately n2/4 edges. We call this
multigraph complete since it has at least one edge between every pair of vertices.

It should be noted that there is also a non-complete example that also achieves this
trivial lower bound. Consider the balanced complete bipartite graph A ∪ B in which all
multi-edges between A and B are triple edges. These very different examples may suggest
that this lower bound is not sharp and, in fact, this is the case, as seen in our first result.

Proposition 3.

m >
26− 2

√
7

81
n2 ∼ 0.25566n2.

Proof. Consider a large graph on n vertices partitioned into 3 parts H1, H2 and H3.
Between the parts we have all green edges. Within H1, we have all multi-edges in red
and blue, in H2 all multi-edges are red and green while in H3, all multi-edges are blue
and green. This graph certainly contains no rainbow triangle. We balance the orders of
H1, H2 and H3 in such a way that all colors appear on an equal number of edges. In
particular, this means |H2| = |H3| while |H1| is significantly larger. As n gets large, the
appropriate orders approach |H1| = c1n and |H2| = |H3| = c2n where

c1 =
1 + 2

√
7

9
∼ 0.69906 and c2 =

4−
√

7

9
∼ 0.15047. (1)

In this case, each color has 26−2
√
7

81
n2 edges as desired.

We consider the case where the multigraph in question is complete, a useful but jus-
tifiable property. Since Question 1 involves finding the maximum density under certain
restrictions, the assumption of completeness is only natural. As seen in Conjecture 6 be-
low, we believe that this assumption does not lose generality, meaning that the maximum
density occurs when this property holds.

Another property that will be implied was defined and used in [3]. A G-colored
complete multigraph is called reduced if it contains no pair of vertices {u, v} with all
three colors on edges between them. This gives us the following fact.

Fact 4. If uv is a triple edge, then each other vertex in G must have exactly one color on
edges to both u and v to avoid creating a rainbow triangle.

Let M be limit of the maximum value of m(G) over all G-colored, complete, multi-
graphs G on n vertices as n→∞. With this notation, our main result is the following.
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Theorem 5.

M =
26− 2

√
7

81
n2 ∼ 0.25566n2.

This result is proven in Section 3.
Note that the multigraph constructed in the proof of Proposition 3 is complete and

actually contains no triple edges. In support of our assumptions, we believe the following
conjecture to be true.

Conjecture 6. m = M = 26−2
√
7

81
n2.

2 Preliminaries

Here we state a result of Halperin, Magnant and Pula [3] which provides structure of
complete G-colored multigraphs much like that provided in Theorem 2.

Let M be the family of multigraphs defined inductively by:

1. Any multigraph with at most two vertices is in M .

2. Fix colors A and B and graphs {Mi : 1 6 i 6 t} ⊆ M . For each 1 6 i 6= j 6 t,
connect Mi and Mj by either A or B. If |Mi| = |Mj| = 1, we may also connect Mi

and Mj by both A and B. The resulting multigraph is in M .

Theorem 7 ([3]). M is the family of all complete G-colored multigraphs.

Since this result implies a partition much like that of Theorem 2, we call this partition
a G-partition. In an effort to include as many edges as possible, we always assume our
graphs to be maximal G-colored multigraphs, meaning that no edge can be added in any
color without producing a rainbow triangle. In particular, in Item 2 above, this means
that if |Mi| = |Mj| = 1, then the two must be connected by both colors. Such parts of
the partition with |Mi| = 1 will be called singleton parts. With this notation, we have
observed that we may assume the singleton parts of a G-partition induce a double clique.

In particular, by Theorem 7, Fact 4 implies that triple edges can only occur inside
parts of a G-partition. Also, since we have assumed G is complete, no two triple edges
can share a vertex.

Note that a G-partition can be iterated by considering each part of the partition and
again applying Theorem 7. Define a layer of a G-partition to be the set of all the parts in
a partition. Note that a layer may be contained within a single part of a previous layer.

3 Proof of Theorem 5

Let G be a maximum G-colored 3-coloring of a large complete multigraph on n vertices.
Say we use colors red, blue, and green. By Proposition 3, there are at least

3

(
26− 2

√
7

81

)
n2 ∼ 0.76698n2
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edges in G. This gives us the following fact.

Fact 8. There are at least
25− 4

√
7

54
n2 ∼ 0.26698n2

extra edges in G in addition to the underlying complete graph with
(
n
2

)
edges.

Since G contains no triple edges, all extra edges must be double. By Fact 4, it is easy
to show that there are at most 2

(
n
2

)
edges in G so we get a trivial upper bound of M 6 n2

3
.

We now start building structure on G. This first claim follows easily from the assump-
tion that G is edge-maximal with no rainbow triangle (or using Theorem 7).

Claim 9. Each maximal subset of V (G) inducing a connected subgraph of double edges
induces a double clique (with exactly two colors).

Recall the definitions of c1 and c2 in (1). Let t be the number of double cliques in G
and let H1, H2, . . . , Ht be these double cliques with |Hi| > |Hi+1| for all i.

Claim 10. |H1| 6 c1n.

Proof. Suppose |H1| > 1+2
√
7

9
n and that H1 uses colors red and blue. Then all the green

edges of G must lie within G \ H1 and between H1 and G \ H1. This means there are
fewer than

1 + 2
√

7

9

(
1− 1 + 2

√
7

9

)
n2 +

(
1− 1+2

√
7

9

)2
2

n2 =
26− 2

√
7

81
n2

green edges, contradicting Proposition 3.

Using Claim 10 and convexity, we can easily obtain an improved upper bound on M
as follows

M 6
2 (c1n)2

2
+ 2 (n−c1n)2

2
+ (c1n)(n− c1n)

3
∼ 0.2633n2.

This is still not the desired upper bound of about 0.25566n2 so we continue forcing
structure on G.

Although this next claim is not actually necessary for the remainder of the proof, it
is an easy observation that shows |H1| must be close to the bound from Claim 10.

Claim 11. |H1| > 0.63n.

Proof. Suppose |H1| < 0.63n. Then, by convexity and Fact 4, the total number of extra
edges in G is at most(

|H1|
2

)
+

(
n− |H1|

2

)
<

(0.63n)2

2
+

(0.37n)2

2
= 0.2669n2

contradicting Fact 8.
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Certainly t > 2 since |H1| < 0.7n by Claim 10. Our next claim provides the main
argument of the proof.

Claim 12. There are at least c2n vertices in G \ (H1 ∪H2).

Proof. Let x be chosen so that xn = |G \ (H1 ∪H2)| and suppose x < c2. If H1 and H2

use the same two colors, say red and blue, then the only green edges in G are outside (or
in between) H1 and H2. By Claim 10, there must be at most

|H1||H2|+
(
xn

2

)
+ xn(|H1|+ |H2|) <

26− 2
√

7

81
n2

green edges in the graph, a contradiction to Proposition 3.
Without loss of generality, suppose H1 uses red and blue while H2 uses blue and green.

Let r be the number of red edges that appear in G \H1 and let g be the number of green
edges that appear in G \ H2. Furthermore let h be chosen so that hn = |H1|. Then we
get |H2| = (1− x− h)n. This means

r >

(
26− 2

√
7

81
− h2

2

)
n2

and

g >

(
26− 2

√
7

81
− (1− x− h)2

2

)
n2.

On the other hand, there are fewer than

2
x2

2
n2 + xn(n− xn) + h(1− x− h)n2 (2)

edges available in G \ (E(H1)∪E(H2)). Since r + g must be at most the quantity in (2),
we get(

26− 2
√

7

81
− h2

2

)
n2 +

(
26− 2

√
7

81
− (1− x− h)2

2

)
n2 6 (x + h− xh− h2)n2

which simplifies to

x >

√
23− 8

√
7

9
= c2,

completing the proof of Claim 12.

Claim 13. |H1| = c1n and |H2| = c2n.

Proof. The number of extra edges is at most n2
(

h2
1

2
+ h2

2 + (1−h1−h2)2

2

)
subject to h1 6 c1,

h1 +h2 6 c2, and h1 > h2, where h1n = |H1| and h2n = |H2|. This can reach the required
value only when h1 = c1, h2 = c2 and h3 = 1− c1 − c2 = c2.

By Claims 12 and 13, if |H3| < c2n, there would be fewer than 3
(

26−2
√
7

81

)
n2 edges

in the graph, contradicting Proposition 3. Thus, t = 3 and |H3| = c2n. Since this is
precisely the structure of the graph constructed in Proposition 3, the proof of Theorem 5
is complete.
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