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Abstract

Let D(n) denote the cardinality of the largest subset of the set {1, 2, . . . , n}
such that the difference of no pair of elements is a square. A well-known theorem
of Furstenberg and Sárközy states that D(n) = o(n). In the other direction, Ruzsa

has proven that D(n) & nγ for γ = 1
2

(
1 + log 7

log 65

)
≈ 0.733077. We improve this to

γ = 1
2

(
1 + log 12

log 205

)
≈ 0.733412.

1 Introduction

The following theorem, first conjectured by Lovász, was proven independently by Fursten-
berg [5] and Sárközy [14], [15], [16] around 1977:

Theorem 1. Every subset of the natural numbers of positive upper density contains two
distinct elements whose difference is a square.

One can reformulate this theorem as follows. Let D(n) be the cardinality of the largest
subset of the set {1, 2, . . . , n} such that the difference of no pair of elements is a square.
Then:

D(n) = o(n). (1)

The best known quantitative form of (1) is the following bound of Pintz, Steiger, and
Szemerédi [11] from 1988:

D(n) . n
1

(log n)
1
4
log log logn

. (2)

Erdős originally conjectured that D(n) . x1/2 logc(x) for some positive constant c. This
was disproved by Sárközy [15], who put forth the weaker conjecture that D(n) .ε n

1/2+ε

for every ε > 0. This was disproved by Ruzsa [12] in 1984. More precisely, he proved the
following:

∗This work was supported by a NSF postdoctoral fellowship, DMS-12042.

the electronic journal of combinatorics 22(1) (2015), #P1.32 1



Theorem 2. In the notation above,

D(n) & nγ

where γ = 1
2

(
1 + log 7

log 65

)
≈ 0.733077.

It is perhaps insightful to compare these results with the known progress on Roth’s
theorem. Let R(n) denote the largest subset of {1, 2, . . . , n} that does not contain a (non-
trivial) three term arithemetic progression. Roth’s theorem states that R(n) = o(n). The
known proofs of Roth’s and the Furstenberg-Sárköky theorem are based on very similar
considerations, although the later case is somewhat simpler. For instance, see the recent
proofs of Layla [8] and Tao, Green and Ziegler [17]. The best known quantitative form
of Roth’s theorem is due to Bloom [2] (see also Sanders [13]) and states that:

R(n) . n
(log log n)4

log n
. (3)

In the other direction, an example of Behrend from 1946 shows that

R(n) & n
1

2c
√
logn

(4)

for some universal c. The nature of the constant c has been recently refined by Elkin
[3] and Green and Wolf [7]. Note that both the known upper and lower bounds are
considerably smaller for D(n) than R(n). Indeed, while Behrend’s example rules out
the possibility of extending Roth’s theorem to polynomial sparse sets (in other words,
obtaining a power savings in the estimate (3)), such a possibility has not been ruled out
in the context of the Furstenberg-Sárköky theorem (1).

The purpose of the current work is to obtain a slight improvement to Ruzsa’s Theorem
2. More specifically, we prove the following theorem:

Theorem 3. In the notation above,

D(n) & nγ

where 1
2

(
1 + log 12

log 205

)
≈ 0.733412.

More generally, let Dk(n) denote the cardinality of the largest subset of {1, 2, . . . , n}
such that the difference of no pair of elements is a k-th power. Thus D(n) = D2(n).
With this notation, Ruzsa also obtained D3(n) & nγ3 for γ3 = 2

3
+ log 3

3 log 7
≈ 0.854858. We

are also able to slightly improve this as follows.

Theorem 4. In the notation above,

D3(n) & nγ3

where γ3 = 2
3

+ log 14
3 log 91

≈ 0.861681.
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The proofs of Theorems 2, 3 and 4 are based on an observation of Ruzsa which states
roughly (see Lemma 5) that if one can find a square-free natural number m and a large
subset A of the residue mod m such that the difference of no two distinct elements in
A is a square mod m, then one can use this example to construct a large subset B of
{1, 2, . . . , N} such that the difference of no two distinct elements of B is an integral square.
Using this lemma, Ruzsa proved Theorem 2 by exhibiting an explicit set of 7 residues
mod 65 with the desired property. Our proof of Theorem 3 will follow by exhibiting an
explicit set of 12 residues mod 205. Similarly, our proof of Theorem 4 is based on a set
of 14 residues mod 91.

2 Ruzsa’s Lemma

Our starting point is the following result of Ruzsa [12].

Lemma 5. Let m denote a square-free positive integer, and let rk(m) denote the maximal
number of residues mod m such that the difference of no two such elements is a k-th power
residue. Moreover, define

γ(k,m) := 1− 1

k
+

log rk(m)

k log(m)
.

Then,

Dk(x) >
xγ(k,m)

m
.

3 Proof of Theorem 3

Given lemma 5, it suffices to demonstrate a set A of 12 residues mod 205 whose difference
set (the set of pairwise differences, A− A) contains no square. We claim that

{7, 21, 50, 64, 76, 83, 106, 120, 139, 182, 193, 199}

is such a set. Indeed, to enable the reader to independently verify this for herself, Table 1
shows the difference set of A. More specifically, the element in the row labeled i and
column labeled j is the value i−j mod 205. One may the check this against the following
list of squares mod 205:

{0, 1, 4, 5, 9, 10, 16, 20, 21, 25, 31, 36, 39, 40, 41, 45, 46, 49, 50, 51, 59,

61, 64, 66, 74, 80, 81, 84, 86, 90, 91, 100, 105, 114, 115, 119, 121, 124,

125, 131, 139, 141, 144, 146, 154, 155, 156, 159, 160, 164, 165, 166,

169, 174, 180, 184, 185, 189, 195, 196, 200, 201, 204}.
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7 21 50 64 76 83 106 120 139 182 193 199

7 0 191 162 148 136 129 106 92 73 30 19 13
21 14 0 176 162 150 143 120 106 87 44 33 27
50 43 29 0 191 179 172 149 135 116 73 62 56
64 57 43 14 0 193 186 163 149 130 87 76 70
76 69 55 26 12 0 198 175 161 142 99 88 82
83 76 62 33 19 7 0 182 168 149 106 95 89
106 99 85 56 42 30 23 0 191 172 129 118 112
120 113 99 70 56 44 37 14 0 186 143 132 126
139 132 118 89 75 63 56 33 19 0 162 151 145
182 175 161 132 118 106 99 76 62 43 0 194 188
193 186 172 143 129 117 110 87 73 54 11 0 199
199 192 178 149 135 123 116 93 79 60 17 6 0

Table 1: The difference set of A

4 Proof of Theorem 4

Again using lemma 5, it suffices to demonstrate a set A of 14 residues mod 91 whose
difference set (the set of pairwise differences, A− A) contains no cube. We claim that

{3, 19, 23, 25, 29, 35, 41, 47, 66, 72, 78, 84, 88, 90}

is such a set. The difference set mod 91 is as follows.

3 19 23 25 29 35 41 47 66 72 78 84 88 90

3 0 75 71 69 65 59 53 47 28 22 16 10 6 4
19 16 0 87 85 81 75 69 63 44 38 32 26 22 20
23 20 4 0 89 85 79 73 67 48 42 36 30 26 24
25 22 6 2 0 87 81 75 69 50 44 38 32 28 26
29 26 10 6 4 0 85 79 73 54 48 42 36 32 30
35 32 16 12 10 6 0 85 79 60 54 48 42 38 36
41 38 22 18 16 12 6 0 85 66 60 54 48 44 42
47 44 28 24 22 18 12 6 0 72 66 60 54 50 48
66 63 47 43 41 37 31 25 19 0 85 79 73 69 67
72 69 53 49 47 43 37 31 25 6 0 85 79 75 73
78 75 59 55 53 49 43 37 31 12 6 0 85 81 79
84 81 65 61 59 55 49 43 37 18 12 6 0 87 85
88 85 69 65 63 59 53 47 41 22 16 10 4 0 89
90 87 71 67 65 61 55 49 43 24 18 12 6 2 0

One may check this against the following list of cubes mod 91:

{0, 1, 8, 13, 14, 21, 27, 34, 57, 64, 70, 77, 78, 83, 90}.
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5 Further remarks

In light of lemma 5, it is tempting to computationally search of favorable sets of residues.
Indeed, this is how we found those presented above. We were able to exhaustively check
all moduli (strictly) less than 533 with a brute-force search. This took about a month
of computing time on a modern desktop computer. Given a square-free modulus m the
problem of finding the largest subset whose difference set contains no squares is equivalent
to the problem of finding the maximal clique in a dense graph. In complete generality, this
problem is known to be NP complete. There are, however, non-trivial algorithms available
for this problem. Using the graph algorithm of Konc and Janezic [9] implemented in C
by Konc [10] we were able to extend this range up to m 6 733. Indeed, the set of 12
residues mod 205 given below gives the optimal result among sets within this range.

It is natural to ask what the limitations of this method are. As above, let r2(m)
denote the cardinality of the largest set of residues mod m whose difference set does not
contain a square. It is well known (see [4], for instance) that r2(p) 6 p1/2 for all primes p.
Ruzsa has conjectured that r2(m) 6 m1/2 for square-free m. This would imply that γ 6 3

4

would be the limitation of this method. Ruzsa’s conjecture remains open; indeed it does
not seem to be known if there exists a δ > 0 such that r2(m) 6 m1−δ for all square-free
m. We note that the paper [5] claims the inequality r2(m) .ε m

1/2+ε for square-free m,
however the referee of this note has pointed out that the proof presented there contains
a serious error.

It is unclear, at least to the author, what one should expect the true order of D(n) to
be.

References

[1] F. A. Behrend, On sets of integers which contain no three terms in arithmetical
progression. Proc. Nat. Acad. Sci. U. S. A., 32:331–332, 1946.

[2] T. Bloom, A quantitative improvement for Roth’s theorem on arithmetic progres-
sions, Preprint, 2014. arXiv:1405.5800

[3] M. Elkin, An improved construction of progression-free sets. Israel J. Math. 184
(2011), 93–128.

[4] J. Fabrykowski, On maximal residue difference sets modulo p. Canad. Math. Bull.
36 (1993), no. 2, 144–146.

[5] J. Fabrykowski, On quadratic residues and nonresidues in difference sets modulo m.
Proc. Amer. Math. Soc. 122 (1994), no. 2, 325–331.

[6] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi
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