Between 2- and 3-colorability

Alan Frieze* and Wesley Pegden[†]

Department of Mathematical Sciences Carnegie Mellon University Pittsburgh PA 15213, U.S.A

alan@random.math.cmu.edu, wes@math.cmu.edu

Submitted: Sep 10, 2014; Accepted: Jan 14, 2015; Published: Feb 16, 2015 Mathematics Subject Classifications: 05C80; 05C15

Abstract

We consider the question of the existence of homomorphisms between $G_{n,p}$ and odd cycles when $p=c/n, \ 1< c \leqslant 4$. We show that for any positive integer ℓ , there exists $\varepsilon=\varepsilon(\ell)$ such that if $c=1+\varepsilon$ then w.h.p. $G_{n,p}$ has a homomorphism from $G_{n,p}$ to $C_{2\ell+1}$ so long as its odd-girth is at least $2\ell+1$. On the other hand, we show that if c=4 then w.h.p. there is no homomorphism from $G_{n,p}$ to C_5 . Note that in our range of interest, $\chi(G_{n,p})=3$ w.h.p., implying that there is a homomorphism from $G_{n,p}$ to C_3 . These results imply the existence of random graphs with circular chromatic numbers χ_c satisfying $2<\chi_c(G)<2+\delta$ for arbitrarily small δ , and also that $2.5\leqslant \chi_c(G_{n,\frac{4}{2}})<3$ w.h.p.

1 Introduction

The determination of the chromatic number of $G_{n,p}$, where $p = \frac{c}{n}$ for constant c, is a central topic in the theory of random graphs. For 0 < c < 1, such graphs contain, in expectation, a bounded number of cycles, and are almost-surely 3-colorable. The chromatic number of such a graph may be 2 or 3 with positive probability, according as to whether or not any odd cycles appear.

For $c \ge 1$, we find that the chromatic number $\chi(G_{n,\frac{c}{n}}) \ge 3$ with high probability, see for example Bollobás [6] or Janson, Łuczak and Ruciński [9]. Letting $c_k := \sup_c \chi(G_{n,\frac{c}{n}}) \le k$,

^{*}Research supported in part by NSF grant ccf1013110

[†]Research supported in part by NSF grant dms1363136

it is known for all k and $c \in (c_k, c_{k+1})$ that $\chi(G_{n,\frac{c}{n}}) \in \{k, k+1\}$, see Łuczak [10] and Achlioptas and Naor [3]; for k > 2, the chromatic number may well be concentrated on the single value k, see Friedgut [7] and Achlioptas and Friedgut [1].

In this paper, we consider finer notions of colorability for the graphs $G_{n,\frac{c}{n}}$ for $c \in (1, c_3)$, by considering homomorphisms from $G_{n,\frac{c}{n}}$ to odd cycles $C_{2\ell+1}$. Recall that a graph homomorphism from G to H is a function $f:V(G)\to V(H)$ such that $u\sim v$ implies $f(u)\sim f(v)^1$. In particular, the existence of a homomorphism from a graph G to $C_{2\ell+1}$ implies the existence of homomorphisms to C_{2k+1} for all $k<\ell$. As the 3-colorability of a graph G corresponds to the existence of a homomorphism from G to K_3 , the existence of a homomorphism to $C_{2\ell+1}$ implies 3-colorability. Thus considering homomorphisms to odd cycles $C_{2\ell+1}$ gives a hierarchy of 3-colorable graphs amenable to increasingly stronger constraint satisfaction problems. Note that a fixed graph having a homomorphism to all odd-cycles is bipartite.

Our main result is the following:

Theorem 1. For any integer $\ell > 1$, there is an $\varepsilon > 0$ such that with high probability, $G_{n,\frac{1+\varepsilon}{2}}$ either has odd-girth $< 2\ell + 1$ or has a homomorphism to $C_{2\ell+1}$.

Conversely, we expect the following:

Conjecture 1. For any c > 1, there is an ℓ_c such that with high probability, there is no homomorphism from $G_{n,\frac{c}{n}}$ to $C_{2\ell+1}$ for $\ell \geqslant \ell_c$.

As c_3 is known to be at least 4.03 [2], the following confirms Conjecture 1 for a significant portion of the interval $(1, c_3)$.

Theorem 2. For any c > 2.774, there is an ℓ_c such that with high probability, there is no homomorphism from $G_{n,\frac{c}{n}}$ to to $C_{2\ell+1}$ for $\ell \geqslant \ell_c$.

We also have that $\ell_4 = 2$:

Theorem 3. With high probability, $G_{n,\frac{4}{n}}$ has no homomorphism to C_5 .

Note that as $c_3 > 4.03 > 4$, see Achlioptas and Moore [2], we see that there are triangle-free 3-colorable random graphs without homomorphisms to C_5 . Our proof of Theorem 3 involves computer assisted numerical computations. The same calculations which rigorously demonstrate that $\ell_4 = 2$ suggest actually that $\ell_{3.75} = 2$ as well.

Our results can be reformulated in terms of the *circular chromatic number* of a random graph. Recall that the circular chromatic number $\chi_{c}(G)$ of G is the infimum r of circumferences of circles C for which there is an assignment of open unit intervals of C

¹For a graph G = (V, E) and $a, b \in V$, we write $a \sim b$ to mean that $\{a, b\} \in E$

to the vertices of G such that adjacent vertices are assigned disjoint intervals. (Note that if circles C of circumference r were replaced in this definition with line segments S of length r, then this would give the ordinary chromatic number $\chi(G)$.) It is known that $\chi(G) - 1 < \chi_c(G) \leqslant \chi(G)$, that $\chi_c(G)$ is always rational, and moreover, that $\chi_c(G) \leqslant \frac{p}{q}$ if and only if G has a homomorphism to the circulant graph $C_{p,q}$ with vertex set $\{0, 1, \ldots, q-1\}$, with $v \sim u$ whenever $\text{dist}(v, u) := \min\{|v - u|, v + q - u, u + q - v\} \geqslant q$. (See [12].) Since $C_{2\ell+1,\ell}$ is the odd cycle $C_{2\ell+1}$ our results can be restated as follows:

Theorem 4. In the following, inequalities for the circular chromatic number hold with high probability.

- 1. For any $\delta > 0$, there is an $\varepsilon > 0$ such that, $G = G_{n, \frac{1+\varepsilon}{n}}$ has $\chi_{c}(G) \leqslant 2 + \delta$ unless it has odd girth $\leqslant \frac{2}{\delta}$.
- 2. For any c > 2.774, there exists r > 2 such that $\chi_c(G_{n,\frac{c}{n}}) > r$.
- 3. $2.5 \leqslant \chi_{\rm c}(G_{n,\frac{4}{n}}) < 3.$

Note that for any c and $\ell > 1$, there is positive probability that $G_{n,\frac{c}{n}}$ has odd girth $< 2\ell + 1$, and a positive probability that it does not. In particular, as the probability that $G_{n,\frac{c}{n}}$ has small odd-girth can be computed precisely, Theorem 1 gives an exact probability in (0,1) that $G_{n,\frac{1+\varepsilon}{n}}$ has a homomorphism to $C_{2\ell+1}$. Indeed, Theorem 1 implies that if $c = 1 + \varepsilon$ and ε is sufficiently small relative to ℓ , then

$$\lim_{n \to \infty} \mathbf{Pr}(\chi_{c}(G_{n,\frac{c}{n}}) \in (2 + \frac{1}{\ell+1}, 2 + \frac{1}{\ell}]) = e^{-\phi_{\ell}(c)} - e^{-\phi_{\ell+1}(c)},\tag{1}$$

where

$$\phi_{\ell}(c) = \sum_{i=1}^{\ell-1} \frac{c^{2i+1}}{2(2i+1)}.$$

We close with two more conjectures. The first concerns a sort of pseudo-threshold for having a homomorphism to $C_{2\ell+1}$:

Conjecture 2. For any ℓ , there is a $c_{\ell} > 1$ such that $G_{n,\frac{c}{n}}$ has no homomorphism to $C_{2\ell+1}$ for $c > c_{\ell}$, and has either odd-girth $< 2\ell + 1$ or has a homomorphism to $C_{2\ell+1}$ for $c < c_{\ell}$.

The second asserts that the circular chromatic numbers of random graphs should be dense.

Conjecture 3. There are no real numbers $2 \le a < b$ with the property that for any value of c, $\Pr(\chi_c(G_{n,\frac{c}{n}}) \in (a,b)) \to 0$.

Note that our Theorem 1 confirms this conjecture for the case a=2.

2 Structure of the paper

We prove Theorem 1 in Section 3. We first prove some structural lemmas and then we show, given the properties in these lemmas, that we can algorithmically find a homomorphism. We prove Theorem 2 in Section 4 by the use of a simple first moment argument. We prove Theorem 3 in Section 5. This is again a first moment calculation, but it has required numerical assistance in its proof.

3 Finding homomorphisms

Lemma 1. If $\alpha < 1/10$ and c is a positive constant where

$$c < c_0 = \exp\left\{\frac{1 - 6\alpha}{3\alpha}\right\}$$

then w.h.p. any two cycles of length less than $\alpha \log n$ in $G_{n,p}$, $p = \frac{c}{n}$, are at distance more than $\alpha \log n$.

Proof If there are two cycles contradicting the above claim, then there exists a set S of size $s \leq 3\alpha \log n$ that contains at least s+1 edges. The expected number of such sets can be bounded as follows:

$$\sum_{s=4}^{3\alpha \log n} \binom{n}{s} \binom{\binom{s}{2}}{s+1} \left(\frac{c}{n}\right)^{s+1} \leqslant \sum_{s=4}^{3\alpha \log n} \left(\frac{ne}{s}\right)^{s} \left(\frac{se}{2}\right)^{s+1} \left(\frac{c}{n}\right)^{s+1}$$

$$\leqslant \frac{3c\alpha \log n}{n} \sum_{s=4}^{3\alpha \log n} \left(\frac{ce^{2}}{2}\right)^{s}$$

$$< \frac{(ce^{2})^{3\alpha \log n} \log n}{n},$$

which tends to 0 for our choices of α , c.

Our next lemma is concerned with cycles in K_2 which is the 2-core of $G_{n,p}$. The 2-core of a graph is the graph induced by the edges that are in at least one cycle. When c > 1, the 2-core consists of a linear size sub-graph together with a few vertex disjoint cycles. By few we mean that in expectation, there are O(1) vertices on these cycles.

Let 0 < x < 1 be such that $xe^{-x} = ce^{-c}$. Then w.h.p. K_2 has

$$\nu \approx (1-x)\left(1-\frac{x}{c}\right)n$$
 vertices and $\mu \approx \left(1-\frac{x}{c}\right)^2\frac{cn}{2}$ edges.

(See for example Pittel [11]).

If $c = 1 + \varepsilon$ for ε small and positive then $x = 1 - \eta$ where $\eta = \varepsilon + a_1 \varepsilon^2$, $|a_1| \leq 2$ for $\varepsilon < 1/10$.

The degree sequence of K_2 can be generated as follows, see for example Aronson, Frieze and Pittel [4]: Let λ be the solution to

$$\frac{\lambda(e^{\lambda} - 1)}{e^{\lambda} - 1 - \lambda} = \frac{2\mu}{\nu} \approx \frac{c - x}{1 - x} = \frac{2 + a_1 \varepsilon}{1 + a_1 \varepsilon}.$$

We deduce from this that

$$\lambda \leqslant 4|a_1|\varepsilon \leqslant 8\varepsilon.$$

We will let Z_1, \ldots, Z_n denote independent copies of the random variable Z where for $d \ge 2$,

$$\mathbf{Pr}(Z=d) = \frac{\lambda^d}{d!(e^{\lambda} - 1 - \lambda)}.$$
 (2)

It is shown in [4] that, conditioned on the event that $D_1 := \sum d(i) = 2\mu$, we have that the degrees $d(1), d(2), \ldots, d(n)$ of K_2 are distributed as the Z_1, Z_2, \ldots, Z_n 's. Thus we will make use of the factor

$$\theta_k = \frac{\mathbf{Pr}(d(i) = d_i, i = 1, 2, \dots, k \mid D_1 = 2\mu)}{\mathbf{Pr}(Z_i = d_i, i = 1, 2, \dots, k)}$$
$$= \frac{\mathbf{Pr}(Z_{k+1} + \dots + Z_n = 2\mu - (Z_1 + \dots + Z_k))}{\mathbf{Pr}(Z_1 + \dots + Z_n = 2\mu)}.$$

It is shown in [4] that if Z_1, Z_2, \ldots, Z_N are independent copies of Z then

$$\mathbf{Pr}(Z_1 + \dots + Z_N = N \mathbf{E}(Z) - t) = \frac{1}{\sigma \sqrt{2\pi N}} \left(1 + O\left(\frac{t^2 + 1}{N\sigma^2}\right) \right)$$
(3)

where $\sigma^2 = \Theta(1)$ is the variance of Z.

We observe next that the maximum degree in $G_{n,p}$ and hence in K_2 is q.s.² at most log n. It follows from this and (3) that

$$\theta_k = 1 + o(1)$$
 for $k \leq \log^2 n$ and $\theta_k = O(n^{1/2})$ in general.

²A sequence of events \mathcal{E}_n is said to occur quite surely q.s. if $\mathbf{Pr}(\neg \mathcal{E}_n) = O(n^{-C})$ for any constant C > 0.

Lemma 2. For any α , β , there exists $c_0 > 1$ such that w.h.p. any cycle C of length greater than $\alpha \log n$ in the 2-core of $G_{n,p}$, $p = \frac{c}{n}$, $1 < c < c_0$, has at most $\beta |C|$ vertices of degree ≥ 3 .

Proof Suppose that

$$e^{1+8\varepsilon} \left(\frac{8\varepsilon e}{\beta}\right)^{\beta} < 1.$$

We will show then that w.h.p. K_2 does not contain a cycle C where (i) $|C| \ge \alpha \log n$ and (ii) C contains $\beta |C|$ vertices of degree greater than two.

We can bound the probability of the existence of a "bad" cycle C as follows: There are $\binom{\nu}{k}\frac{(k-1)!}{2}$ possible cycles in K_2 . In particular, there are $\binom{\nu}{k}\frac{(k-1)!}{2}\binom{k}{\beta k}$ choices of a cycle of length k, and βk (lexicographically first, say) vertices $v_1, \ldots, v_{\beta k}$ on the cycle which have degree at least 3. We then sum over the choices $d(i), i = 1, \ldots, k$ of the degrees of the vertices on the cycle. The probability that $d(i) = d_i$ for $k = 1, \ldots, k$ is given by $\theta_k \prod_{i=1}^k \Pr(Z_i = d_i, i = 1, 2, \ldots, k)$. Given this, we switch to the configuration model of Bollobás [5] for a random graph with a fixed degree sequence. In this model, the probability that the edges of the cycle exist is $\prod_{i=1}^k \frac{d_i(d_{i-1})}{2\mu - 2k + 1}$. Using the configuration model, we inflate our estimates by a constant factor C_0 to handle the problem of loops and multiple edges. Thus the probability of such a bad cycle can be bounded by

$$\begin{aligned} \mathbf{Pr}(\exists C) &\leqslant C_0 \sum_{k=\alpha \log n}^{\nu} \binom{\nu}{k} \frac{(k-1)!}{2} \binom{k}{\beta k} \theta_k \sum_{\substack{d_1, \dots, d_{\beta k} \geqslant 3 \\ d_{\beta k+1}, \dots, d_k \geqslant 2}} \prod_{i=1}^k \left(\frac{\lambda^{d_i}}{d_i! (e^{\lambda} - 1 - \lambda)} \cdot \frac{d_i(d_i - 1)}{2\mu - 2k + 1} \right) \\ &\leqslant C_0 \sum_{k=\alpha \log n}^{\nu} \frac{1}{2k} \left(\frac{\nu}{(2\mu - 2k)(e^{\lambda} - 1 - \lambda)} \right)^k \lambda^{2k} \binom{k}{\beta k} \theta_k \sum_{\substack{d_1, \dots, d_{\beta k} \geqslant 3 \\ d_{\beta k+1}, \dots, d_k \geqslant 2}} \prod_{i=1}^k \frac{1}{(d_i - 2)!} \\ &\leqslant C_0 \sum_{k=\alpha \log n}^{\nu} \frac{e^{k^2/\mu}}{2k} \left(\frac{\nu}{2\mu(e^{\lambda} - 1 - \lambda)} \right)^k \lambda^{2k} \binom{k}{\beta k} \theta_k (e^{\lambda} - 1)^{\beta k} e^{(1-\beta)k\lambda} \\ &= C_0 \sum_{k=\alpha \log n}^{\nu} \frac{e^{k^2/\mu}}{2k} \left(\frac{\lambda}{e^{\lambda} - 1} \right)^k \binom{k}{\beta k} \theta_k (e^{\lambda} - 1)^{\beta k} e^{(1-\beta)k\lambda} \\ &\leqslant C_0 \sum_{k=\alpha \log n}^{\nu} \frac{\theta_k}{2k} \left(e^{k/\mu} \cdot \frac{\lambda}{(e^{\lambda} - 1)^{1-\beta}} \cdot \left(\frac{e}{\beta} \right)^{\beta} \cdot e^{(1-\beta)\lambda} \right)^k \\ &\leqslant C_0 \sum_{k=\alpha \log n}^{\nu} \frac{\theta_k}{2k} \left(e \cdot \lambda^{\beta} \cdot \left(\frac{e}{\beta} \right)^{\beta} \cdot e^{\lambda} \right)^k, \end{aligned}$$

which tends to 0.

Lemma 3. For any $k \in \mathbb{N}$, there exists $\varepsilon_0 > 0$ such that w.h.p. we can decompose the edges of the $G = G_{n,p}$, $p = \frac{1+\varepsilon}{n}$, $0 < \varepsilon < \varepsilon_0$, as $F \cup M$, where F is a forest, and where the distance in F between any two edges in M is at least k.

Proof We fix some $\alpha < \frac{1}{10}$. By choosing $\beta < \frac{1}{2k}$ in Lemma 2 we can find, in every cycle of length $> \alpha \log n$ of the 2-core K_2 of G (which includes all cycles of G), a path of length at least 2k+1 whose interior vertices are all of degree 2. We can thus choose in each cycle of K_2 of length $> \alpha \log n$ such a path of maximum length, and let \mathcal{P} denote the set of such paths. (Note that, in general, there will be fewer paths in \mathcal{P} than long cycles in K_2 due to duplicates, but that the elements of \mathcal{P} are nevertheless disjoint paths in K_2 .) We now choose from each path in \mathcal{P} an edge from the center of the path to give a set M_1 . Note that the set of cycles in $G \setminus M_1$ is the same as the set of cycles in $G \setminus \bigcup_{P \in \mathcal{P}} P$. (In particular, the only cycles which remain have length $\leqslant \alpha \log n$ and are at distance $\geqslant k$ from M.) Thus, letting M_2 consist of one edge from each cycle of $G \setminus M_1$, Lemma 1 implies that $M = M_1 \cup M_2$ is as desired.

Proof of Theorem 1. Our goal in this section is to give a $C_{2\ell+1}$ -coloring of $G = G_{n,\frac{1+\varepsilon}{n}}$ for $\varepsilon > 0$ sufficiently small. By this we will mean an assignment $c: V(G) \to \{0,1,\ldots,2\ell\}$ such that $x \sim y$ in G implies that $c(x) \sim c(y)$ as vertices of $C_{2\ell+1}$; that is, that $x = y \pm 1 \pmod{2\ell+1}$.

Consider a decomposition of G as $F \cup M$ as given by Lemma 3, with $k = 4\ell - 2$.

We begin by 2-coloring F. Let $c_F: V \to \{0,1\}$ be such a coloring. Our goal will be to modify this coloring to give a good $C_{2\ell+1}$ coloring of G.

Let \mathcal{B} be the set of edges $xy \in M$ for which $c_F(x) = c_F(y)$, and let B be a set of distinct representatives for \mathcal{B} , and for i = 0, 1, let $B^i = \{v \in B \mid c_F(v) = i\}$.

We now define a new $C_{2\ell+1}$ coloring $c: V \to \{0, 1, \dots, 2\ell\}$, by

$$c(v) = \begin{cases} c_F(v) & \text{if } \operatorname{dist}_F(v, B) \geqslant 2\ell - 1\\ c_F(x) - (-1)^j (\operatorname{dist}_F(x, v) + 1) & \text{if } \exists x \in B^j \text{ s.t. } \operatorname{dist}(x, v)_F < 2\ell - 1. \end{cases}$$
(4)

(Color addition and subtraction are computed modulo $2\ell+1$.)

Since edges in M are separated by distances $\geq 4\ell - 2$, this coloring is well-defined (i.e., there is at most one choice for x). Moreover, c is certainly a good $C_{2\ell+1}$ -coloring of F. Thus if c is a not a good $C_{2\ell+1}$ -coloring of G, it is bad along some edge $xy \in M$. But if such an edge was already properly colored in the 2-coloring c_F , it is still properly colored by c, since it has distance $\geq 4\ell - 2 \geq 2\ell - 1$ from other edges in M. On the other hand,

if previously we had $c_F(x) = c_F(y) = i$, and WLOG $x \in B^i$, then the definition of c(v) gives that we now have that $c(x) \in \{i-1, i+1\}$ (modulo $2\ell-1$). Thus if c is not a good $C_{2\ell+1}$ -coloring of G, then there is an edge $xy \in M$ such that $x \in B^i$ and y's color also changes in the coloring c; but by the distance between edges in M, this can only happen if x and y are at F-distance $0 \in 2\ell-1$. Note also that $0 \in 2\ell-1$ implies that $0 \in 2\ell-1$ and so $0 \in 2\ell-1$ in this case, $0 \in 2\ell-1$ and so $0 \in 2\ell-1$ as desired.

4 Avoiding homomorphisms to long odd cycles

For large ℓ , one can prove the non-existence of homomorphisms to $C_{2\ell+1}$ using the following simple observation:

Observation 4. If G has a homomorphism to $C_{2\ell+1}$, then G has an induced bipartite subgraph with at least $\frac{2\ell}{2\ell+1}|V(G)|$ vertices.

Proof. Delete the smallest color class.

Proof of Theorem 2. The probability that $G_{n,\frac{c}{n}}$ has an induced bipartite subgraph on βn vertices is at most

$$\binom{n}{\beta n} 2^{\beta n} \left(1 - \frac{c}{n}\right)^{\beta^2 n^2/4} < \left(\frac{2^{\beta} e^{-c\beta^2/4}}{\beta^{\beta} (1 - \beta)^{1-\beta}}\right)^n \tag{5}$$

The expression inside the parentheses is unimodal in β for fixed c, and, for c > 2.774, is less than 1 for $\beta > .999971$. In particular, for c > 2.774, $G_{n,\frac{c}{n}}$ has no homomorphism to $C_{2\ell+1}$ for $2\ell+1 \geqslant 1,427,583$.

5 Avoiding homomorphisms to C_5

A homomorphism of $G = G_{n,p}$, $p = \frac{c}{n}$ into C_5 induces a partition of [n] into sets V_i , $i = 0, 1, \ldots, 4$. As explained momentarily, this partition can be chosen so that the following hold:

- **P1** The sets V_i , i = 0, 1, ..., 4 are all independent sets.
- **P2** There are no edges between V_i and $V_{i+2} \cup V_{i-2}$. Here addition and subtraction in an index are taken to be modulo 5.
- **P3** Every $v \in V_i$, i = 1, 2, 3, 4 has a neighbor in V_{i-1} .

Conditions **P1,P2** are what is required for a homomorphism to C_5 . For **P3** we observe that if $v \in V_i$ has no neighbor in V_{i-1} then we can move v to V_{i+2} and still maintain **P1,P2**. As argued in Hatami [8], Lemma 2.1, applying this repeatedly eventually leads to **P1,P2,P3** holding. Given **P1,P2,P3**, if $v \in V_2$ has no neighbors in V_3 then we can move v from from V_2 to V_0 and still have a homomorphism. Furthermore, this move does not upset **P1,P2,P3**; thus we may assume **P4** as well.

We let $|V_i| = n_i$ for i = 0, 1, ..., 4. For a fixed partition we then have

$$\mathbf{Pr}(\mathbf{P1} \wedge \mathbf{P2}) = (1-p)^S \text{ where } S = \binom{n}{2} - \sum_{i=0}^4 n_i n_{i+1}. \tag{6}$$

$$\mathbf{Pr}(\mathbf{P3} \mid \mathbf{P1} \wedge \mathbf{P2}) = \prod_{i=1}^{4} (1 - (1-p)^{n_{i-1}})^{n_i}.$$
 (7)

$$\mathbf{Pr}(\mathbf{P4} \mid \mathbf{P1} \wedge \mathbf{P2} \wedge \mathbf{P3}) \leqslant \left(1 - \left(1 - \frac{1}{n_2}\right)^{n_3} (1 - p)^{n_3}\right)^{n_2}$$
 (8)

Equations (6) and (7) are self evident, but we need to justify (8). Consider the bipartite subgraph Γ of $G_{n,p}$ induced by $V_2 \cup V_3$. **P3** tells us that each $v \in V_3$ has a neighbor in V_2 . Denote this event by \mathcal{A} . We will now describe the construction of a random bipartite graph Γ' on V_2 , V_3 such that we can couple Γ , Γ' so that $\Gamma \subseteq \Gamma'$. The RHS of (8) is the probability that **P4** holds using Γ' and the coupling implies that this bounds the probability of **P4** in Γ . To construct Γ' we choose a random mapping ϕ from V_3 to V_2 . We then create a bipartite graph Γ' with edge set $E_1 \cup E_2$. Here $E_1 = \{\{x,y\} : x \in V_3, y = \phi(x)\}$ and E_2 is obtained by independently including each of the n_2n_3 possible edges between V_2 and V_3 with probability p. We now prove that we can couple Γ , Γ' so that $\Gamma \subseteq \Gamma'$.

Event \mathcal{A} can be construed as follows: A vertex in $v \in V_3$ chooses B_v neighbors in V_2 where B_v is distributed as a binomial $Bin(n_2, p)$, conditioned to be at least one. The neighbors of v in V_2 will then be a random B_v subset of V_2 . We only have to prove then that if v chooses B'_v random neighbors in Γ' then B'_v stochastically dominates B_v . Here B'_v is one plus $Bin(n_2-1,p)$ and domination is easy to confirm. We have n_2-1 instead of n_2 , since we do not wish to count the edge v to $\phi(v)$ twice. Note also, included in the estimate in the RHS of (8) is the fact that the set of events $\{v \text{ is not chosen as an image of } \phi\}$ for $v \in V_2$, are negatively correlated.

We now write $n_i = \alpha_i n$ for $i = 0, \dots, 4$. We are particularly interested in the case where c = 4. Now (5) implies that $G_{n,\frac{4}{n}}$ has no induced bipartite subgraph of size βn for $\beta > 0.94$. Thus we may assume that $\alpha_i \ge 0.06$ for $i = 0, \dots, 4$. In which case we can

write

$$\mathbf{Pr}(\mathbf{P1} \wedge \mathbf{P2} \wedge \mathbf{P3} \wedge \mathbf{P4}) \leqslant$$

$$e^{o(n)} \times \exp\left\{-c\left(\frac{1}{2} - \sum_{i=0}^{4} \alpha_i \alpha_{i+1}\right) n\right\} \times \left(\prod_{i=1}^{4} (1 - e^{-c\alpha_{i-1}})^{\alpha_i}\right)^n \times (1 - e^{-\alpha_3/\alpha_2} e^{-c\alpha_3})^{\alpha_2 n}.$$

The number of choices for V_0, \ldots, V_4 with these sizes is

$$\binom{n}{n_0, n_1, n_2, n_3, n_4} = e^{o(n)} \times \left(\frac{1}{\prod_{i=0}^4 \alpha_i^{\alpha_i}}\right)^n \leqslant 5^n.$$

Putting $\alpha_4 = 1 - \alpha_0 - \alpha_1 - \alpha_2 - \alpha_3$ and

$$b = b(c, \alpha_0, \alpha_1, \alpha_2, \alpha_3) = \frac{1}{\alpha_0^{\alpha_0} \alpha_1^{\alpha_1} \alpha_2^{\alpha_2} \alpha_3^{\alpha_3} \alpha_4^{\alpha_4}}$$
$$e^{c(\alpha_0 \alpha_4 - \frac{1}{2})} (e^{c\alpha_0} - 1)^{\alpha_1} (e^{c\alpha_1} - 1)^{\alpha_2} (e^{c\alpha_2} - 1)^{\alpha_3} (e^{c\alpha_3} - 1)^{\alpha_4} (1 - e^{-\alpha_3/\alpha_2} e^{-c\alpha_3})^{\alpha_2},$$

we see that since there are $O(n^4)$ choices for n_0, \ldots, n_4 we have

$$\mathbf{Pr}(\exists \text{ a homomorphism from } G_{n,\frac{4}{n}} \text{ to } C_5) \leqslant e^{o(n)} \left(\max_{\substack{\alpha_0 + \dots + \alpha_3 \leqslant 0.94 \\ \alpha_0, \dots, \alpha_3 \geqslant 0.06}} b(4, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \right)^n.$$

In the next section, we describe a numerical procedure for verifying that the maximum in (9) is less than 1. This will complete the proof of Theorem 3.

6 Bounding the function.

Our aim now is to bound the partial derivatives of $b(4.0, \alpha_0, \alpha_1, \alpha_2, \alpha_3)$, to translate numerical computations of the function on a grid to a rigorous upper bound.

Before doing this we verify that w.h.p. $G_{n,p=\frac{4}{n}}$ has no independent set S of size s=3n/5 or more. Indeed,

$$\mathbf{Pr}(\exists S) \leqslant 2^n (1-p)^{\binom{s}{2}} \leqslant 2^n e^{-18n/25} e^{12/5} = o(1).$$

In the calculations below we will make use of the following bounds: They assume that $0.06 \le \alpha_i \le 0.6$ for $i \ge 0$.

$$\log(\alpha_i) > -2.82; \quad -1.31 < \log(e^{4\alpha_i} - 1) < 2.31; \quad \frac{e^{4\alpha_i}}{e^{4\alpha_i} - 1} < 4.69$$

$$\frac{1}{e^{4\alpha_i} - 1} < 3.69; \quad \log(e^{\alpha_3/\alpha_2 + 4\alpha_3} - 1) > -0.91; \quad \frac{1 + 4\alpha_2}{e^{\alpha_3/\alpha_2} e^{4\alpha_3} - 1} < 8.40.$$

We now use these estimates to bound the absolute values of the $\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_i}$. Our target value for these is 30. We will be well within these bounds except for i=2

Taking logarithms to differentiate with respect to α_0 , we find

$$\frac{\partial b}{\partial \alpha_0} = b(c, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \times \left(c \left(-\alpha_0 + \alpha_1 + \frac{\alpha_1}{e^{\alpha_0 c} - 1} + \alpha_4 \right) - \log(\alpha_0) + \log(\alpha_4) - \log(e^{\alpha_3 c} - 1) \right).$$
(10)

In particular, for c = 4,

$$\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_0} \geqslant -4\alpha_0 + \log(\alpha_4) - \log(e^{4\alpha_3} - 1) > -2.4 - 2.82 - 2.31,
\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_0} \leqslant 4\left(\alpha_1 + \frac{\alpha_1}{e^{\alpha_0 c} - 1} + \alpha_4\right) - \log(\alpha_0) - \log(e^{4\alpha_3} - 1) < 4 \times 4.69 + 2.82 + 1.31.$$

Similarly, we find

$$\frac{\partial b}{\partial \alpha_1} = b(c, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \times \left(c \left(-\alpha_0 + \alpha_2 + \frac{\alpha_2}{e^{\alpha_1 c} - 1} \right) - \log(\alpha_1) + \log(\alpha_4) + \log\left(\frac{e^{\alpha_0 c} - 1}{e^{\alpha_3 c} - 1}\right) \right), \quad (11)$$

and so for c=4,

$$\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_1} \geqslant -4\alpha_0 + \log(\alpha_4) + \log(e^{4\alpha_0} - 1) - \log(e^{4\alpha_3} - 1) > -2.4 - 2.82 - 3.62,
\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_1} \leqslant 4\left(\alpha_2 + \frac{\alpha_2}{e^{4\alpha_1} - 1}\right) - \log(\alpha_1) - \log(e^{4\alpha_3} - 1) < 2.4 \times 4.69 + 2.82 + 1.31.$$

We next find that

$$\frac{\partial b}{\partial \alpha_2} = b(c, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \times c\left(-\alpha_0 + \alpha_3 + \frac{\alpha_3}{e^{\alpha_2 c} - 1}\right) - \frac{\alpha_3/\alpha_2}{e^{\alpha_3/\alpha_2 + c\alpha_3} - 1} + \log \alpha_4 - \log \alpha_2 + \log(e^{\alpha_1 c} - 1) - \log(e^{\alpha_3 c} - 1) - \frac{\alpha_3}{\alpha_2} - c\alpha_3 - \log(e^{\alpha_3/\alpha_2 + c\alpha_3} - 1); \quad (12)$$

and so for c = 4,

$$\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_2} \geqslant -4\alpha_0 - \frac{\alpha_3}{\alpha_2} \frac{e^{\alpha_3/\alpha_2 + c\alpha_3}}{e^{\alpha_3/\alpha_2 + c\alpha_3} - 1} - \log(e^{\alpha_3/\alpha_2 + c\alpha_3} - 1) + \log(\alpha_4) + \log\left(\frac{e^{4\alpha_1} - 1}{e^{4\alpha_3} - 1}\right)$$

We need to be a little careful here. Now $\alpha_3/\alpha_2 \leq 10$ and if $\alpha_3/\alpha_2 \geq 9$ then $\alpha_3 \geq 0.54$ and then $\alpha_i \leq 0.46 - 3 \times .06 = 0.28$ for $i \neq 3$. We bound $-\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_i}$ for both possibilities. Continuing we get

$$\frac{\alpha_3}{\alpha_2} \geqslant 9 : \frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_2} > -1.12 - 10.01 - 12.4 - 2.82 - 3.62 = -29.97,$$

$$\frac{\alpha_3}{\alpha_2} \leqslant 9 : \frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_2} > -2.4 - 9.01 - 11.4 - 2.82 - 3.62,$$

$$\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_2} \leqslant 4 \left(\alpha_3 + \frac{\alpha_3}{e^{4\alpha_2} - 1}\right) - \log(\alpha_2) + \log\left(\frac{e^{4\alpha_1} - 1}{e^{4\alpha_3} - 1}\right) - \log(e^{\alpha_3/\alpha_2 + c\alpha_3} - 1)$$

$$< 2.4 \times 3.69 + 2.82 + 3.62 + 0.91.$$

Finally, we find that

$$\frac{\partial b}{\partial \alpha_3} = b(c, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \times c\left(-\alpha_0 + \alpha_4 \frac{e^{c\alpha_3}}{e^{c\alpha_3} - 1}\right) + \frac{1 + c\alpha_2}{e^{\alpha_3/\alpha_2}e^{c\alpha_3} - 1} + \log(\alpha_4) - \log(\alpha_3) + \log\left(\frac{e^{\alpha_2 c} - 1}{e^{\alpha_3 c} - 1}\right) \tag{13}$$

and so for c=4

$$\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_3} \geqslant -4\alpha_0 + \log(\alpha_4) + \log(e^{4\alpha_2} - 1) - \log(e^{4\alpha_3} - 1) > -2.4 - 2.82 - 3.62,
\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_3} \leqslant 4\alpha_4 \frac{e^{4\alpha_3}}{e^{4\alpha_3} - 1} + \frac{1 + 4\alpha_2}{e^{\alpha_3/\alpha_2}e^{4\alpha_3} - 1} - \log(\alpha_3) + \log\left(\frac{e^{4\alpha_2} - 1}{e^{4\alpha_3} - 1}\right)
\leqslant 2.4 \times 4.69 + 8.40 + 2.82 + 3.62.$$

We see that $\left|\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_i}\right| < 30$ for all $0 \le i \le 3$. Thus, if we know that $b(c, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \le B$ for some B, this means that we can bound $b(4, \alpha_0, \alpha_1, \alpha_2, \alpha_3) < \rho$ by checking that $b(4, \alpha_0, \alpha_1, \alpha_2, \alpha_3) < \rho - \varepsilon$ on a grid with step-size $\delta \le \varepsilon/(2 \cdot B \cdot 30)$.

The C++ program in Appendix A checks that $b(4, \alpha_0, \alpha_1, \alpha_2, \alpha_3) < .949$ on a grid with step-size $\delta = .0008$ (it completes in around an hour or less on a standard desktop computer, and is available for download from the authors' websites). Suppose now that $B \ge 1$ is the supremum of $b(4, \alpha_0, \alpha_1, \alpha_2, \alpha_3)$ in the region of interest. For $\varepsilon = 60\delta B = 0.048B$, we must have at some δ -grid point that $b(4, \alpha_0, \alpha_1, \alpha_2, \alpha_3) \ge B - \varepsilon = .962B \ge .962$. This contradicts the computer-assisted bound of < .949 on the grid, completing the proof of Theorem 3.

Acknowledgement

We thank the anonymous referee for a timely and useful pair of reviews.

References

[1] D. Achlioptas and E. Friedgut, A sharp threshold for k-colorability, Random Structures and Algorithms 14 (1999) 63-70.

- [2] D. Achlioptas and C. Moore, Almost all Graphs with Average Degree 4 are 3-colorable, *Journal of Computer and System Science* 67 (2003) 441-471.
- [3] D. Achlioptas and A. Naor, The two possible values of the chromatic number of a random graph, *Annals of Mathematics* 162 (2005), 1333-1349.
- [4] J. Aronson, A. Frieze and B. Pittel, Maximum matchings in sparse random graphs: Karp-Sipser revisited, *Random Structures and Algorithms* **12** (1998), 111-178.
- [5] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labeled graphs, European Journal on Combinatorics 1(1980) 311-316.
- [6] B. Bollobás, Random Graphs, First Edition, Academic Press, London 1985, Second Edition, Cambridge University Press, 2001.
- [7] E. Friedgut, Sharp Thresholds of Graph Properties, and the k-sat Problem, Journal of the American Mathematical Society 12 (1999) 1017-1054.
- [8] H. Hatami, Random cubic graphs are not homomorphic to the cycle of size 7, *Journal of Combinatorial Theory B* 93 (2005) 319-325.
- [9] S. Janson, M.J. Luczak and A. Ruciński, Random Graphs, John Wiley and Sons, New York, 2000.
- [10] T. Łuczak, A note on the sharp concentration of the chromatic number of random graphs, *Combinatorica* 11 (1991) 295-297.
- [11] B. Pittel, On Tree Census and the Giant Component in Sparse Random Graphs, Random Structures and Algorithms 1 (1990) 311-342.
- [12] X. Zhu, Circular chromatic number: a survey, *Discrete Mathematics* 229 (2001) 371–410.

A C++ code to check function bound

```
#include <iostream>
#include <math.h>
#include <stdlib.h>
using namespace std;
int main(int argc, char* argv[]){
  double delta=.0008;
                          //step size
  double maxIndSet=.6;  //no independent sets larger than this fraction
  double minClass=.06; //all color classes larger than this fraction
  double val=0;
  double maxval=0;
  double maxa0, maxa1, maxa2, maxa3; //to record the coordinates of max value
  maxa0=maxa1=maxa2=maxa3=0;
  double A23, A, B, C;
                            //For precomputing parts of the function
  double c=4;
  for (double a3=minClass; a3 + 4*minClass<1; a3+=delta){</pre>
    B=\exp(c*a3)-1;
    for (double a2=minClass; a3 + a2 + 3*minClass<1; a2+=delta){
      A23=1/(pow(a2,a2)*pow(a3,a3)) * exp(-c/2)
                 * pow(exp(c*a2)-1,a3) * pow(1-exp(-a3/a2)*exp(-c*a3),a2);
      for (double a1=minClass;
           a3+a1<maxIndSet && a3 + a2 + a1 + 2*minClass<1;
           a1+=delta){
        A=A23/pow(a1,a1)*pow(exp(c*a1)-1,a2);
        for (double a0=max(max(minClass, .4-a2-a3), .4-a1-a3);
             a2+a0<maxIndSet && a3+a0<maxIndSet && a3+a2+a1+a0+minClass<1;
             a0+=delta){
          double a4=1-a0-a1-a2-a3;
          C=exp(c*a0);
          val=1/pow(a0,a0) * A * pow(B*C/a4,a4)* pow(C-1,a1);
          if (val>maxval){
            maxval=val;
            maxa0=a0; maxa1=a1; maxa2=a2; maxa3=a3;
          }
        }
      }
    }
  cout << "Max is "<<maxval<<", obtained at ("</pre>
       <<maxa0<<","<<maxa1<<","<<maxa2<<","<<maxa3<<","
       <<1-maxa0-maxa1-maxa2-maxa3<<")"<<endl;
}
```

Program output:

\$./bound
Max is 0.948754, obtained at (0.2904,0.2568,0.1704,0.1632,0.1192)