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Abstract

We consider the Erdős-Rényi random graph process, which is a stochastic process
that starts with n vertices and no edges, and at each step adds one new edge chosen
uniformly at random from the set of missing edges. Let G(n,m) be a graph with
m edges obtained after m steps of this process. Each edge ei (i = 1, 2, . . . ,m) of
G(n,m) independently chooses precisely k ∈ N colours, uniformly at random, from
a given set of n− 1 colours (one may view ei as a multi-edge). We stop the process
prematurely at time M when the following two events hold: G(n,M) is connected
and every colour occurs at least once (M =

(
n
2

)
if some colour does not occur

before all edges are present; however, this does not happen asymptotically almost
surely). The question addressed in this paper is whether G(n,M) has a rainbow
spanning tree (that is, multicoloured tree on n vertices). Clearly, both properties
are necessary for the desired tree to exist.

In 1994, Frieze and McKay investigated the case k = 1 and the answer to this
question is “yes” (asymptotically almost surely). However, since the sharp threshold
for connectivity is n

2 log n and the sharp threshold for seeing all the colours is n
k log n,

the case k = 2 is of special importance as in this case the two processes keep up with
one another. In this paper, we show that asymptotically almost surely the answer
is “yes” also for k > 2.

∗The third author is supported in part by NSF Grant CCF0502793
†The fourth author is supported in part by NSERC and Ryerson University
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1 Introduction and the main result

In this paper, we consider the Erdős-Rényi random graph process, which is a stochas-
tic process that starts with n vertices and no edges, and at each step adds one new edge
chosen uniformly at random from the set of missing edges. Formally, let N =

(
n
2

)
and let

e1, e2, . . . , eN be a random permutation of the edges of the complete graph Kn. The graph
process consists of the sequence of random graphs (G(n,m))Nm=0, where G(n,m) = (V,Em),
V = [n] := {1, 2, . . . , n}, and Em = {e1, e2, . . . , em}. It is clear that G(n,m) is a graph
taken uniformly at random from the set of all graphs on n vertices and m edges. (See,
for example, [3, 11] for more details.)

All asymptotics throughout are as n→∞ (we emphasize that the notations o(·) and
O(·) refer to functions of n, not necessarily positive, whose growth is bounded). We say
that an event in a probability space holds asymptotically almost surely (or a.a.s.) if
the probability that it holds tends to 1 as n goes to infinity. We often write G(n,m) when
we mean a graph drawn from the distribution G(n,m).

A set of edges S is said to be rainbow if each edge of S is in a different colour.
When considering adversarial (worst-case) colouring, the guaranteed existence of a rain-
bow structure is called an Anti-Ramsey property. Erdős, Nešetřil, and Rödl [7], Hahn
and Thomassen [10] and Albert, Frieze, and Reed [1] (correction in Rue [13]) considered
colourings of the edges of the complete graph Kn where no colour is used more than k
times. It was shown in [1] that if k 6 n/64, then there must be a rainbow Hamilton
cycle. Cooper and Frieze [5] proved a random graph threshold for this property to hold
in almost every graph in the space studied.

Let us now focus on the random colouring situation. Cooper and Frieze [4] showed
that if m > Kn log n and there are at least Kn colours available, for K sufficiently large,
then a.a.s. G(n,m) contains a rainbow Hamilton cycle. This was improved by Frieze and
Loh [8] to give K = 1 + o(1).

In this paper we are concerned with the existence of rainbow spanning trees of G(n,m).
Suppose that each edge ei (i = 1, 2, . . . ,m) of G(n,m) independently chooses precisely
k ∈ N colours, uniformly at random, from a given set W of n− 1 colours. In other words,
each edge ei has assigned a set c(ei) of k colours; for every i and every S ⊆ W, |S| = k,

we have c(ei) = S with probability
(
n−1
k

)−1
. (It is convenient to view ei as a multi-edge,

hence G(n,m) may be viewed as a multi-graph on km coloured edges.)

We are concerned with the following three events:

Cm = {G(n,m) is connected},
Nm = Nm(k) = {G(n,m) contains edges in every colour},
Rm = Rm(k) = {G(n,m) has a rainbow spanning tree}.

Let Em stand for one of the above three sequences of events and let

mE = min{m ∈ N : Em occurs},
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provided that such an m exists. (Note that mC is always defined but the other two might
not be.) Moreover, if mR is defined, then so is mN and clearly

mR > max{mC,mN}.

In 1994, Frieze and McKay [9] investigated the case k = 1 and they showed that a.a.s.
mR = max{mC,mN}. It is well known that the sharp threshold for connectivity is n

2
log n;

in fact,
P(Cm) = (1 + o(1))e−e

−c
, (1)

provided that m = n
2
(log n + c), c ∈ R (as usual, see, for example [3, 11]). Moreover,

it follows from the coupon collector problem that the sharp threshold for seeing all the
colours is n log n (for k = 1). Therefore, processes corresponding to the two obvious
necessary conditions are not synchronized for k = 1. On the other hand, it can be easily
generalized and can be shown that for any k ∈ N we have

P(Nm) = (1 + o(1))e−e
−c
, (2)

provided that m = n
k
(log n + c), c ∈ R (see, Lemma 3.1). Hence, k = 2 is of special

importance as in this case the two processes keep up with one another.

In this paper, we generalize the result of Frieze and McKay [9] and show the following
result.

Theorem 1.1. For every k > 2, we have that a.a.s.

mR = max{mC,mN}.

Since events Cm and Nm are independent, the following corollary follows immediately
from (1) and (2).

Corollary 1.2. Let k > 2 and let m = m(k, n) = n
k
(log n+ c) for some c ∈ R. Then,

P(Rm) =

{
(1 + o(1))e−2e

−c
, if k = 2

(1 + o(1))e−e
−c
, if k > 3.

The whole paper is devoted to prove Theorem 1.1. In Section 2, we introduce an
alternative, very convenient, way of checking whether the coloured graph has the desired
property. A sufficient and necessary condition for the existence of a rainbow spanning
tree is introduced that uses the result of Edmonds on the matroid intersection problem.
In Section 3, we show that a.a.s. the condition holds at time max{mC,mN}.

2 Sufficient and necessary condition for the existence of a rain-
bow spanning tree

A finite matroid M is a pair (E, I), where E is a finite set (called the ground set) and
I is a family of subsets of E (called the independent sets) with the following properties:
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• ∅ ∈ I,

• for each A′ ⊆ A ⊆ E, if A ∈ I, then A′ ∈ I (hereditary property),

• if A and B are two independent sets of I and A has more elements than B, then
there exists an element in A that when added to B gives a larger independent set
than B (augmentation property).

A maximal independent set (that is, an independent set which becomes dependent on
adding any element of E) is called a basis for the matroid. An observation, directly
analogous to the one of bases in linear algebra, is that any two bases of a matroid M
have the same number of elements. This number is called the rank of M . For more on
matroids see, for example, [12].

In order to investigate the existence of a rainbow spanning tree we are going to use
the result of Edmonds on the matroid intersection problem [6]. Suppose that M1 and M2

are two matroids over a common ground set E with rank functions r1 and r2 respectively.
Edmonds’ general theorem shows that

max
(
|I| : I is independent in both matroids

)
= min

E1∪E2=E
E1∩E2=∅

(
r1(E1) + r2(E2)

)
, (3)

where ri(Ei) is the rank of the matroid induced by Ei. In our application, the common
ground set E is the set of coloured multi-edges of G(n,m). M1 is the cycle matroid; that
is, S ⊆ E is independent in M1 if S induces a graph with no cycle (colours are ignored,
two parallel edges are considered to be a cycle of length 2). Hence, for every S ⊆ E we
have r1(S) = n− κ(S), where κ(S) is the number of components of the graph G = (V, S)
induced by S. M2 is the partition matroid associated with the colours; that is, S ⊆ E is
independent in M2 if S has no two edges in the same colour. This time, for every S ⊆ E
we have that r2(S) is the number of distinct colours occurring in S. We get immediately
the following useful lemma.

Lemma 2.1. Let G be a multigraph on n vertices in which each edge is coloured with a
colour from a set W of cardinality n − 1. A necessary and sufficient condition for the
existence of a rainbow spanning tree in G is that for every I ⊆ W we have

κ(GI) 6 n− |I|, (4)

where GI is the graph induced by the set of edges coloured with a colour from I.

Proof. Clearly, G has a rainbow spanning tree if and only if G contains a set S of coloured
edges of size n − 1 such that S is independent both in M1 (S induces a spanning tree)
and in M2 (S is rainbow). Since no set of size at least n is independent (in any matroid),
the necessary and sufficient condition is that the right side of (3) is at least n− 1. Hence,
the desired condition is that for every partition of the edge set E into E1 and E2 we have
r1(E1) + r2(E2) > n− 1.
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Let us fix a partition into E1 and E2. Let J be the set of colours occurring in E2, E
′
2

be the set of edges coloured with a colour from J , and E ′1 = E \ E ′2. Clearly, (E ′1, E
′
2) is

also a partition of E, E2 ⊆ E ′2 and so E ′1 ⊆ E1, and r2(E2) = r2(E
′
2) = |J |. Moreover,

since E ′1 ⊆ E1, r1(E
′
1) 6 r1(E1) and so

r1(E1) + r2(E2) > r1(E
′
1) + r2(E

′
2).

Therefore, without loss of generality, we may restrict ourselves to sets E2 containing all
edges of colour from some set J and then take I = W \ J . The condition to verify is the
following:

n− 1 6 r1(E1) + r2(E2) = (n− κ(GI)) + (n− 1− |I|)

which is equivalent to (4) and the proof is finished.

3 Proof of Theorem 1.1

Before we move to the proof of the main result, we will show that (2) holds.

Lemma 3.1. For any k ∈ N,

P(Nm) = (1 + o(1))e−e
−c
,

provided that m = n
k
(log n+ c), c ∈ R.

Proof. Consider G(n,m) and for each i ∈ W , let Qi be the event that colour i does not
occur in G(n,m). Let Xi be the indicator random variable for Qi, and let X =

∑
i∈W Xi.

Clearly, Nm occurs if and only if X = 0.
It is straightforward to see that for each i ∈ W ,

P(Qi) =

((
n−2
k

)(
n−1
k

))m

=

(
1− k

n− 1

)m
= exp

(
−km

n

(
1 +O(n−1)

))
= (1 + o(1))

e−c

n
.

Hence, E[X] = (1 + o(1))e−c. Similarly, one can show that for every fixed r ∈ N,

E
[(
X

r

)]
= (1 + o(1))

(e−c)r

r!
.

It follows from the Brun’s sieve (see, for example, Section 8.3 in [2]) that P(X = 0) =
(1 + o(1))e−e

−c
and the result holds.

Fix k ∈ N \ {1} and let ω = ω(n) be any function tending to infinity together with n.
Let

m− :=
⌊n

2
(log n− ω)

⌋
and m+ :=

⌈n
2

(log n+ ω)
⌉
.

the electronic journal of combinatorics 22(1) (2015), #P1.29 5



(Here we make sure m− and m+ are both integers but later on expressions such as i =
n− βn/ log n that clearly have to be an integer, we round up or down but do not specify
which: the choice of which does not affect the argument.) It is known that a.a.s. G(n,m−)
is not connected and so a.a.s. mR > mC > m−. On the other hand, a.a.s. G(n,m+) is
connected and so a.a.s. mC 6 m+. Moreover, it follows from Lemma 3.1 that a.a.s. also
mN 6 m+. We get that a.a.s.

m− 6 max{mC,mN} 6 m+. (5)

Fix m such that m− 6 m 6 m+ and for a given i, let us define the following events:

Ai = {∃I ⊆ W, |I| = i : κ(GI) > n− |I|+ 1},
Bi = {∃I ⊆ W, |I| = i : κ(GI) > n− |I|+ 1 and all colours from I are present in GI},
Ci = {∃I ⊆ W, |I| = i : κ(GI) > n− |I|+ 1 and ∀I ⊆ W, |I| < i : κ(GI) 6 n− |I|},
Di = {∃I ⊆ W, |I| = i : κ(GI) > n− |I|+ 1 and GW is connected},

where GI is the subgraph of G(n,m) induced by the set of edges coloured with a colour
from I. Suppose that m > max{mC,mN} and there is no rainbow spanning tree. Note
that A1 cannot occur since all colours are present in G(n,m) and so κ(GI) 6 n− 1 for all
I such that |I| = 1 (GI has at least one edge). Note also that for every 1 6 j 6 k − 1,
An−1−j cannot occur since for every J ⊆ W of size at most k − 1, κ(GW\J) = 1 (observe
that GW\J = G(n,m) since one needs to remove at least k colours for two vertices that
are connected in GW to become disconnected, and so GW\J is connected). Hence, Ai has
to occur for some i ∈ [2, n − 1 − k]; otherwise, Lemma 2.1 would imply that G(n,m)
has a rainbow spanning tree. But if Ai holds for some i ∈ [2, n − 1 − k], then Bi holds
too (since all colours are present at time m > max{mC,mN} > mN ), Cj holds for some
j ∈ [2, i] (since A1 cannot occur), and Di holds as well (since GW is connected at time
m > max{mC,mN} > mC).

Our goal is to use the following estimation and show that the right hand side is o(1):

P (mR > max{mC,mN}) (6)

6 o(1) +

m+∑
m=m−

Pm(B2) +

n/(β
√
logn)∑

i=3

Pm(Ci)

+

n−βn/ logn∑
i=n/(β

√
logn)

Pm(Ai) +
n−1−k∑

i=n−βn/ logn

Pm(Di)

 ,

where Pm indicates that the corresponding probability refers to the G(n,m) model, the
o(1) term is the probability that mR /∈ [m−,m+] (see (5)), and β is a sufficiently large
constant that will be determined later.

Our results refer to the random graph process. However, it will be sometimes easier
to work with the G(n, p) model instead of G(n,m). The random graph G(n, p) con-
sists of the probability space (Ω,F ,P), where Ω is the set of all graphs with vertex set
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{1, 2, . . . , n}, F is the family of all subsets of Ω, and for every G ∈ Ω,

P(G) = p|E(G)|(1− p)(
n
2)−|E(G)| .

This space may be viewed as the set of outcomes of
(
n
2

)
independent coin flips, one for

each pair (u, v) of vertices, where the probability of success (that is, adding edge uv) is p.
Note that p = p(n) may (and usually does) tend to zero as n tends to infinity. We often
write G(n, p) when we mean a graph drawn from the distribution G(n, p).

Lemma 3.2 below provides us with a tool to translate results from G(n, p) to G(n,m)—
see, for example, (1.6) in [11].

Lemma 3.2. Let P be an arbitrary property, let m = m(n) be any function such that
m 6 n log n, and take p = p(n) = m/

(
n
2

)
. Then,

P(G(n,m) ∈ P ) 6 3
√
n log n · P(G(n, p) ∈ P ).

We treat various intervals for i independently, since they require quite different ap-
proaches.

Case 1: i = 2.
Suppose that the event B2 holds and I ⊆ W , |I| = 2, is such that κ(GI) > n − 1 and
both colours from I are present in GI . Any such set I will be called bad. It follows that
GI consists of just one double-edge and no other edges.

First, we will show that G(n,m−) is unlikely to have any such bad set I. Indeed, the
expected number of bad sets I of size 2 is equal to(

n− 1

2

)
m−

(
n−3
k−2

)(
n−1
k

) ((n−3k )(
n−1
k

))m−−1

= O

(
m−

(
(n− 3)k
(n− 1)k

)m−)
= O

(
m− exp

(
−2km−

n

(
1 +O(n−1)

)))
= O

(
m−n

−2 exp(2ω)
)

= o(1),

provided ω tends to infinity slowly enough. In particular, Pm−(B2) = o(1) by Markov’s
inequality.

Now, assuming that there are no bad sets I of size 2 in G(n,m−), we get that if for
some m > m− there is a bad set I of size 2 in G(n,m), then I consists of two colours that
are both not present in G(n,m−). The probability that there are ω′ many colours that
have not been seen at time m− is at most(

n− 1

ω′

)((n−1−ω′
k

)(
n−1
k

) )m−

6
(ne
ω′

)ω′
exp

(
−ω

′km−
n

(
1 +O

(
ω′

n

)))
6 (1 + o(1)) exp

(
ω′(log n+ 1− logω′)− ω′(log n− ω)

)
= exp

(
− (1 + o(1))ω′ logω′ + ω′ω

)
,
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for ω′ tending to infinity sufficiently slowly. Hence, a.a.s. the set of unseen colours in
G(n,m−) has size at most, say, ω′ = e2ω. Finally, we estimate the probability that the
mth edge introduced has at least two previously unseen colours to get that

m+∑
m=m−

Pm(B2) 6 o(1) + (m+ −m−) ·
(
ω′

2

)
·
(
n−3
k−2

)(
n−1
k

) = O

(
ωe4ω

n

)
= o(1),

provided ω tends to infinity slowly enough. It follows that the contribution to (6) from
this case is o(1).

Case 2: i = 3.
Suppose that the event C3 holds and I ⊆ W , |I| = 3, is such that κ(GI) > n−2 and no set
I ⊆ W , |I| = 2, satisfies κ(GI) > n−1. As before, any such set I will be called bad. Since
I is minimal, GI contains no cut edges. It follows that GI must induce isolated vertices
and one of the following graphs: a triangle (of either single- or possibly double-edges), a
path of length 2 of double-edges, or two isolated double-edges.

We will bound the expected number of each of these structures in G(n, p) (with p =
m/
(
n
2

)
for some m− 6 m 6 m+), and show that they are all at most n−2+o(1). It will

imply, by Markov’s inequality, that with probability at least 1− n−2+o(1) there is no bad
set I in G(n, p) and so the same holds for G(n,m) with probability at least 1− n−3/2+o(1)
by Lemma 3.2. The contribution to (6) from this case will be

∑m+

m=m−
Pm(C3) = o(1).

Fix any I ⊆ W (not necessarily of size 3), any pair of vertices u, v, and a number
1 6 x 6 k. Let Ex (E>x) be the event that the edge uv is present in the random graph
G(n, p) and has exactly (at least, respectively) x colours from its list in I. We have

P (Ex) = p ·
(
i
x

)(
n−1−i
k−x

)(
n−1
k

)
= p · (i)x(n− 1− i)k−x

(n− 1)k
·
(
k

x

)
=

(
k

x

)
· p · (i)x

nx

(
1 +O

(
i

n

))
,

and so

P (E>x) = P (Ex)
(

1 +O

(
i

n

))
=

(
k

x

)
· p · (i)x

nx

(
1 +O

(
i

n

))
.

Now, fix m such that m− 6 m 6 m+ and let p = m/
(
n
2

)
= (1 + o(1)) log n/n. The

expected number of bad sets I such that the only non-trivial component of GI is a triangle
is at most(

n− 1

3

)(
n

3

)(
(3 + o(1))kp

n

)3(
1− (3 + o(1))kp

n

)(n2)−3
6 n−3+o(1).

The expected number of bad sets I such that the non-trivial component of GI is a 2-path
of double-edges is at most(

n− 1

3

)(
n

3

)
3

((
k

2

)
(6 + o(1))p

n2

)2(
1− (3 + o(1))kp

n

)(n2)−2
6 n−3+o(1).
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Finally, the expected number of bad sets I such that the non-trivial components of GI

are two isolated double-edges is at most(
n− 1

3

)(
n

4

)
3

((
k

2

)
(6 + o(1))p

n2

)2(
1− (3 + o(1))kp

n

)(n2)−2
6 n−2+o(1).

As before, the contribution to (6) from this case is o(1).
Case 3: 4 6 i 6 n/(β logn).

Suppose that the event Ci holds for some i and I ⊆ W , |I| = i, is such that κ(GI) > n−i+1
and no set I ⊆ W , |I| = i− 1, satisfies κ(GI) > n− i + 2. As usual, any such set I will
be called bad.

Suppose the graph induced by I has its nontrivial components on some set of t vertices.
Suppose there are u1 single-edges and u2 edges of multiplicity at least 2. For I to be
minimal we cannot have any single-edge bridges. So, in particular, no vertex can be
incident to just one single-edge and no other edges. Thus the degree of each vertex
(counting multiplicity of edges) is at least 2. It follows, by considering a degree sum where
each single edge contributes 1 to an incident vertex and each edge of higher multiplicity
contributes 2, that

t 6 u1 + 2u2.

Since each non-trivial component has at least two vertices, the number of vertices must
satisfy

n > 2(κ(GI)− (n− t)) + (n− t)
> 2((n− i+ 1)− (n− t)) + (n− t)
= n− 2(i− 1) + t.

Hence, we also have
t 6 2(i− 1).

Moreover,
i 6 u1 + ku2,

u1 + u2 6

(
t

2

)
.

As in the previous case, fix m such that m− 6 m 6 m+ and let

p =
m(
n
2

) =
log n+O(ω)

n
= (1 + o(1))

log n

n
.

The probability that Ci happens in G(n, p) with given parameters t, u1, u2 is at most(
n− 1

i

)(
n

t

)( (
t
2

)
u1 + u2

)(
u1 + u2
u2

)(
(1 + o(1))kpi

n

)u1
(7)

×
(

(1 + o(1))

(
k

2

)
i2p

n2

)u2 (
1−

(
1 +O

(
i

n

))
kpi

n

)(n2)−u1−u2
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To see the above expression, first choose i colours, then t vertices for the non-trivial
components. The third factor chooses which pairs will have an edge (or double-edge) and
the fourth factor chooses which pairs are double-edges. The next two factors account for
edge and double-edge probabilities, respectively, and the last factor is the probability that
no other edges are present. We upper bound (7) by(ne

i

)i (ne
t

)t( t2e

2(u1 + u2)

)u1+u2 ((u1 + u2)e

u2

)u2 (ekpi
n

)u1
×
((

k

2

)
ei2p

n2

)u2
e−

kpi
n ((n2)−u1−u2)(1+O( in))

=
(n
i

)i (n
t

)t( t

u1 + u2

)u1
tu1+2u2

(
pi

n

)u1 ( i2p

u2n2

)u2
e−

ik
2
logn+O(u1+u2+ωi+i2 logn/n).

Since t/(u1 + u2) 6 (u1 + 2u2)/(u1 + u2) 6 2, the probability in question is at most

f(i, t, u1, u2) := nt−( k2−1)it−ti−i
(
Cit log n

n2

)u1 (Ci2t2 log n

u2n3

)u2
eC(ωi+i2 logn/n),

where C is some universal, sufficiently large, constant. Note that in the current case

i = O(n/ log n) so, in fact, eC(ωi+i2 logn/n) 6 e2Cωi but we keep both terms for the future
case in which it is only assumed that i = O(n/

√
log n). The probability that Ci happens

(with any parameters t, u1, u2) is at most

2(i−1)∑
t=4

(t2)∑
u2=0

(t2)−u2∑
u1=max{0,t−2u2,i−ku2}

f(i, t, u1, u2).

We will sum the above expression over i (4 6 i 6 n/(β log n)), and bound the sum
using three cases according to the value of max{0, t − 2u2, i − 2u2}. Let us note that,
for convenience, we will treat expressions like 00 to be equal to 1 so that estimations like(
a
b

)
6 (ae/b)b could be applied for all values of b, including zero. It is also worth noting

that in the sums below some combinations of parameters are not actually possible to
occur. However, this convenient approach causes no problem, since each term is positive
and we only aim for an upper bound (of n−2+o(1)) to be able to apply Lemma 3.2 and the
union bound over all possible values of m. Once it is done, the contribution to (6) from
this case is o(1).

Case 3a: max{0, t− 2u2, i− ku2} = i− ku2.
It follows that u2 6 i/k and t 6 i− (k − 2)u2 6 i. We want to estimate the following:

ξ1 =

n
β logn∑
i=4

i∑
t=4

i
k∑

u2=0

(t2)−u2∑
u1=i−ku2

f(i, t, u1, u2).

Note that the innermost sum (over u1) is geometric with ratio

Cit log n/n2 = O(i2 log n/n2) = o(1)
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and so the inner sum is dominated by its first term. Hence,

ξ1 = O

 n
β logn∑
i=4

i∑
t=4

i
k∑

u2=0

nt−( k2−1)it−ti−i
(
Cit log n

n2

)i−ku2 (Ci2t2 log n

u2n3

)u2
e2Cωi


= O

 n
β logn∑
i=4

i∑
t=4

i
k∑

u2=0

nt−( k2−1)iti−t
(
C log n

n2

)i(
n2k−3

Ck−1u2ik−2tk−2 logk−1 n

)u2
e2Cωi

 .

Now, note that the innermost sum (over u2) is of the order of its last term. This follows
from the fact that the ratio of consecutive terms is(

n2k−3

Ck−1(u2+1)ik−2tk−2 logk−1 n

)u2+1

(
n2k−3

Ck−1u2ik−2tk−2 logk−1 n

)u2 =

(
n2k−3

Ck−1(u2 + 1)ik−2tk−2 logk−1 n

)(
u2

u2 + 1

)u2

=

(
n2

Cit log n

)k−2(
n

C(u2 + 1) log n

)(
u2

u2 + 1

)u2
>

(
n

C(i/2 + 1) log n

)
e−1 > 2

so long as i is at most n/(β log n) for β > 0 large enough. We get

ξ1 = O

 n
β logn∑
i=4

i∑
t=4

nt−( k2−1)iti−t
(
C log n

n2

)i(
n2k−3

Ck−1
(
i
k

)
ik−2tk−2 logk−1 n

) i
k

e2Cωi


= O

 n
β logn∑
i=4

i∑
t=4

(n
t

)t( Ckt2 log n

n3+k( k
2
−1)ik−1

) i
k

e2Cωi

 .

As before, we observe that the innermost sum (over t) is of the order of its last term by
similar reasoning and looking at the ratio of consecutive terms. It follows that

ξ1 = O

 n
β logn∑
i=4

(n
i

)i( Cki2 log n

n3+k( k
2
−1)ik−1

) i
k

e2Cωi


= O

 n
β logn∑
i=4

(
Cke2Ckω log n

n3+k( k
2
−2)i2k−3

) i
k

 = O

((
Cke2Ckω log n

n3+k( k
2
−2)

) 4
k

)
6 n−

12
k
−4( k

2
−2)+o(1) 6 n−2+o(1).

Case 3b: max{0, t− 2u2, i− ku2} = t− 2u2.
It follows that u2 6 t/2 and we already know that i > t/2 + 1. This time, we want to
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estimate the following:

ξ2 =
∑
t>4

∑
i> t

2
+1

t
2∑

u2=0

(t2)−u2∑
u1=t−2u2

f(i, t, u1, u2)

= O

∑
t>4

∑
i> t

2
+1

t
2∑

u2=0

nt−( k2−1)it−ti−i
(
Cit log n

n2

)t−2u2 (Ci2t2 log n

u2n3

)u2
e2Cωi

 .

Dropping the term n−( k2−1)i 6 1 that is equal to one for k = 2, we get

ξ2 = O

∑
t>4

∑
i> t

2
+1

t
2∑

u2=0

i−i
(
Ci log n

n

)t(
n

Cu2 log n

)u2
e2Cωi


= O

∑
t>4

∑
i> t

2
+1

i−i
(
Ci log n

n

)t(
n

C t
2

log n

) t
2

e2Cωi


= O

∑
t>4

∑
i> t

2
+1

i−i
(

2Ci2 log n

tn

) t
2

e2Cωi

 .

In order to investigate the innermost sum (over i), we consider the ratio of consecutive
terms of the sequence i−i+te2Cωi:

(i+ 1)−i−1+te2Cω(i+1)

i−i+te2Cωi
=

1

i+ 1

(
1 +

1

i

)t−i
e2Cω.

Since t 6 2(i− 1), we have that

1

e
6

(
1 +

1

i

)−i
6

(
1 +

1

i

)t−i
6

(
1 +

1

i

)i
6 e.

So the ratio is at most e2Cω+1/(i+1). Let i0 be the smallest integer i such that e2Cω+1/(i+
1) 6 1/2. Now, we bound the sum as follows:∑

i> t
2
+1

i−i+te2Cωi 6 e2Cωi0
∑
i> t

2
+1

i−i+t max{e2Cω(i−i0), 1}

= no(1)
∑
i> t

2
+1

i−i+t max{e2Cω(i−i0), 1},

provided that ω tends to infinity slowly enough. This time, the ratio of consecutive terms
is at most e2Cω+1/(i + 1) 6 1/2 for i > i0 and at most e/(i + 1) < 4/5 for i < i0, since
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i > t/2 + 1 > 3 (in fact, i > 4). It follows that

ξ2 6 no(1)
∑
t>4

(
t

2
+ 1

)−( t2+1)
(

2C
(
t
2

+ 1
)2

log n

tn

) t
2

= no(1)
∑
t>4

(
t

2
+ 1

)−1(
C (t+ 2) log n

tn

) t
2

6 n−2+o(1).

Case 3c: max{0, t− 2u2, i− ku2} = 0.
It follows that u2 > t/2, u2 > i/k, and we already know that t 6 2(i − 1). In this case,
we want to estimate the following:

ξ3 =

n
β logn∑
i=4

2(i−1)∑
t=4

(t2)∑
u2=max{ t

2
, i
k
}

(t2)−u2∑
u1=0

f(i, t, u1, u2)

= O


n

β logn∑
i=4

2(i−1)∑
t=4

(t2)∑
u2=max{ t

2
, i
k
}

ntt−ti−i
(
Ci2t2 log n

u2n3

)u2
e2Cωi


= O


n

β logn∑
i=4

2(i−1)∑
t=4

(t2)∑
u2=max{ t

2
, i
k
}

ntt−ti−i
(
kCit2 log n

n3

)u2
e2Cωi


= O

 n
β logn∑
i=4

2(i−1)∑
t=4

ntt−ti−i
(
kCit2 log n

n3

) t
2

e2Cωi


= O

 n
β logn∑
i=4

2(i−1)∑
t=4

i−i
(
kCi log n

n

) t
2

e2Cωi


= O

 n
β logn∑
i=4

i2−i
(
kC log n

n

)2

e2Cωi

 .

The ratio of consecutive terms is at most e2Cω/(i+1) and one can argue as in the previous
sub-case that

ξ3 6 no(1)
(
kC log n

n

)2

= n−2+o(1).

Case 4: n/(β logn) 6 i 6 n/(β
√

logn). In this range of i, the terms (in the sum
we considered in the previous range) are all exponentially small. We will estimate the
contribution to (6) from this case using the same notation and strategy. We start with
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the following estimation that holds for large enough β:

f(i, t, u1, u2) = nt−( k2−1)it−ti−i
(
Cit log n

n2

)u1 (Ci2t2 log n

u2n3

)u2
eC(ωi+i2 logn/n)

6
(n
t

)t
i−i
(

2Ci2 log n

n2

)u1 (4Ci4 log n

u2n3

)u2
eC(ωi+i2 logn/n)

6
(n
t

)t
i−i
(

4Cn

β4u2 log n

)u2
eC(ωi+i2 logn/n)

6
( n

2i

)2i
exp

(
−i log i+O

(
n

log n

)
+O

(
ωi+ i2 log n/n

))
6 exp

(
2i(log log n+ log β)− (1 + o(1))i log n+O

(
n

log n

))
6 exp

(
− Ω (n)

)
,

provided ω tends to infinity slowly enough. It follows that

ξ4 =

n
β
√
logn∑

i= n
β logn

∑
t

∑
u2

∑
u1

f(i, t, u1, u2) 6 n−2+o(1).

Case 5: n/(β
√

logn) 6 i 6 n− βn/ logn.
From now on, we start thinking of multigraph as a graph (that is, we stop caring about
edge multiplicity but only whether a given edge of G(n,m) occurs in GI or not). In
this section, we will be using the following concentration inequalities. Let X ∈ Bin(n, p)
be a random variable with the binomial distribution with parameters n and p. Then, a
consequence of Chernoff’s bound (see e.g. [11, Corollary 2.3]) is that

P(|X − EX| > εEX) 6 2 exp

(
−ε

2EX
3

)
(8)

for 0 < ε < 3/2. We will also apply the bound of Bernstein (see e.g. [11, Theorem 2.1])
that for every x > 0,

P (X > (1 + x)EX) 6 exp (−EXϕ(x)) 6 exp

(
− x2EX

2(1 + x/3)

)
, (9)

and for every 0 < x < 1,

P (X 6 (1− x)EX) 6 exp (−EXϕ(−x)) 6 exp

(
−x

2EX
2

)
, (10)

where ϕ(x) = (1 + x) log(1 + x)− x.

We start with investigating some typical properties of G(n,m−). For convenience, let
p− = m−/

(
n
2

)
= (log n − ω + o(1))/n and consider G(n, p−) instead of G(n,m−). Let L
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be the set of vertices with deg(v) < 1
10

log n. For a given vertex v in G(n, p), we have
E deg(v) = p−(n− 1) = log n− ω + o(1). It follows from (10) that

P (deg(v) < 0.1 log n) 6 P (deg(v) 6 0.11E deg(v))

6 exp (−E deg(v) · (0.11 log(0.11) + 0.89)) 6 n−0.6.

Hence, the expected size of L is at most n0.4 and it follows from Markov’s inequality that
with probability at least 1 − n−0.55 it is smaller than n0.95. By Lemma 3.2, the same
property holds a.a.s. for G(n,m−) and so we may condition on the fact that G(n,m−)
satisfies |L| < n0.95.

Now, we are going to orient the edges of G(n,m−), which will turn out to be a conve-
nient way to avoid events being dependent. With the goal of showing the existence of such
orientation, suppose we randomly orient the edges of G(n,m−) and let deg+(v) represent
the out-degree of vertex v. Call a vertex very bad if deg+(v) 6 1

40
log n. Then for any

vertex v /∈ L (that is, with degree at least 1
10

log n), we have that deg+(v) is stochastically
dominated (from below) by Bin

(
1
10

log n, 1
2

)
. Thus, by (8), we have

P
(

deg+(v) 6
1

40
log n

)
6 P

(
Bin

(
1

10
log n,

1

2

)
6

1

40
log n

)
6 2 exp

(
− 1

12 · 20
log n

)
.

So the expected number of very bad vertices is at most |L| + 2n1−1/240 6 n0.999. Thus,
by the basic probabilistic method, there exists an orientation with at most this many
very bad vertices. (Recall that G(n,m−) is now treated as any deterministic graph with
|L| < n0.95.)

Our goal is to show that the event Ai (in the range for i considered in this case) does
not hold in G(n,m) with m− 6 m 6 m+. However, if Ai does not hold in G(n,m−), then
it cannot hold in G(n,m) with m > m−, since, for a given I ⊆ W , adding edges can only
decrease κ(GI), the number of components in GI . Hence, it remains to focus on G(n,m−).

We condition on G(n,m−) having orientation with at most n0.999 very bad vertices.
Note that, since edges in the random graph process and colours are generated indepen-
dently, we may start with G(n,m−) (and its orientation) and then test all sets of colours.
Hence, fix a set of colours I ⊆ W , with |I| = i and n/(β

√
log n) 6 i 6 n − βn/ log n.

Let deg+
I (v) represent the out-degree of v in GI , where GI is the (oriented) subgraph of

G(n,m−) consisting of all edges which have at least one colour from I on their list and the
orientations are retained from G(n,m−). The probability that a given edge e ∈ G(n,m−)
is in GI is equal to

1−
(
n−1−i
k

)(
n−1
k

) = 1−
(

1− i

k

)k (
1 +O

(
1

n− i

))
= 1−

(
1− i

k

)k
+O

(
1

n

)
>

i

n
.

In particular, note that for i in this range, the average degree in GI is at least 2m−
n
· i
n

=
Θ(i log n/n) = Ω(

√
log n)→∞ as n→∞. For a vertex v which is not very bad, we have
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that deg+
I (v) is binomial and stochastically dominates Bin

(
1
40

log n, i
n

)
. We call a vertex

v in GI bad if deg+
I (v) satisfies

deg+
I (v) 6

1

2
· 1

40
log n · i

n
=

1

80
· i log n

n
.

So, it follows from (8) that the probability that a non-very bad vertex is bad is at most

P
(

Bin

(
1

40
log n,

i

n

)
6

1

80
· i log n

n

)
6 exp

(
1

480
· i log n

n

)
.

Now, let Xb = Xb(I) represent the number of bad vertices in GI that are not very
bad. The expectation of Xb is at most

Eb = Eb(I) := n · exp

(
− 1

480
· i log n

n

)
.

Recall that the reason for introducing the orientation of G(n,m−) is to make the events
of being bad to be independent of one another. Hence, Xb is stochastically dominated by
random variable Z ∼ Bin (n, exp (−i log n/(480n))) with expectation Eb. Thus, using (9)
we get that

P (Xb > Eb + γn) 6 P (Z > Eb + γn)

6 exp

(
−Eb ·

((
1 +

γn

Eb

)
log

(
1 +

γn

Eb

)
− γn

Eb

))
.

Let us set γ = 500n
i logn

→ 0 as n→∞. Then,

γn/Eb = γ exp

(
i log n

480n

)
= Ω(log−1 n) · exp

(
Ω(
√

log n)
)
→∞

as n→∞. Thus, we get

P (Xb > Eb + γn) 6 exp

(
−γn log

(
γn

Eb

)
(1 + o(1))

)
= exp

(
−500n2

i log n

(
log γ +

i log n

480n

)
(1 + o(1)

)
6 exp (−n) ,

since log γ = O(log log n) = o(
√

log n) = o(i log n/n).
Finally, we may union bound over all choices of I in this range to get that

P
(
∃I :

n

β
√

log n
6 i 6 n− βn

log n
, Xb(I) > Eb(I) + γn

)
6 2n · exp (−n) = o(1).

Thus, a.a.s. every GI has at most n0.999 + (1 + o(1)γn = (1 + o(1))500n2/(i log n) many
bad vertices. Let us condition on this. Every vertex which is not bad is in a component
of size at least (i log n)/(80n). Hence we have

κ(GI) 6 (1 + o(1))
500n2

i log n
+

80n2

i log n
6

600n2

i log n

and this is less than n − i as long as i 6 n − βn/ log n for β sufficiently large. The
contribution to (6) from this case is o(1).
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3.1 n− βn/ logn 6 i 6 n− 1− k

In this range for i, we find it convenient to think of the complement of the set I, that is,
J := W \ I. Thus Edmond’s condition (4) becomes

κ(GW\J) 6 |J |+ 1.

As usual, any set J which does not satisfy this condition will be called bad. We will show
that with probability at least 1 − n−1.8+o(1) there is no bad set J of cardinality at least
k and at most βn/ log n in G(n, p) (with p = m/

(
n
2

)
for some m− 6 m 6 m+) and so

the same holds for G(n,m) with probability at least 1 − n−1.3+o(1) by Lemma 3.2. The
contribution to (6) from this case will be

∑m+

m=m−

∑n−1−k
i=n−βn/ logn Pm(Di) = o(1).

Given a bad set J with |J | = j such that k 6 j 6 βn/ log n, GW\J has at least
j + 2 components, and so some collection of these components contains s vertices in
total, where j + 1 6 s 6 n/2. Indeed, suppose that GW\J has ξ > j + 2 components of
orders n1 6 n2 6 . . . 6 nξ. If nξ > n/2, then n1 + n2 + . . . + nξ−1 is at most n/2 and
clearly at least ξ − 1 > j + 1. If j + 1 6 nξ < n/2, then taking the largest component
suffices. Finally, if nξ 6 j, then we can choose r such that n1 + n2 + . . . + nr 6 n/2 but
n1 + n2 + . . .+ nr+1 > n/2, and then

n1 + n2 + . . .+ nr > n/2− nr+1 > n/2− j > j + 1,

for n sufficiently large, since j = o(n).
First, we will show that a.a.s. there is no set of colours J of size j (in the desired

range) and no set of vertices S of size s such that

2j
log(n/j)

log j
6 s 6 n/2

(in particular, s→∞ as n→∞) with no edges between S and V \ S in GW\J . Indeed,
the expected number of such pairs of sets J and S is at most

X =

βn/ logn∑
j=k

n/2∑
s=2j

log(n/j)
log j

(
n− 1

j

)(
n

s

)
(1− pI)s(n−s),

where pI is an edge probability in GI = GW\J . Note that

pI >
m−(
n
2

) =
log n− ω

n
·

(
1−

(
j
k

)(
n−1
k

)) =
log n− ω(1 + o(1))

n
.

Hence,

X 6
βn/ logn∑
j=k

n/2∑
s=2j

log(n/j)
log j

exp

{
j log

(
ne

j

)
+ s log

(ne
s

)
− s(n− s)pI

}

6
βn/ logn∑
j=k

n/2∑
s=2j

log(n/j)
log j

exp

{
j log

(
ne

j

)
− s log s+ s2

log n

n
(1 + o(1)) + sω(1 + o(1))

}
.
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Note that the inner sum is dominated by its first term. To see this let as be the sth term
and consider the ratio of consecutive terms:

as+1

as
= exp

{
s log s− (s+ 1) log(s+ 1) + (2s+ 1)

log n

n
(1 + o(1)) + ω(1 + o(1))

}
= exp

{
− log(s+ 1)− s log

(
s+ 1

s

)
+

(
2s log n

n
+ ω

)
(1 + o(1))

}
= exp

{
− log(s+ 1) +

(
2s log n

n
+ ω

)
(1 + o(1))

}
.

Suppose 2j log(n/j)
log j

6 s 6 n/ log n. Then s = Ω(log n) and s log n/n = O(1) so we have

as+1

as
= exp {− log(s+ 1) +O(ω)} = o(1)

as long as ω grows sufficiently slowly. Now suppose n/ log n 6 s 6 0.49n. Then

as+1

as
6 exp

{
− log n+ 2

0.49n log n

n
+O (ω + log log n)

}
= o(1).

Thus
∑0.49n

s=2j
log(n/j)

log j

as is of order of its first term which is bounded by

exp

{
j log

(
n

j

)
+ j − 2j

log(n/j)

log j

(
log

(
2j

log(n/j)

log j

)
− ω(1 + o(1))

)}
6 exp

{
−j log

(
n

j

)
+ j − 2j

log(n/j)

log j
· (log 2 + log log (n/j)− log log j − ω(1 + o(1)))

}
6 exp

{
−j log

(
n

j

)(
1− o(1) +

2

log j
· (log 2 + log log(n/j)− log log j − ω(1 + o(1)))

)}
6 exp

{
−.9j log

(
n

j

)}
,

since for j 6 log n, we have

log 2 + log log (n/j)− log log j − ω(1 + o(1)) = log log(n/j)(1 + o(1))→∞

and for j > log n, we have
− log log j − ω

log j
= −o(1),

where in both cases we assume ω →∞ sufficiently slowly. Moreover,

n/2∑
s=.49n

(
n− 1

j

)(
n

s

)
(1− pI)s(n−s) 6

n/2∑
s=.49n

2n · 2n · exp
(
−Ω(n2pI)

)
6 exp (−Ω(n log n)) ,
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and so

X = O

βn/ logn∑
j=k

exp

{
−0.9j log

(
n

j

)} .

It remains to show that it is of order at most n−1.8. To see this, note that the above sum
is dominated by its first term since the ratio of consecutive terms is(

j+1
n

)0.9(j+1)(
j
n

)0.9j =

(
j + 1

n

)0.9(
j + 1

j

)0.9j

= O

((
j + 1

n

)0.9
)

= o(1).

We now consider the case when s 6 2j log(n/j)
log j

. When n3/4 6 j 6 βn/ log n, we have
that

s 6 2j
log(n/j)

log j
6 2j ·

1
4

log n
3
4

log n
=

2

3
j < j + 1,

which is a contradiction. Thus the previous case covers all s for such j and so in this
case we only consider j 6 n3/4. Our technique for this range of s is slightly different. In
the previous case, s was large enough that in GW\J , no set of s vertices could have no
edges to its complement. Now, we allow for such a possibility. Since for a bad set J we
have κ(GW\J) > j + 2, we can partition the vertices into sets of size x1, x2, . . . , xj+1 and
n − s (where s = x1 + · · · + xj+1) such that there are no edges crossing these parts in
GW\J . Since G = GW is connected, there must be j + 1 edges in G whose colour sets
are subsets of J (and therefore they will not occur in GW\J) where each edge has at least
one endpoint in S. Below, we bound the expected number of pairs J and S satisfying the
above description.

Y =
n3/4∑
j=k

2j
log(n/j)

log j∑
s=j+1

∑
x1+...+xj+1=s

(
n− 1

j

)
(n)s∏
` x`!

·
(

sn

j + 1

)
(1− pI)s(n−s)−j−1

(
p ·

(
j
k

)(
n−1
k

))j+1

,

where pI is defined as before and p 6 m+/
(
n
2

)
= (log n+ ω)/n. To understand the terms

in the above sum, first choose j colours, then partition the vertices into sets of sizes
x1, . . . , xj, n− s ( (n)s∏

` x`!
is the appropriate multinomial coefficient for this task). The next

factor is an upper bound on the number of choices for j + 1 edges with one endpoint in
S. There are at least s(n− s)− (j + 1) non-edges in GW\J = GI which explains the next
factor. The last one is the probability that the specified j + 1 edges appear in GW but
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not GW\J . We get

Y 6
n3/4∑
j=k

2j
log(n/j)

log j∑
s=j+1

∑
x1+...+xj+1=s

exp
{
j log

(
ne

j

)
+ s log n−

∑
x` log

(x`
e

)
+ (j + 1) log

(
sne

j + 1

)
− pI · [s (n− s)− j − 1] + (j + 1)k log j

− (j + 1)(k + 1) log n+ (j + 1) log(log n+ ω)
}
.

We use convexity of the function x log(x/e) and Jensen’s inequality to bound the sum of
such terms. Keeping in mind that j + 1 6 s = O(j log n) and j 6 n3/4 we also have that

−pI (s(n− s)− j − 1) 6 −
(

log n− ω
n

)(
1−

(
j
k

)(
n
k

)) (sn− (s2 + j + 1)
)

= −
(

log n− ω
n

)(
1−O

(
n−1/2

))
· sn

(
1 +O

( s
n

))
= −s(log n− ω)

(
1 +O

(
log n

n1/4

))
= −s log n+ sω(1 + o(1)).

Hence,

Y 6
n3/4∑
j=k

2j
log(n/j)

log j∑
s=j+1

∑
x1+...+xj+1=s

exp
{
j log

(
ne

j

)
− (j + 1) · s

j + 1
log

(
s

(j + 1)e

)
+ sω(1 + o(1)) + (j + 1) log

(
sne

j + 1

)
+ (j + 1)k log j − (j + 1)(k + 1) log n+ (j + 1) log log n

}
.

The number of terms in the inner-most sum is bounded from above by
(
s
j

)
6
(
se
j

)j
and

by expanding logs and collecting like terms, we get

Y 6
n3/4∑
j=k

2j
log(n/j)

log j∑
s=j+1

exp
{
j log

(
se

j

)
− [(k − 1)j + k] log n+ [j + 1− s] log s

+ [(k − 1)j + k] log j + (s− j − 1) log(j + 1) + (j + 1) log log n+ sω(1 + o(1))
}

6
n3/4∑
j=k

2j
log(n/j)

log j∑
s=j+1

exp
{
− [(k − 1)j + k] log

(
n

j

)
− (s− j − 1) log

(
s

j + 1

)
+ sω(1 + o(1)) +O (j log log n)

}
,
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where we have included j log
(
se
j

)
in the O(j log log n) term since s/j = O(log n). Hence,

Y 6
n3/4∑
j=k

exp

{
− [(k − 1)j + k] log

(
n

j

)
+O(j log log n)

}
(11)

×

2j
log(n/j)

log j∑
s=j+1

exp

{
−(s− j − 1) log

(
s

j + 1

)
+ sω(1 + o(1))

} .

We will now split the inner sum at s0 = j log log n/ω. Then for s 6 s0 we have

s0∑
s=j+1

exp

{
−(s− j − 1) log

(
s

j + 1

)
+ sω(1 + o(1))

}
6 s0 exp {s0ω(1 + o(1))}
= exp {j log log n(1 + o(1))} ,

provided that, say, ω = o(log log n). For s > s0 we have

2j
log(n/j)

log j∑
s=s0

exp

{
−(s− j − 1) log

(
s

j + 1

)
+ sω(1 + o(1))

}

6

2j
log(n/j)

log j∑
s=s0

exp

{
−s log

(
s0

j + 1

)
(1 + o(1)) + sω(1 + o(1))

}

6

2j
log(n/j)

log j∑
s=s0

exp

{
−s log

(
s0

j + 1

)
(1 + o(1))

}
as long as ω0 = o(log log log n). This sum is dominated by its first term, that is,

exp

{
−s0 log

(
s0

j + 1

)
(1 + o(1))

}
= o(1).

Therefore the inner sum in (11) can be bounded by exp {j log log n(1 + o(1))}. As a result

Y = O

n3/4∑
j=k

(
− ((k − 1)j + k) log

(
n

j

)
+O(j log log n)

)
which is dominated by its first term as seen by examining the ratio of consecutive terms.
Thus, Y is at most n−4+o(1) and so the probability there is no bad set J of cardinality
at least k and at most βn/ log n in G(n, p) is at least 1− n−1.8+o(1) and the final case to
consider is finished.
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