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Abstract

The problem of determining the maximum size La(n, P ) that a P -free subposet
of the Boolean lattice Bn can have, attracted the attention of many researchers,
but little is known about the induced version of these problems. In this paper
we determine the asymptotic behavior of La∗(n, P ), the maximum size that an
induced P -free subposet of the Boolean lattice Bn can have for the case when P is
the complete two-level poset Kr,t or the complete multi-level poset Kr,s1,...,sj ,t when
all si’s either equal 4 or are large enough and satisfy an extra condition. We also
show lower and upper bounds for the non-induced problem in the case when P is
the complete three-level poset Kr,s,t. These bounds determine the asymptotics of
La(n,Kr,s,t) for some values of s independently of the values of r and t.

1 Introduction

We use standard notation: 2X denotes the power set of X,
(
X
k

)
denotes the set of k-element

subsets of X, for two sets A ⊂ B the interval {G : A ⊆ G ⊆ B} is denoted by [A,B] and
[n] stands for the set of the first n positive integers {1, 2, . . . , n}. The complement [n] \A
of a subset A of [n] will be denoted by A and for a family F ⊆ 2[n] of sets we will write
F = {F : F ∈ F}.

The very first theorem in extremal finite set theory is due to Sperner [14] and it states
that if F ⊆ 2[n] is a family of sets that does not contain two sets F1, F2 with F1 ( F2,
then |F| 6

(
n
bn
2
c

)
holds. Such families are called antichains or Sperner families. A first
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generalization is due to Erdős [6], who proved that if F does not contain any (k + 1)-
chains, i.e., k + 1 sets F1, F2, . . . , Fk+1 with F1 ( F2 ( · · · ( Fk+1, then |F| 6 Σ(n, k) :=∑k

i=1

(
n

bn−k
2
c+i

)
holds. Such families are called k-Sperner families.

These two theorems have many applications and generalizations. One such general-
ization is the topic of forbidden subposet problems first introduced by Katona and Tarján
[11]. We say that a poset Q contains another poset P if there is an injection i : P → Q
such that for every p1, p2 ∈ P the fact p1 6 p2 implies i(p1) 6 i(p2). If Q does not
contain P , then it is said to be P -free. If P is a set of posets, then Q is P-free if it is
P -free for all P ∈ P . The parameter introduced by Katona and Tarján is the quantity
La(n, P ) that denotes the maximum size of a P -free subposet of Bn, the Boolean poset
of all subsets of [n] ordered by inclusion. With this notation Erdős’s theorem states that
La(n, Pk+1) = Σ(n, k), where Pk+1 denotes the path on k+1 elements, i.e., a total ordering
on k + 1 elements.

In the same paper, Katona and Tarján introduced the induced version of the problem.
We say that Q contains an induced copy of P if there is an injection i : P → Q such that
for any p1, p2 ∈ P we have p1 6 p2 if and only if i(p1) 6 i(p2). If Q does not contain an
induced copy of P , then Q is said to be induced P -free. The analogous extremal number
is denoted by La∗(n, P ) and obviously the inequality La(n, P ) 6 La∗(n, P ) holds for any
poset P . The notation for multiple forbidden subposets is La(n,P) and La∗(n,P).

As any poset P is contained in P|P |, we clearly have La(n, P ) 6 La(n, P|P |) =
Σ(n, |P | − 1). Strengthenings of this general bound were obtained by Burcsi and Nagy
[2], Chen and Li [4] and recently by Grósz, Methuku and Tompkins [10]. Therefore
it is natural to compare La(n, P ) to

(
n
bn
2
c

)
. Unfortunately, it is not known whether

π(P ) = limn→∞
La(n,P )

( n
bn2 c

)
exists. The following conjecture was first stated in [9].

Conjecture 1.1. For any poset P let e(P ) denote the largest integer k such that for any
j and n the family ∪ki=1

(
[n]
j+i

)
is P -free. Then π(P ) exists and is equal to e(P ).

This conjecture has been verified for many classes of posets. The most remarkable
result is due to Bukh.

Theorem 1.2. Let T be a tree poset. Then Σ(n, h(T ) − 1) 6 La(n, T ) 6 (h(T ) − 1 +
O( 1

n
))
(
n
bn
2
c

)
holds. In particular, π(T ) = e(T ) holds for any tree poset T .

Much less is known about the induced version of the problem. It has only been proved
recently by Methuku and Pálvölgyi [13] that for every poset P there exists a constant cP
such that La∗(n, P ) 6 cP

(
n
bn
2
c

)
holds. (For a special class of posets this has already been

established by Lu and Milans [12].) As the list of known results on forbidden induced
subposet problems is very short here we enumerate all such theorems.

Theorem 1.3 (Katona, Tarján [11]). For n > 3 we have La(n, {∧,∨}) = La∗(n, {∧,∨}) =
2
(
n−1
bn/2c

)
.

Theorem 1.4 (Katona, Tarján [11] and Carroll, Katona [3]). (1 + 1
n

+ O( 1
n2 ))

(
n
bn/2c

)
6

La(n,∨) = La(n,∧) 6 La∗(n,∨) = La∗(n,∧) 6 (1 + 2
n

+O( 1
n2 ))

(
n
bn/2c

)
.
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Finally, the induced version of Theorem 1.2 has been proved, but only with an o(1)
error term instead of O( 1

n
).

Theorem 1.5 (Boehnlein, Jiang [1]). Let T be a tree poset. Then Σ(n, h(T ) − 1) 6
La∗(n, T ) 6 (h(T )− 1 + o(1))

(
n
bn
2
c

)
holds.

Before we state our results, let us formulate the induced analogue of Conjecture 1.1.

Conjecture 1.6. Let P be a poset and let e∗(P ) denote the largest integer k such that for

any j and n the family ∪ki=1

(
[n]
j+i

)
is induced P -free. Then π∗(P ) = limn→∞

La∗(n,P )

( n
bn2 c

)
exists

and is equal to e∗(P ).

In the present paper, we address both the induced and the non-induced problem
for complete multi-level posets. Let Kr1,r2,...,rs denote the poset on

∑s
i=1 ri elements

a11, a
1
2, . . . , a

1
r1

, a21, a
2
2, . . . , a

2
r2
, . . . , as1, a

s
2, . . . , a

s
rs with aih < ajl if and only if i < j. The rank

r(ail) of the element ail is i. Our first result gives not only the asymptotics of La∗(n,Kr,t),
but also the order of magnitude of the second order term of the extremal value. The
constructions that show the lower bounds in this and later theorems are based on the
same idea that will be described at the beginning of Section 3.

Theorem 1.7. For any positive integers 2 6 r, t we have

Σ(n, 2) +

(
r + t− 2

n
−Or,t(1/n

2)

) (
n

bn/2c

)
6 La∗(n,Kr,t)

6

(
2 +

2(r + t− 2)

n
+ o(1/n)

) (
n

bn/2c

)
.

Note that the same upper bound for La(n,Kr,t) follows from Theorem 1.2 as Kr,t

is an (induced) subposet of Kr,1,s and Kr,1,s is a tree poset. By the same argument,
Theorem 1.5 implies the asymptotics of La∗(n,Kr,t) but its error term is worse than
that of Theorem 1.7. Let us remark that La(n,K2,2) = Σ(n, 2) was shown by De Bonis,
Katona, Swanepoel [5]. As they also showed the uniqueness of the extremal family, it was
known that the strict inequality La(n,K2,2) < La∗(n,K2,2) holds. Theorem 1.7 tells us
the order of magnitude of the gap between these two parameters.

Then we turn our attention to the three level case of Kr,s,t. To do so we need to
introduce the following notation: for positive integers r, t let

f(r, t) =


0 if r = t = 1,

1 if r = 1, t > 1 or r > 1, t = 1,

2 if r, t > 2.
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Also, for any integer s > 2 let us define m = ms = dlog2(s − f(r, t) + 2)e and
m∗ = m∗s = min{m : s 6

(
m
dm/2e

)
} and for any real number z, let z+ denote max{0, z}.

Note that m∗s is the minimum integer m such that 2[m] contains an antichain of size s and
thus an interval [A,B] contains an antichain of size s if and only if |B \A| > m∗s. Another
equivalent formulation is to say that an interval [A,B] contains an induced copy of K1,s,1

if and only if |B \ A| > m∗s. Similarly, an interval [A,B] contains a non-induced copy of
K1,s,1 if and only if |B \ A| > dlog2(s− f(1, 1) + 2)e. It may seem foolish to denote 0 by
f(1, 1), but we will see later how the function f comes into the picture.

Our next theorem deals with the non-induced problem for complete three-level posets
Kr,s,t. The main term of all of our bounds depends on the value of r and t via the function
f . For most values of s we can determine π(Kr,s,t), for the rest we obtain an upper bound
that is bigger than our lower bound by less than one.

Theorem 1.8. Let s− f(r, t) > 2.
(1) If s−f(r, t) ∈ [2ms−1−1, 2ms−

(
ms

dms
2
e

)
−1], then π(Kr,s,t) = e(Kr,s,t) = ms+f(r, t)

holds. In particular, we have

Σ(n,ms + f(r, t)) +
(

(r−2)++(t−2)+
n

−Or,t(
1
n2 )
) (

n
dn
2
e

)
6 La(n,Kr,s,t) 6 (ms + f(r, t) +

2(r+t−2)
n

+ o( 1
n
))
(
n
dn
2
e

)
.

(2) If s− f(r, t) ∈ [2ms −
(
ms

dms
2
e

)
, 2ms − 2], then

Σ(n,ms + f(r, t)) + ( (r−2)
++(t−2)+
n

−Or,t(
1
n2 ))

(
n
dn
2
e

)
6 La(n,Kr,s,t) 6 (ms + f(r, t) + 1−

2ms−s+f(r,t)−1
( m
dms

2 e
)

)
(
n
dn
2
e

)
holds.

Note that the special case r = t = 1 of Theorem 1.8 was already obtained by Griggs,
Li and Lu [8]. Let us state a result that covers the case s = 2, f(r, t) > 0.

Theorem 1.9. For any pair of integers r, t with f(r, t) > 0 we have

Σ(n, 3) +

(
(r − 2)+ + (t− 2)+

n
−Or,t(1/n

2)

) (
n

dn
2
e

)
6 La(n,Kr,2,t)

6

(
3 +

2(r + t− 2)

n
+ o(1/n)

) (
n

dn
2
e

)
.

In particular, π(Kr,2,t) = 3 holds.

As we mentioned earlier Burcsi and Nagy [2] obtained the general bound

lim sup
n

La(n, P )(
n
dn/2e

) 6 b(P ) :=
|P |+ L(P )

2
− 1,

where L(P ) is the length of the longest chain in P . Consequently, they proved Conjec-
ture 1.1 whenever e(P ) = b(P ) holds. They provided seven small such examples all of
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which are complete 1-, 2-, or 3-level posets. Furthermore, they introduced two operations
how to obtain new posets P satisfying e(P ) = b(P ) starting from two other posets P1, P2

possessing this property. All resulting posets are complete multilevel ones. In particular,
they obtained La(n,K1,2,2) = La(n,K2,2,1) = Σ(n, 3).

We turn our attention to the general case of Kr,s1,s2,...,sj ,t. As there are more techni-
cal details in calculating e(Kr,s1,s2,...,sj ,t) than in calculating e∗(Kr,s1,s2,...,sj ,t) we will only
consider the induced problem in its full generality.

Proposition 1.10. (i) If si > 2 holds for all 1 6 i 6 j, then we have e∗(Kr,s1,s2,...,sj ,t) =

f(r, t) +
∑j

i=1m
∗
si
.

(ii) Let us write w = |{i : si−1 = si = 1}|, where r = s0 and t = sj+1. Then
e∗(Kr,s1,s2,...,sj ,t) = w + e∗(Kr,σ1,σ2,...,σj′ ,t

), where σ1, σ2, . . . , σj′ is the sequence obtained
from s1, s2, . . . , sj by removing all its ones.

Proof. To see (i), let F consist of f(r, t) +
∑j

i=1m
∗
si

consecutive levels of 2[n] and suppose
we find an induced copy of Kr,s1,s2,...,sj ,t. If F1, . . . , Fr and F ′1, . . . , F

′
t play the role of

the bottom r and the top t sets, then | ∩ti=1 F
′
i | − | ∪rk=1 Fj| <

∑j
l=1m

∗
si

holds. If
F i
1, . . . , F

i
si

play the role of the sets of the ith middle level of Kr,s1,s2,...,sj ,t, then |∪sij=1F
i
j | >

| ∪si−1

j=1 F
i−1
j |+ sj must hold. Thus one would need

∑j
i=1m

∗
si

more levels for the j middle

levels of Kr,s1,s2,...,sj ,t. It is easy to see that f(r, t) +
∑j

i=1m
∗
si

+ 1 consecutive levels do
contain an induced copy of Kr,s1,s2,...,sj ,t.

To see (ii), assume G is a copy of an induced Kr,s1,s2,...,sj ,t in 2[n]. Let i, i + p be two
indices such that si, si+p+1 > 2 and si+h = 1 for all 1 6 h 6 p. Let Gi

1, . . . , G
i
si

and

Gi+p+1
1 , . . . , Gi+p+1

si+p+1
denote the sets in G corresponding to the ith and (i + p + 1)st level

of Kr,s1,s2,...,sj ,t. Then for I = ∪sil=1G
i
l and J = ∩si+p+1

l=1 Gi+p+1
l we must have I ⊆ J and

|J |− |I| > p−1 as G contains a chain of length p in [I, J ]. For G ∈ G let us write r(G) for
the rank of the element corresponding to G. Then G ′ = {G ∈ G : r(G) 6 i}∪{G\ (J \I) :
G ∈ G, r(G) > i+ p+ 1} is an induced copy of Kr,s1,s2,...,si,si+p+1,...sj ,t such that the size of
the largest set in G ′ is (p− 1) less than than the size of the largest set in G. Continuing
this process we obtain a copy of Kr,σ1,σ2,...,σj′ ,t

where the size of the largest set is w less
than the size of the largest set in G. This shows e∗(Kr,σ1,σ2,...,σj′ ,t

) 6 e∗(Kr,s1,s2,...,sj ,t)−w.
To see the other inequality, one has to reverse the above procedure. We leave the details
to the reader.

Theorem 1.11. (i) For any positive integers 1 6 r, t we have Σ(n, 4 + f(r, t)) + ( r+t−2
n
−

Or,t(
1
n2 ))

(
n
dn/2e

)
6 La∗(n,Kr,4,t) 6 (4 + f(r, t) + 2(r+t−2)

n
+ o( 1

n
))
(

n
bn/2c

)
.

In particular, π∗(Kr,4,t) = 4 + f(r, t) holds.
(ii) For any constant c with 1/2 < c < 1 there exists an integer sc such that if

s > sc and s 6 c
(

m∗s
dm∗s/2e

)
, then we have Σ(n,m∗s + f(r, t)) + ( r+t−2

n
− Or,t(

1
n2 ))

(
n
dn/2e

)
6

La∗(n,Kr,s,t) 6 (m∗s+f(r, t)+ 2(r+t−2)
n

+o( 1
n
))
(

n
bn/2c

)
. In particular, π∗(Kr,s,t) = m∗s+f(r, t)

holds.
(iii) There exists an integer s0 such that for any r, s, t with s > s0 we have Σ(n,m∗s +

f(r, t))+( r+t−2
n
−Or,t(

1
n2 ))

(
n
dn/2e

)
6 La∗(n,Kr,s,t) 6 (m∗s+1+f(r, t)+ 2(r+t−2)

n
+o( 1

n
))
(

n
bn/2c

)
.
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(iv) For any constant c with 1/2 < c < 1 there exists an integer sc such that if all si’s

satisfy that either si = 4 or si > sc and si 6 c
( m∗si
dm∗si/2e

)
, then we have La∗(n,Kr,s1,s2,...,sj ,t) =

(e∗(Kr,s1,s2,...,sj ,t) +Or,t(
1
n
))
(

n
bn/2c

)
.

Our main technique to prove all four theorems is the chain partition method [8, 7]. The
remainder of the paper is organized as follows: in Section 2 we prove some preliminary
lemmas and introduce all the necessary definitions that will be used in the proofs of
Theorem 1.7, Theorem 1.8, Theorem 1.9, and Theorem 1.11. Then in Section 3 we prove
our results.

2 Preliminary definitions and lemmas

In this section we prove some preliminary lemmas that will serve as building blocks in the
proofs of our main theorems. Before stating and proving these lemmas, let us enumerate
all definitions that we will use later on in the paper.

Let Cn denote the set of maximal chains in [n]. For a family F ⊆ 2[n] of sets and
A ⊆ [n] we define s−F(A) to be the maximum size of an antichain in {F ∈ F : F ⊆ A}.
and s+F(A) to be the maximum size of an antichain in {F ∈ F : A ⊆ F}. For a set A ⊆ [n]
and a family F of sets let CA,k,− denote the set of those maximal chains C from ∅ to A
for which for every C ∈ C \ {A} we have s−F(C) < k and let CA,k,+ denote the set of those
maximal chains C from A to [n] for which for every C ∈ C \ {A} we have s+F(C) < k.

The min-max-partition of Cn (introduced by Griggs Li and Liu in [8]) with respect to
a family F ⊆ 2[n] is {CA,B : A ⊆ B ⊆ [n]} where CA,B consists of those maximal chains
in Cn of which the smallest set that belongs to F is A and of which the largest set that
belongs to F is B. To obtain a real partition of Cn one has to add C∅ = {C ∈ Cn :
C ∩ F = ∅}.

For r > 2 let us now define the minr-partition of Cn with respect to F . For a set A
with s−F(A) > r we set CA,r = {C ∈ Cn : A ∈ C, ∀C ⊂ A,C ∈ C : s−F(C) < r}. Note
that every C ∈ Cn belongs to exactly one set CA,r provided F contains an antichain of
size r as then s−F([n]) > r and [n] is contained in all maximal chains C ∈ Cn. Thus
{CA,r : s−F(A) > r} is a partition of Cn.

Now we define the minr−maxt-partition of Cn. Before introducing the formal defini-
tion, we describe the idea of the partition. For the sake of simplicity assume that both r
and t are at least 2. For every chain C ∈ Cn we want to introduce two markers A,B ∈ C
with the property that A is the smallest set in C below which there exists an antichain
of size r in F (i.e., s−F(A) > r) and B is the largest set in C above which there exists
an antichain of size t in F (i.e., s+F(B) > t). If F is Kr,s,t-free, we know that [A,B] ∩ F
contains less than s sets, while if F is induced Kr,s,t-free, then [A,B] does not contain
an antichain of size s. The problem with the above reasoning is that B ( A might hold,
thus we will have to distinguish two cases.

Let us start with introducing S = {S ∈ 2[n] : s−F(S) > r}, the family of those sets
that can play the role of A in the above argument. We partition S into two subfamilies:
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S− = {S ∈ S : s+F(S) < t} and S+ = S \ S−. Clearly, if A ∈ S− is the smallest set in
the chain C ∈ Cn with s−F(A) > r, then for the largest set B in C with s+F(B) > t we will
have B ( A.

For any set S ∈ S− let CS denote the set of those maximal chains C in Cn in which

• if r = 1, then S is the smallest set in F ∩ C,

• if r > 2, then S is the smallest set in C with s−F(S) > r.

For any set A ∈ S+ and B with A ⊆ B let CA,B = CA,r,B,t denote the set of those
maximal chains C in Cn in which

• if r = 1, then A is the smallest set in F ∩ C,

• if r > 2, then A is the smallest set in C with s−F(A) > r,

• if t = 1, then B is the largest set in F ∩ C,

• if t > 2, then B is the largest set in C with s+F(B) > t.

The minr−maxt-partition of Cn is {CS : S ∈ S−} ∪ {CA,B : A ∈ S+, A ⊆ B}. Consider
a maximal chain C ∈ Cn. If r > 2 and the size z of the largest antichain in F satisfies
z = s−F([n]) > max{r, t}, then there is a smallest set H of C with s−F(H) > r. If H ∈ S−,
then C belongs to CH . If not, then H ∈ S+ and thus for the largest set H ′ of C with s+F > t
we have H ⊆ H ′ and therefore C ∈ CH,H′ holds. We obtained that the minr−maxt-
partition of Cn is indeed a partition if r > 2. If r = 1, then we need to add the set
C∅ = {C ∈ Cn : C ∩ F = ∅}.

After introducing the necessary definitions, we start to prove our preliminary lemmas
that will serve as building blocks of our proofs in Section 3.

Lemma 2.1. Let F ⊆ 2[n] be a family such that all F ∈ F have size in [n/2−n2/3, n/2 +
n2/3].

(i) Let A ⊂ [n] with s−F(A) < k. Then the number of pairs (F, C) where C is a maximal

chain from ∅ to A and F ∈ F ∩ (C \ {A}) is 2(k−1)
n
|A|! + o( 1

n
|A|!).

(ii) Let A ⊂ [n] with s+F(A) < k. Then the number of pairs (F, C) where C is a maximal

chain from A to [n] and F ∈ F ∩ (C \ {A}) is 2(k−1)
n

(n− |A|)! + o( 1
n
(n− |A|)!).

Proof. We start by proving (i). The property possessed by A and F ensures that FA :=
{F ∈ F : F ⊂ A} contains at most k − 1 sets of each possible size. Thus the number of
pairs (F, C) in question is at most

min{n/2+n2/3,|A|−1}∑
i=n/2−n2/3

(k−1)i!(|A|−i)! 6 k − 1

|A|
|A|!+ 2(k − 1)

|A|(|A| − 1)
|A|!+ 12(k − 1)n2/3

|A|(|A| − 1)(|A| − 2)
|A|!

6
2(k − 1)

n
|A|! +Ok

(
1

n4/3
|A|!
)
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if |A| > (1/2 − n−1/3)n. If |A| 6 (1/2 − n−1/3)n = n/2 − n2/3, then F does not contain
any subset F of A. This completes the proof of (i) and (ii) follows by applying (i) to the
set A and the family F .

Remark. Note that n2/3 could be replaced by any function f(n) satisfying 4 log n
√
n 6

f(n) = o(n). In the proof of Lemma 2.1 we used f(n) = o(n) and at the beginning of
the proofs of upper bounds in Section 3, we will need a calculation involving Chernoff’s
inequality where the assumption 4 log n

√
n 6 f(n) will be used.

Corollary 2.2. Let F ⊆ 2[n] be a family such that all F ∈ F have size in [n/2−n2/3, n/2+
n2/3].

(i) Let A ⊂ [n] with s−F(A) > k. Then the number of pairs (F, C) where C ∈ CA,k,−

and F ∈ F ∩ (C \ {A}) is (1 + 2(k−1)
n

)|CA,k,−|+ o( 1
n
|CA,k,−|).

(ii) Let A ⊂ [n] with s+F(A) > k. Then the number of pairs (F, C) where C ∈ CA,k,+

and F ∈ F ∩ (C \ {A}) is (1 + 2(k−1)
n

)|CA,k,+|+ o( 1
n
|CA,k,+|).

Proof. First we prove (i). Let A1, . . . , Aj, Aj+1, . . . , A|A| denote the subsets of A of size
|A| − 1 such that s−F(Ai) < k if and only if 1 6 i 6 j. (If s−F(Ai) > k for all i, then CA,k,−
is empty and there is nothing to prove.) Note that if S1 ⊂ S2, then s−F(S2) < k implies
s−F(S1) < k. Therefore CA,k,− = ∪ji=1CAi,A, where CAi,A denotes the set of those maximal
chains from ∅ to A that contain Ai. Indeed, CAi,A ⊂ CA,k,− for 1 6 i 6 j as by the above
A is the smallest set in a chain C ∈ CAi,A with s−F(A) at least k, while for all i > j+ 1 we
have s−F(Aj) > k and thus CAj ,A ∩CA,k,− = ∅.

Let us fix i with 1 6 i 6 j and consider pairs (F, C) with F ∈ F ∩ C and C ∈ CAi,A.
As s−F(Ai) < k, we can apply Lemma 2.1 (i) to F and Ai, and obtain that the number of

such pairs with F ( Ai is at most 2(k−1)
n
|Ai|! + o( 1

n
|Ai|!). Even if all Ai’s belong to F ,

then every chain C ∈ CA,k,− can contain one more set from F , namely one of the Ai’s.
This completes the proof of (i) and (ii) follows by applying (i) to the set A and the family
F .

Lemma 2.3. (i) Let G ⊆ 2[n] be a family of sets such that any antichain A ⊂ G has size
at most 3. Then the number of pairs (G, C) with G ∈ G ∩ C and C ∈ Cn is at most 4n!.

(ii) For any constant c with 1/2 < c < 1 there exists an integer sc such that if s > sc
and s 6 c

(
m∗s
dm∗s/2e

)
, then the following holds: if G ⊆ 2[n] is a family of sets such that any

antichain A ⊂ G has size less than s, then the number of pairs (G, C) with G ∈ G ∩C and
C ∈ Cn is at most m∗sn!.

(iii) There exists an integer s0 such that if s > s0 and G ⊆ 2[n] is a family of sets
such that any antichain A ⊂ G has size at most s, then the number of pairs (G, C) with
G ∈ G ∩ C and C ∈ Ck is at most (m∗s + 1)n!.

Proof. First we prove (i). We may assume that ∅, [n] ∈ G holds as adding them will not
result in violating the condition of the lemma and the number of pairs to be counted can
only increase. These two sets are in n! maximal chains each, thus giving 2n! pairs. Any
other set G belongs to |G|!(n − |G|)! = n!

( n
|G|)

chains in Cn. Sets of same size form an
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antichain, therefore for every 1 6 i 6 n − 1 there exist at most 3 sets of size i in G and
thus the total number of pairs (G, C) is at most

S(n) = 2n! + 3n!
n−1∑
i=1

1(
n
i

) .
For n = 2, 3, 4, 5 the sum S(n) equals 3.5n!, 4n!, 4n!, 3.8n!, respectively. Furthermore, it is

an easy exercise to show that S(n)
n!

is monotone decreasing for n > 5 and therefore S(n)
n!

6 4
holds for all positive integers n. This completes the proof of (i).

Now we prove (ii). Clearly, as long as n < m∗s we can have G = 2[n] and then the
number of pairs is (n + 1)n! 6 m∗sn!. When n > m∗s we again use the observation that
for any 0 6 j 6 n we have |{G ∈ G ∩

(
[n]
j

)
| < s and thus the number of pairs (G, C) is

at most S(n) =
∑n

j=0 min{s − 1,
(
n
j

)
}j!(n − j)!. We need to show that R(n) := S(n)

n!
=∑n

j=0 min{ s−1
(n
j)
, 1} 6 m∗s holds for all n > m∗s. Consider the case n = m∗s. If s is large

enough (and thus m∗s and n), then
(

m∗s
dm∗s/2e

)
= (1 + o(1))

(
m∗s

dm∗s/2e+j

)
holds provided |j| 6

√
m∗s/ logm∗s. Therefore, by the assumption s 6 c

(
m∗s
dm∗s/2e

)
we have at least 2

√
m∗s/ logm∗s

summands in R(m∗s) that are not more than 1+c
2

, a constant smaller than 1. Thus, if m∗s
is large enough, their subsum

dm∗s/2e+
√
m∗s/ logm

∗
s∑

i=dm∗s/2e−
√
m∗s/ logm

∗
s

s− 1(
m∗s
j

)
is less than 2

√
m∗s/ logm∗s − 1 and since all other summands are not more than 1, we

obtain R(m∗s) < m∗s.
To finish the proof of (ii), we prove that if n > m∗s holds, then we have R(n+1) 6 R(n).

First note that if rn,j denotes the jth summand in R(n), then we have rn,j > rn+1,j and
rn,n−j > rn+1,n+1−j. Thus it is enough to show

1∑
i=−1

rn,dn/2e+i >
2∑

i=−1

rn+1,dn/2e+i.

By the definition of m∗s, we know that rn,dn/2e < 1. Since
(

n
dn/2e

)
= (1/2 + o(1))

(
n+1
dn/2e

)
we have that the LHS is (3 + o(1))rn,dn/2e while the RHS is (4 + o(1))rn,dn/2e/2 = (2 +
o(1))rn,dn/2e. This finishes the proof of (ii).

Finally, we prove (iii). Clearly, as long as n 6 m∗s for any family G ⊆ 2[n] the number
of pairs is (n + 1)n! 6 (m∗s + 1)n!. We need to show that R(n) 6 m∗s + 1 holds for all
n > m∗s. As in (ii) the proof of R(n+1) 6 R(n) for n > m∗s did not require the assumption
on s and c, we obtain that R(n) 6 m∗s + 1 holds for all n.

Our last auxiliary lemma was proved by Griggs, Li and Lu [8].
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Lemma 2.4 (Griggs, Li, Lu, during the proof of Theorem 2.5 in [8]). Let s > 2, r = t = 1
and thus ms := dlog2(s+ 2)e.

(1) If s ∈ [2ms−1 − 1, 2ms −
(
ms

dms
2
e

)
− 1], then if G ⊆ 2[n] is a K1,s,1-free family of sets,

then the number of pairs (G, C) with G ∈ G ∩ C and C ∈ Cn is at most msn!.
(2) If s ∈ [2ms −

(
ms

dms
2
e

)
, 2ms − 2], then if G ⊆ 2[n] is a K1,s,1-free family of sets, then

the number of pairs (G, C) with G ∈ G ∩ C and C ∈ Cn is at most (ms + 1− 2ms−s−1
( ms
dms

2 e
)

)n!.

3 Proofs

In this section we prove our main theorems. Let us start with constructions to see the lower
bounds. We partition

(
[n]
k

)
into n classes: Fn,k,i = {F ∈

(
[n]
k

)
:
∑

j∈F j ≡ i ( mod n)}
and denote the union of the r largest classes by

(
[n]
k

)
r,mod

. Clearly, |
(
[n]
k

)
r,mod
| > r

n

(
n
k

)
.

Furthermore, it has the property that for any distinct r+1 sets F1, F2, . . . , Fr+1 ∈
(
[n]
k

)
r,mod

we have | ∩r+1
i=1 Fi| 6 k − 2 and | ∪r+1

i=1 Fi| > k + 2.

• For Theorem 1.7 consider the family F :=
(

[n]
dn/2e−2

)
r−1,mod

∪
(

[n]
dn/2e−1

)
∪
(

[n]
dn/2e

)
∪(

[n]
dn/2e+1

)
s−1,mod

. Suppose A1, A2, . . . , Ar, B1, B2, . . . , Bs ∈ F form an induced copy

of Kr,t. Then ∪ri=1Ai ⊆ ∩sj=1Bj holds, but by the above property of
(
[n]
k

)
r,mod

and the

inducedness we have | ∪ri=1Ai| > dn/2e and | ∩sj=1Bj| 6 dn/2e− 1 - a contradiction.

• For Theorem 1.8 let k be the index of the level below the ms + f(r, t) middle levels,

i.e., k = dn−ms−f(r,t)
2

e − 1. Write l = k + ms + f(r, t) + 1 and let us consider the
family

F :=

(
[n]

k

)
(r−2)+,mod

∪
ms+f(r,t)⋃

i=1

(
[n]

k + i

)
∪
(

[n]

l

)
(t−2)+,mod

.

We claim that F is Kr,s,t-free. Assume not and let A1, A2, . . . , Ar, B1, B2, . . . , Bs,
C1, C2, . . . , Ct ∈ F form a copy of Kr,s,t. If r > 2, then | ∪ri=1 Ai| > k + 2 and if
r = 1, then |A1| > k + 1 (note that if r = 1, 2, then (r − 2)+ = 0 and thus the
smallest set size in F is k + 1). Similarly, if t > 2, then | ∩tj=1 Cj| 6 l − 2 and if
t = 1, then |C1| 6 l− 1. In any case, | ∩tt=1 Cj| − | ∪ri=1 Ai| 6 ms− 1 and thus there
is no place for B1, B2, . . . , Bs - a contradiction.

• The construction showing the lower bound of Theorem 1.9 is a special case of the
one for Theorem 1.8.

• For Theorem 1.11 (i), (ii) and (iii), let k be the index of the level below the m∗s +

f(r, t) middle levels, i.e., k = dn−m
∗
s−f(r,t)
2

e − 1. Write l = k + m∗s + f(r, t) + 1 and
let us consider the family

F :=

(
[n]

k

)
r−1,mod

∪
m∗s+f(r,t)⋃

i=1

(
[n]

k + i

)
∪
(

[n]

l

)
t−1,mod

.
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One can see that for any antichains A1, A2, . . . , Ar ∈ F and C1, C2, . . . , Ct ∈ F we
have |∩ti=1Ci|−|∪rj=1Aj| 6 m∗s−1 and thus there is no room for an antichain of size

s in between. Note that when s = 4, then m∗s = 4 as
(
4
2

)
= 6 > 4, but

(
3
2

)
= 3 < 4.

Let us now start proving the upper bounds of our results. First of all, from here on
every family F ⊆ 2[n] contains sets only of size from the interval [n/2− n2/3, n/2 + n2/3].
This leaves all our proofs valid as by Chernoff’s inequality |{F ⊆ [n] : ||F | − n/2| >
n2/3}| 6 2e−2n

1/3
= o( 1

n2

(
n
dn/2e

)
).

As we mentioned in the Introduction, for all proofs we will use the chain partition
method. This works in the following way: for a family F ⊆ 2[n] suppose we can partition
Cn into Cn,1,Cn,2, . . .Cn,l such that for all 1 6 i 6 l the number of pairs (F, C) with
F ∈ F ∩ C and C ∈ Cn,i is at most b|Cn,i|. Then clearly the number of pairs (F, C)
with F ∈ F ∩ C and C ∈ Cn is at most b|Cn|. Since the number of such pairs is exactly∑

F∈F |F |!(n− |F |)! we obtain the LYM-type inequality∑
F∈F

1(
n
|F |

) 6 b

and thus |F| 6 b
(

n
dn/2e

)
holds. Therefore, in the proofs below we will end our reasoning

whenever we reach a bound on the appropriate partition as mentioned above.

Proof of the upper bound in Theorem 1.7. Let F be an induced Kr,t-free family. We can
assume that F contains an antichain of size at least r as otherwise F could contain at
most r − 1 sets of the same size and thus we would obtain |F| 6 (r − 1)(n+ 1).

We will use the minr-partition {CA,r : s−F(A) > r}.
We claim that the number of pairs (F, C) with F ∈ F ∩ C and C ∈ CA,r is at most

(2 + 2(r+t−2)
n

+ o( 1
n
))|CA,r| for any A with s−F(A) > r. Note that as F is induced Kr,t-free,

for any such A we have s+F(A) < t. We distinguish three types of pairs:

1. if A ∈ F , then there are exactly |CA,r| pairs with F = A,

2. any chain in CA,r,− can be extended to (n−|A|)! chains in CA,r, thus by Corollary 2.2

(i) there are (1 + 2(r−1)
n

+ o( 1
n
))|CA,r| pairs with F ( A,

3. finally, any maximal chain from A to [n] can be extended to |CA,r,−| chains in CA,r,

thus Lemma 2.1 (ii) implies that there are (2(t−1)
n

+ o( 1
n
))|CA,r| pairs with A ( F ,

This gives us a total of at most (2 + 2(r+t−2)
n

+ o( 1
n
))|CA,r| pairs, which completes the

proof.

Now we turn our attention to complete three level posets.
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Proof of the upper bound in Theorem 1.8. Let F be a Kr,s,t-free family. We can assume
that F contains an antichain of size at least z := max{r, t} as otherwise F could contain
at most z − 1 sets of the same size and thus we would obtain |F| 6 (z − 1)(n+ 1).

We consider the minr−maxt-partition of Cn and we claim that the number of pairs
(F, C) with F ∈ F ∩ C and C ∈ CS, C ∈ CA,B is at most b|CS|, b|CA,B|, respectively,

where b = (ms + f(r, t) + 2(r+t−2)
n

+ o( 1
n
)) when we prove (1) and b = (ms + f(r, t) + 1−

2ms−s+f(r,t)−1
( m
dms

2 e
)

) when we prove (2).

First consider the “degenerate” case of CS with S ∈ S−. A chain C ∈ CS goes from
∅ until one of the subsets S1, S2, . . . , Sk of S with size |S| − 1 for which s−F(Si) < r, then
C must go through S, and finally C must contain a maximal chain from S to [n]. Thus
|CS| = k(|S| − 1)!(n− |S|)!. We distinguish two types of pairs to count.

1. If r > 2, then applying Corollary 2.2 (i) we obtain that there are at most (1 +
2(r−1)
n

+ o( 1
n
))|CS| pairs (F, C) with F ( S. Together with {(S, C) : C ∈ CS} we

have (2 + 2(r−1)
n

+ o( 1
n
))|CS| pairs. If r = 1, then by definition the number of pairs

(F, C) with F ⊆ S is at most |CS| as for all such pairs we must have F = S.

2. Applying Lemma 2.1 (ii) we obtain that there are at most (2(t−1)
n

+ o( 1
n
))|CS| pairs

(F, C) with S ( F .

This gives a total of at most (2 + 2(r+t−2)
n

+ o( 1
n
))|CS| pairs.

We now consider the “more natural” A ∈ S+, A ⊆ B case. As there are sets in the
interval [A,B], this time we distinguish three types of pairs:

1. If r = 1, then there is no pair (F, C) with F ( A. If r > 2, then applying Corol-

lary 2.2 (i) we obtain that there are at most (1 + 2(r−1)
n

+ o( 1
n
))|CA,B| pairs (F, C)

with F ( A.

2. If t = 1, then there is no pair (F, C) withB ( F . If t > 2, then applying Corollary 2.2

(ii) we obtain that there are at most (1+ 2(t−1)
n

+o( 1
n
))|CA,B| pairs (F, C) with B ( F .

3. If F is a Kr,s,t-free family, then {F ∈ F : A ⊆ F ⊆ B} is a K1,s−f(r,t),1-free family.
Indeed, if f(r, t) = 2, then |{F ∈ F : A ⊆ F ⊆ B}| 6 s as these sets together with
the sets of the antichain of size r below A and the sets of the antichain of size t
above B would form a copy of Kr,s,t in F . If f(r, t) = 1, say r = 1, then by the
definition of the min1−maxt-partition, we have A ∈ F and thus |{F ∈ F : A (
F ⊆ B}| 6 s, in particular together with A they are K1,s−1,1-free. If f(r, t) = 0,
then the K1,s−f(r,t),1-free property is the same as the K1,s,1-free property which is
possessed by {F ∈ F : A ⊆ F ⊆ B} as it is a subfamily of F .

By Lemma 2.4, in case (1) of Theorem 1.8 the number of pairs (F, C) with A ⊆ F ⊆
B is at most ms|CA,B|, while in case (2) of Theorem 1.8 the number of pairs (F, C)
with A ⊆ F ⊆ B is at most (ms + 1− 2ms−s+f(r,t)−1

( ms
dms/2e)

)|CA,B|.
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Adding up the number of three types of pairs we obtain that the total number of pairs is
not more than (ms+f(r, t)+ 2(r+t−2)

n
+o( 1

n
))|CA,B| and (ms+1+f(r, t)− 2ms−s+f(r,t)−1

( ms
dms/2e)

+

2(r+t−2)
n

+ o( 1
n
))|CA,B| in the two respective cases of Theorem 1.8.

We continue with the proof of Theorem 1.9.

Proof of Theorem 1.9. Let F be a Kr,2,t-free family and let us write

r++ = max{r, 2}, t++ = max{t, 2}.

We consider the minr++ −maxt++-partition of Cn. Just as in the proof of Theorem 1.8,
we obtain that if S ∈ S−, then the number of pairs (F, C) with F ∈ F ∩ C and C ∈ CS

is at most (2 + O( 1
n
))|CS|. Note that if A ⊆ B, then |F ∩ {G ∈ 2[n] : A ⊆ G ⊆ B}| 6 1

as by definition of the minr++ −maxt++-partition two such sets would make F contain a
copy of Kr,2,t.

• Applying Corollary 2.2 (i) we obtain that there are at most (1+ 2(r++−1)
n

+o( 1
n
))|CA,B|

pairs (F, C) with F ( A.

• Applying Corollary 2.2 (ii) we obtain that there are at most (1+2(t++−1)
n

+o( 1
n
))|CA,B|

pairs (F, C) with B ( F .

• By the observation above, the number of pairs (F, C) with A ⊆ F ⊆ B is at most
|CA,B|.

Proof of Theorem 1.11. Throughout the proof we will assume that all si’s are at least 2.
This will be needed for the fact that all m∗si ’s are larger than 1.

First we prove (i), (ii), and (iii). Let F be an induced Kr,s,t-free family. We can
assume that F contains an antichain of size at least z := max{r, t} as otherwise F could
contain at most z−1 sets of the same size and thus we would obtain |F| 6 (z−1)(n+ 1).
We again consider the minr−maxt-partition of Cn and count the number of pairs (F, C)
with F ∈ F ∩ C and C ∈ Cn.

The degenerate case is identical to what we had in the proof of Theorem 1.8, thus we
only consider the case when A ∈ S+, A ⊆ B. The three types of pairs:

1. If r = 1, then there is no pair (F, C) with F ( A. If r > 2, then applying Corol-

lary 2.2 (i) we obtain that there are at most (1 + 2(r−1)
n

+ o( 1
n
))|CA,B| pairs (F, C)

with F ( A.

2. If t = 1, then there is no pair (F, C) withB ( F . If t > 2, then applying Corollary 2.2

(ii) we obtain that there are at most (1+ 2(t−1)
n

+o( 1
n
))|CA,B| pairs (F, C) with B ( F .

3. Note that {F ∈ F : A ⊆ F ⊆ B} cannot contain an antichain of size s as otherwise
F would contain an induced copy of Kr,s,t.
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(a) If F is an induced Kr,4,t-free family, then by Lemma 2.3 (i) the number of pairs
(F, C) with A ⊆ F ⊆ B is at most 4|CA,B|.

(b) If F is an induced Kr,s,t-free family with s 6 c
(

m∗s
dm∗s/2e

)
and s large enough,

then by Lemma 2.3 (ii) the number of pairs (F, C) with A ⊆ F ⊆ B is at most
m∗s|CA,B|.

(c) If F is an induced Kr,s,t-free family with s large enough, then by Lemma 2.3
(iii) the number of pairs (F, C) with A ⊆ F ⊆ B is at most (m∗s + 1)|CA,B|.

Altogether these bounds yield that the total number of pairs is at most

1. (4 + f(r, t) + 2(r+t−2)
n

+ o( 1
n
))|Cn| if F is induced Kr,4,t-free.

2. (m∗s + f(r, t) + 2(r+t−2)
n

+ o( 1
n
))|Cn| if F is induced Kr,s,t-free, s 6 c

(
m∗s
dm∗s/2e

)
and s

large enough.

3. (m∗s + 1 +f(r, t) + 2(r+t−2)
n

+o( 1
n
))|Cn| if F is induced Kr,s,t-free and s large enough.

Now we prove (iv). Let F be an induced Kr,s1,s2,...,sj ,t-free family. We can assume that
F contains an antichain of size at least z := max{r, t} as otherwise F could contain at
most z − 1 sets of the same size and thus we would obtain |F| 6 (z − 1)(n + 1). Before
proceeding with the formal proof, let us briefly summarize the ideas of the partition of
Cn that we are going to use. Just as in the case of the minr−maxt-partition we try to
assign markers A0, A1, . . . , Aj to every chain C ∈ Cn with the following properties: (a)
A0 is the smallest set in C with s−F(A0) > r and (b) for every 1 6 i 6 j Ai is the smallest
set in C above Ai−1 such that [Ai−1, Ai] contains an antichain of size si. This definition
enables us to build the ith middle level of Kr,s1,...,sj ,t between Ai−1 and Ai for all i with
1 6 i 6 j and thus we obtain that s+F(Aj) < t must hold. If we were able to define all
those markers, then we could apply our lemmas from Section 2 to bound the number of
pairs (F, C) with F ∈ F ∩C, C ∈ Cn in the different intervals [Ai, Ai+1]. Unfortunately, it
might happen that not all markers can be defined. However we will index the parts of the
partition of Cn by chains of length at most j + 1. Instead of giving formal definitions of
the CA0,...,Ai

’s and then verifying that they indeed form a partition of Cn, we consider an
arbitrary maximal chain C ∈ Cn and describe the procedure how to define its markers.

• If r = 1, then A0 is the smallest set in F ∩ C,

• if r > 2, then A0 is the smallest set in C with s−F(A0) > r.

Note that by the assumption s−F([n]) > max{r, t} the marker A0 is defined for all chains
C ∈ Cn. Let us now assume that Ai−1 has been defined for some 1 6 i 6 j. If s+F(Ai−1) <
si, then our procedure is finished and C belongs to CA0,A1,...,Ai−1

. If s+F(Ai−1) > si holds,
then

• Ai is the smallest set in C such that [Ai−1, Ai] contains an antichain of size si.
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Note that if the procedure does not stop at Ai−1, then Ai exists as [n] ∈ C and si 6
s+F(Ai−1).

Observe that a chain C in CA0,...,Ai
contains all Ak’s and for every 0 6 k 6 i it goes

through one of the (|Ak|−1)-subsets Ak1, . . . A
k
lk

of Ak for which [Ak−1, A
k
l ] does not contain

an antichain of size sk where A−1 = ∅ and s0 = r.
We now count the pairs (F, C) with F ∈ F ∩ C and C ∈ CA0,...,Ai

.

• Pairs with F ( A0. If r = 1, then there is no such pair by definition of A0, otherwise
we can apply Corollary 2.2 (i) to A0 to obtain that the number of such pairs is at

most (1 + 2(r−1)
n

+ o( 1
n
))|CA,...,Aj

|.

• Pairs with A0 ⊆ F ( Ai. For any 1 6 k 6 i one can apply Lemma 2.3 (ii) to Ak−1
and all Ak1, . . . , A

k
lk

to obtain that the number of pairs with F ∈ [Ak−1, A
k
l ] for some

1 6 l 6 lk is at most m∗sk |CA0,...,Ai
|.

• Pairs with F ⊇ Ai.

– If i < j, then by definition of how we declared our process finished, we obtain
s+F(Ai) < si+1. Thus we can apply Lemma 2.1 (ii) to obtain that the number

of such pairs is at most (1 + 2(si+1−1)
n

+ o( 1
n
))|CA,...,Ai

|.
– If i = j and t = 1, then by definition of Aj there is no such pair.

– If i = j and t > 1, then as F is induced Kr,s1,...,sj ,t-free, we obtain that
s+F(Aj) < t. Thus we can apply Lemma 2.1 (ii) to obtain that the number

of such pairs is at most (1 + 2(t−1)
n

+ o( 1
n
))|CA,...,Aj

|.

Adding up these bounds we obtain that if i = j, then the total number of pairs
is at most (f(r, t) +

∑j
k=1m

∗
sk

+ O( 1
n
))|CA0,...,Aj

|. If i < j holds the upper bound we

obtain is (f(r, t) + 1 +
∑i

k=1m
∗
sk

+ O( 1
n
))|CA0,...,Aj

|. But since sj > 1 holds, we have

(f(r, t) + 1 +
∑i

k=1m
∗
sk

+O( 1
n
))|CA0,...,Aj

| 6 (f(r, t) +
∑j

k=1m
∗
sk

+O( 1
n
))|CA0,...,Aj

|.
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