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Abstract

We consider the question of the existence of homomorphisms between G, ;, and
odd cycles when p = ¢/n, 1 < ¢ < 4. We show that for any positive integer ¢, there
exists € = £(¢) such that if ¢ = 1 4 € then w.h.p. G,,;, has a homomorphism from
G p to Cyp41 so long as its odd-girth is at least 2+ 1. On the other hand, we show
that if ¢ = 4 then w.h.p. there is no homomorphism from G, ;, to Cs. Note that in
our range of interest, x(Gpp) = 3 w.h.p., implying that there is a homomorphism
from G, to C3. These results imply the existence of random graphs with circular
chromatic numbers . satisfying 2 < x.(G) < 2+ § for arbitrarily small §, and also
that 2.5 < x.(G,, 1) <3 w.h.p.

1 Introduction

The determination of the chromatic number of G, ,, where p = £ for constant c, is a central
topic in the theory of random graphs. For 0 < ¢ < 1, such graphs contain, in expectation,
a bounded number of cycles, and are almost-surely 3-colorable. The chromatic number
of such a graph may be 2 or 3 with positive probability, according as to whether or not
any odd cycles appear.

For ¢ > 1, we find that the chromatic number X(Gm%) > 3 with high probability, see for
example Bollobds [6] or Janson, Luczak and Rucinski [9]. Letting ¢ := sup, x(Gy,<) <k,
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it is known for all k and ¢ € (cx, cg11) that x(Gyc) € {k,k + 1}, see Luczak [10] and

Achlioptas and Naor [3]; for k£ > 2, the chromatic number may well be concentrated on
the single value k, see Friedgut [7] and Achlioptas and Friedgut [1].

In this paper, we consider finer notions of colorability for the graphs G, < for ¢ € (1,¢3),
by considering homomorphisms from Gy < to odd cycles Cy1. Recall that a graph
homomorphism from G to H is a function f : V(G) — V(H) such that u ~ v implies
f(u) ~ f(v)'. In particular, the existence of a homomorphism from a graph G to Chp
implies the existence of homomorphisms to Cyxyq for all & < £. As the 3-colorability of
a graph G corresponds to the existence of a homomorphism from G to K3, the existence
of a homomorphism to Cyy1 implies 3-colorability. Thus considering homomorphisms to
odd cycles Cypy1 gives a hierarchy of 3-colorable graphs amenable to increasingly stronger
constraint satisfaction problems. Note that a fixed graph having a homomorphism to all
odd-cycles is bipartite.

Our main result is the following:

Theorem 1. For any integer £ > 1, there is an € > 0 such that with high probability,
G Lte either has odd-girth < 2041 or has a homomorphism to Copy .

n

Conversely, we expect the following:

Conjecture 1. For any c > 1, there is an {. such that with high probability, there is no
homomorphism from Gm% to Copyq for € > (..

As ¢3 is known to be at least 4.03 [2], the following confirms Conjecture 1 for a significant
portion of the interval (1, c3).

Theorem 2. For any ¢ > 2.774, there is an (. such that with high probability, there is no
homomorphism from Gy, < to to Caeyr for €2 L.

We also have that ¢/, = 2:

Theorem 3. With high probability, G, s has no homomorphism to Cs.

n

Note that as c3 > 4.03 > 4, see Achlioptas and Moore [2], we see that there are triangle-
free 3-colorable random graphs without homomorphisms to C5. Our proof of Theorem 3
involves computer assisted numerical computations. The same calculations which rigor-
ously demonstrate that ¢, = 2 suggest actually that /575 = 2 as well.

Our results can be reformulated in terms of the circular chromatic number of a random
graph. Recall that the circular chromatic number y.(G) of G is the infimum r of cir-
cumferences of circles C' for which there is an assignment of open unit intervals of C'

For a graph G = (V, E) and a,b € V, we write a ~ b to mean that {a,b} € E
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to the vertices of G such that adjacent vertices are assigned disjoint intervals. (Note
that if circles C' of circumference r were replaced in this definition with line segments
S of length 7, then this would give the ordinary chromatic number x(G).) It is known
that x(G) — 1 < x.(G) < x(G), that x.(G) is always rational, and moreover, that
Xe(G) < § if and only if G’ has a homomorphism to the circulant graph C, , with vertex
set {0,1,...,¢—1}, with v ~ u whenever dist(v, u) := min{|v — u| ,v+g—u, u+qg—v} > ¢
(See [12].) Since Cypi1 is the odd cycle Copqq our results can be restated as follows:

Theorem 4. In the following, inequalities for the circular chromatic number hold with
high probability.

1. For any § > 0, there is an € > 0 such that, G = G, 1+c has x.(G) < 2+ § unless it
has odd girth < %.

2. For any c > 2.774, there exists v > 2 such that x.(Gync) > 1.
3. 2.5 < xe(G, 1) < 3.

Note that for any ¢ and ¢ > 1, there is positive probability that G, < has odd girth
< 20 +1, and a positive probability that it does not. In particular, as the probability that
Gn c has small odd-girth can be computed precisely, Theorem 1 gives an exact probability
in (0 1) that G, Lte has a homomorphism to Cy,y;. Indeed, Theorem 1 implies that if
c=1+cande is sufﬁmently small relative to ¢, then

e—0e(0) _ g=deta(c)
JLI&PI‘(XC(GH ) (2+g+172+ ]) ‘ e ) (1>
where
-1 2i+1
pa 2 21 + 1

We close with two more conjectures. The first concerns a sort of pseudo-threshold for
having a homomorphism to Cypyq:

Conjecture 2. For any {, there is a ¢, > 1 such that Gn,% has no homomorphism to
Copy1 for ¢ > ¢4, and has either odd-girth < 2¢ + 1 or has a homomorphism to Copy 1 for
c < ¢y.

The second asserts that the circular chromatic numbers of random graphs should be dense.

Conjecture 3. There are no real numbers 2 < a < b with the property that for any value
of ¢, Pr(xc(G, <) € (a,b)) — 0.

Note that our Theorem 1 confirms this conjecture for the case a = 2.
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2 Structure of the paper

We prove Theorem 1 in Section 3. We first prove some structural lemmas and then we
show, given the properties in these lemmas, that we can algorithmically find a homomor-
phism. We prove Theorem 2 in Section 4 by the use of a simple first moment argument.
We prove Theorem 3 in Section 5. This is again a first moment calculation, but it has
required numerical assistance in its proof.

3 Finding homomorphisms

Lemma 1. If a < 1/10 and c is a positive constant where

{1—604}
c < cy = exp ™

then w.h.p. any two cycles of length less than alogn in G, p, p =
than alogn.

%, are at distance more

Proof If there are two cycles contradicting the above claim, then there exists a set
S of size s < 3alogn that contains at least s + 1 edges. The expected number of such
sets can be bounded as follows:

3alogn s 3alogn
Z n (2) (E)s—f—l < Z <E>s <§>5+1 (£)8+1
s)\s+1/) \n S 2 n
s=4 s=4
3alogn s
3calogn ce?
< o -
<y (%)
(062)3alogn logn
n )
which tends to 0 for our choices of «a, c. a

Our next lemma is concerned with cycles in Ky which is the 2-core of G, ,. The 2-core of
a graph is the graph induced by the edges that are in at least one cycle. When ¢ > 1, the
2-core consists of a linear size sub-graph together with a few vertex disjoint cycles. By
few we mean that in expectation, there are O(1) vertices on these cycles.
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Let 0 < z < 1 be such that xze™ = ce™®. Then w.h.p. K, has

2
v (l—ux) (1 - E) n vertices and p ~ (1 — E) % edges.
c c

(See for example Pittel [11]).

If c = 1+ ¢ for € small and positive then = 1 — 1 where n = & + a1€2, |ay| < 2 for
e < 1/10.

The degree sequence of K5 can be generated as follows, see for example Aronson, Frieze
and Pittel [4]: Let A be the solution to

Me*—1) 2u _c—x  2+ase

er—1—\ v 1—x2 14ae

We deduce from this that
A < 4|a1|5 < 8e.

We will let Z1,..., 7, denote independent copies of the random variable Z where for
d>2,
)\d
PriZ=d) = ————. 2
M2 =d) = e @)

It is shown in [4] that, conditioned on the event that Dy := > d(i) = 2u, we have that
the degrees d(1),d(2),...,d(n) of K, are distributed as the Z, Zs, ..., Z,’s. Thus we will
make use of the factor

Pr(d(i) =d;,i =1,2,...,k| Dy = 2u)
Pr(Z, =d;i=1,2,... k)
CPr(Z -+ Zu=2u— (Zi o+ Zy)
Pr(Zi+ -+ Z, =2pu)

O =

It is shown in [4] that if Z;, Zs, ..., Zx are independent copies of Z then

Pr(zl+~--+ZN:NE(Z)—t):U\/;T_N<1+O<tj\f—:)) (3)

where 02 = ©(1) is the variance of Z.

We observe next that the maximum degree in G,,,, and hence in K5 is q.s.% at most logn.
It follows from this and (3) that

O, = 14 o(1) for k <log*n and 6, = O(n'/?) in general.

2A sequence of events &, is said to occur quite surely q.s. if Pr(=&,) = O(n~¢) for any constant
C >0.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P1.34 5



Lemma 2. For any a, B, there exists co > 1 such that w.h.p. any cycle C' of length greater
than alogn in the 2-core of Gy, p = £, 1 < ¢ < ¢, has at most B|C| vertices of degree
> 3.

Proof Suppose that

B
ol+8e (%) <1

We will show then that w.h.p. K does not contain a cycle C where (i) |C| > alogn and
(ii) C contains S|C| vertices of degree greater than two.

We can bound the probability of the existence of a “bad” cycle C' as follows: There are
(k,) (k=1)! possible cycles in Ks. In particular, there are (Z) (k?) ( ,31:) choices of a cycle
of length k, and Bk (lexicographically first, say) vertices vy,...,vg on the cycle which
have degree at least 3. We then sum over the choices d(i),i = 1,...,k of the degrees
of the vertices on the cycle. The probability that d(i) = d; for k = 1,...,k is given by
O Hle Pr(Z;, = d;;i = 1,2,...,k). Given this, we switch to the configuration model
of Bollobés [5] for a random graph with a fixed degree sequence. In this model, the
probability that the edges of the cycle exist is H2 1 Zu 2;}31 Using the configuration
model, we inflate our estimates by a constant factor Cj to handle the problem of loops

and multiple edges. Thus the probability of such a bad cycle can be bounded by

PrEC) < Go Z (D@(ﬁkk)ek 2 H(d' —1—A)'2Zi(—6li2;i)1>

k=alogn ~ 7 M 7 dy,.., dgrp=3 =1
d,@k+1 ----- dk>2

<G 2 i((zu—zk)(;—1—A))kvk(ﬁkk)9k 2 ﬁﬁ

k=alogn di,...,dgr=3 1=1

<C Z calle Y k/\% g O — 1)k e1-kA
S0 2k \2u(e* —1—\) Bk) "

k=alogn

o ox Nk \
= . — 1\Bk,(1-B)kX
C() Z o <€>\_1> (Bk)Qk(e 1) (&

k=alogn

k
- O k/ A e)’ (1-8)A
< Gy E %<6 u,m.(_> e

k=alogn

2 , eﬂAk
gCOZ%e)\B - € >

k=alogn

which tends to 0. O

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P1.34 6



Lemma 3. For any k € N, there exists ¢g > 0 such that w.h.p. we can decompose the
edges of the G = G, p ==, 0 < e < &y, as FUM, where F is a forest, and where the

distance in F between any two edges in M is at least k.

Proof We fix some a < 1L0' By choosing § < i in Lemma 2 we can find, in every
cycle of length > alogn of the 2-core K5 of G (which includes all cycles of G), a path of
length at least 2k + 1 whose interior vertices are all of degree 2. We can thus choose in
each cycle of K, of length > alogn such a path of maximum length, and let P denote the
set of such paths. (Note that, in general, there will be fewer paths in P than long cycles
in K5 due to duplicates, but that the elements of P are nevertheless disjoint paths in K5.)
We now choose from each path in P an edge from the center of the path to give a set
M;. Note that the set of cycles in G'\ M is the same as the set of cycles in G\ |Jpp P-
(In particular, the only cycles which remain have length < alogn and are at distance
> k from M.) Thus, letting M, consist of one edge from each cycle of G \ M;, Lemma 1
implies that M = M; U M, is as desired. d

Proof of Theorem 1. Our goal in this section is to give a Cypyi-coloring of G = G, 1+ for

e > 0 sufficiently small. By this we will mean an assignment ¢ : V(G) — {0,1,. . 20}
such that  ~ y in G implies that ¢(x) ~ c(y) as vertices of Cypy1; that is, that x =y + 1
(mod 2¢ + 1).

Consider a decomposition of G as F'U M as given by Lemma 3, with k = 4¢ — 2.

We begin by 2-coloring F. Let cp : V' — {0,1} be such a coloring. Our goal will be to
modify this coloring to give a good Cyy, 1 coloring of G.

Let B be the set of edges zy € M for which cp(z) = cp(y), and let B be a set of distinct
representatives for B, and for i = 0,1, let B' = {v € B | cp(v) = i}.

We now define a new Cyyq coloring ¢: V' — {0,1,...,2(}, by
() = cr(v) if distp(v,B) > 20 —1 (1)
N epl(a) — (—1)(distp(z,v) +1) if Iz € BY s.t. dist(z,v)p < 20 — 1.

(Color addition and subtraction are computed modulo 2¢ 4 1.)

Since edges in M are separated by distances > 4¢ — 2, this coloring is well-defined (i.e.,
there is at most one choice for x). Moreover, ¢ is certainly a good Cyyi-coloring of F.
Thus if ¢ is a not a good Cy11-coloring of G, it is bad along some edge xy € M. But if
such an edge was already properly colored in the 2-coloring cp, it is still properly colored
by ¢, since it has distance > 4¢ — 2 > 2¢ — 1 from other edges in M. On the other hand,
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if previously we had cp(z) = cr(y) = i, and WLOG =z € B’, then the definition of c(v)
gives that we now have that ¢(x) € {i — 1,7+ 1} (modulo 2¢ —1). Thus if ¢ is not a good
Cyq1-coloring of G, then there is an edge xy € M such that z € B® and y’s color also
changes in the coloring ¢; but by the distance between edges in M, this can only happen if
x and y are at F-distance < 2¢ — 1. Note also that cp(z) = cp(y) implies that distg(x,y)
is even. Thus in this case, F' U {xy} contains an odd cycle of length < 2¢ — 1, and so G
has odd girth < 2¢ 4 1, as desired. O

4 Avoiding homomorphisms to long odd cycles

For large ¢, one can prove the non-existence of homomorphisms to Cyy, 1 using the following
simple observation:

Observation 4. If G has a homomorphism to Coi1, then G has an induced bipartite

subgraph with at least %]V(G)\ vertices.

Proof. Delete the smallest color class. O]

Proof of Theorem 2. The probability that G, < has an induced bipartite subgraph on fn

vertices is at most
82n2 /4 9Be—cB2/a \"
"\ osn (1 _ E) N (5)
Bn n BP(1 — p)t=F

The expression inside the parentheses is unimodal in 3 for fixed ¢, and, for ¢ > 2.774, is
less than 1 for § > .999971. In particular, for ¢ > 2.774, G, < has no homomorphism to
ng+1 for 2¢ -+ 1 Z 17 427, 583. ]

5 Avoiding homomorphisms to Cj

A homomorphism of G = Gy, ,,p = £ into C5 induces a partition of [n] into sets V;,i =
0,1,...,4. As explained momentarily, this partition can be chosen so that the following
hold:

P1 The sets V;,2 =0,1,...,4 are all independent sets.

P2 There are no edges between V; and V; 5 UV, 5. Here addition and subtraction in an
index are taken to be modulo 5.

P3 Every v € V;,i =1,2,3,4 has a neighbor in V;_;.
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P4 Every v € V5 has a neighbor in V3.

Conditions P1,P2 are what is required for a homomorphism to C5. For P3 we observe
that if v € V; has no neighbor in V;_; then we can move v to V5 and still maintain
P1,P2. As argued in Hatami [8], Lemma 2.1, applying this repeatedly eventually leads
to P1,P2,P3 holding. Given P1,P2,P3, if v € V5 has no neighbors in V3 then we can
move v from from V5 to Vj and still have a homomorphism. Furthermore, this move does
not upset P1,P2,P3; thus we may assume P4 as well.

We let |V;| =n; for i =0,1,...,4. For a fixed partition we then have

Pr(P3 |P1AP2)=[](1 - (1—p)m)". (7)
Pr(P4| P1AP2AP3) < (1 - (1 - ni)n (1- p)ns)m (8)

Equations (6) and (7) are self evident, but we need to justify (8). Consider the bipartite
subgraph I' of G, ,, induced by Vo U V3. P3 tells us that each v € V5 has a neighbor in V5.
Denote this event by .A. We will now describe the construction of a random bipartite graph
[ on V4, V5 such that we can couple I', I” so that I' C I”. The RHS of (8) is the probability
that P4 holds using IV and the coupling implies that this bounds the probability of P4
in I'. To construct I'" we choose a random mapping ¢ from V3 to V5. We then create a
bipartite graph IV with edge set £y U Ey. Here By = {{z,y} : x € V3,y = ¢(x)} and E is
obtained by independently including each of the nons possible edges between V, and V3
with probability p. We now prove that we can couple I', I so that I' C I".

Event A can be construed as follows: A vertex in v € V3 chooses B, neighbors in V5 where
B, is distributed as a binomial Bin(ns,p), conditioned to be at least one. The neighbors
of v in V5 will then be a random B, subset of V5. We only have to prove then that if v
chooses B! random neighbors in [ then B) stochastically dominates B,. Here B. is one
plus Bin(ny —1,p) and domination is easy to confirm. We have ny — 1 instead of ns, since
we do not wish to count the edge v to ¢(v) twice. Note also, included in the estimate in
the RHS of (8) is the fact that the set of events {v is not chosen as an image of ¢} for
v € V5, are negatively correlated.

We now write n; = ayn for i = 0,...,4. We are particularly interested in the case where
c = 4. Now (5) implies that G, 1+ has no induced bipartite subgraph of size 8n for
£ > 0.94. Thus we may assume that a; > 0.06 for + = 0,...,4. In which case we can
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write

Pr(P1ANP2AP3AP4

) <
4 4 n
™ x exp {— < — Z%’%’H) n} X (H(l — eca“)‘“) X
i=0 i=1

(1 _ e—ag/aze—cag)agn'

DO | —

The number of choices for Vg, ..., V, with these sizes is

n
( . ) = ¢ x _ <5h"
4 a; =~ :
o, 1, N2, 13, N4 Hi:o Q;

Putting ay =1 — g — a1 — as — a3 and

1
aoaoalal a2a2 a3a3 a4a4

60(0«)014—%)(60040 . 1)a1 (ecal o 1)042 (ecaz . 1)043(60043 . 1)a4(1 . 6—043/0426—c043)0427

b= b(Ca Qqp, O, g, 043) =

we see that since there are O(n?) choices for ny, ..., n,s we have
n
Pr(3 a homomorphism from G, 1 to C5) < e°™ max  b(4, ap, a1, ag, ag)
‘n apg+--+a3<0.94

ag,...,a320.06

(9)
In the next section, we describe a numerical procedure for verifying that the maximum
in (9) is less than 1. This will complete the proof of Theorem 3.

6 Bounding the function.

Our aim now is to bound the partial derivatives of (4.0, ag, ay, e, 3), to translate nu-
merical computations of the function on a grid to a rigorous upper bound.

Before doing this we verify that w.h.p. G, ,_s has no independent set S of size s = 3n/5
or more. Indeed, !

Pr(38) < 27(1 — p)(&) < 2ne=18n/25.12/5 — (1),

In the calculations below we will make use of the following bounds: They assume that
0.06 < a; < 0.6 for 7 > 0.

4ou;

log(a) > —2.82; —1.31 < log(e* — 1) < 2.31; 46—1 < 4.69
e QG
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1+4
< 3.69; log(e®/@2+tas _ 1) > —0.91; Bl R T

64011- _ 1 eag/a2€4a3 _ 1
We now use these estimates to bound the absolute values of the % . %.

for these is 30. We will be well within these bounds except for i = 2

Our target value

Taking logarithms to differentiate with respect to «g, we find

0b

—— = b(c, g, a1, g, ai3) X
8&0

(c (—ao +oay o —t +a4) ~ log(a) + log(au) — log(e — 1)) . (10)

exoc — 1

In particular, for ¢ = 4,

L o+ log(ar) — log(e™s — 1) > —2.4 — 2.82 — 2.31,

b 6@0

1.ﬁ<4(a1+ 4 +a4)—log(ao)—log(e4a3—1)<4><469+282—|—131

b Fas S g : . 31,
Similarly, we find

8%)1 = b(c, ap, a1, g, az) X

- : — log(a1) + log(a) +1 A (11)
C « (0% ogl ogl (0]
o+ 2+€alc 1 glag) + loglay) + log cose — 1 ,
and so for ¢ = 4,

ob

1

b Ba > —dag + log(ay) +log(e** — 1) — log(e** — 1) > —2.4 — 2.82 — 3.62,
g

1

0b o w
b Boy S (QQ ST 1) —log(a) — log(e*™ — 1) < 2.4 x 4.69 + 2.82 + 1.31.

We next find that

ob
— = b(c, ag, a1, g, az) X
aaz ( , X0, tbp, G2, 3)
Q3 043/@2
c <—a0 + a3 + ane _ 1) ™ Cosjanteas — 1+
log ay — log ap + log(e®® — 1) — log(e**“ — 1) — G cag — log(eds/azteas _ 1), (12)
%)

and so for ¢ =4,

1 0b g es/aatcas
e P
b Oas g e3/aateos — ]

4oq
_ as/astcas € -1
log(e®s/®2tes _ 1) 1 log(ay) + log (e4a3 _ 1)
We need to be a little careful here. Now as/as < 10 and if az/as > 9 then ag > 0.54
and then o; < 0.46 — 3 x .06 = 0.28 for 7 # 3. We bound —% . % for both possibilities.
Continuing we get
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1 b
& >9:—. a— > —1.12—-10.01 — 12.4 — 2.82 — 3.62 = —29.97,
Q9 b Oay
1 0b
@ <9:-—>-24-9.01 —-114—2.82 — 3.62,
[6%) b 8&2
1 0b eter — 1

a3 as/as+ca
b Oos <4 (ag + 640‘2——1) — log(aw) + log (€4a3 — 1) — log(e®*/ 2 —1)
<24 %x3.69+282+3.62+0.91.
Finally, we find that
ob

—— = b(c, g, a1, g, ai3) X
8043

eces 1+ cay
ecas _ 1 eag/ag ecas —

c| —ag+ ay

+ log(aus) — log(ars) + log (6%6 - 1) (13)

exsc — ]
and so for c =4
ob

3043

b elos 1+ 4ay etz 1
" Don < 4@464a3 1 + cosfonghos — 1 log(as) + log olas _ 1

> —4ag + log(ay) +log(e**2 — 1) — log(e** — 1) > —2.4 — 2.82 — 3.62,

[~ e

< 2.4 x4.69+ 840+ 2.82 + 3.62.

We see that |% . a%l < 30 for all 0 < ¢ < 3. Thus, if we know that b(c, ag, oy, s, a3) <
B for some B, this means that we can bound b(4, o, a1, e, 3) < p by checking that
b(4, g, a1, a2, ai3) < p — € on a grid with step-size 6 < /(2 B - 30).

The C++ program in Appendix A checks that b(4, g, a1, a2, a3) < .949 on a grid with
step-size d = .0008 (it completes in around an hour or less on a standard desktop computer,
and is available for download from the authors’ websites). Suppose now that B > 1 is
the supremum of b(4, ag, a1, a2, 3) in the region of interest. For ¢ = 60dB = 0.048 B, we
must have at some d-grid point that b(4, ag, aq, an,a3) = B — e = .962B > .962. This
contradicts the computer-assisted bound of < .949 on the grid, completing the proof of
Theorem 3. O
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A C++ code to check function bound

#include <iostream>

#include <math.h>

#include <stdlib.h>

using namespace std;

int main(int argc, char* argv[]){

double delta=.0008; //step size
double maxIndSet=.6; //no independent sets larger than this fraction
double minClass=.06; //all color classes larger than this fraction

double val=0;
double maxval=0;
double maxa0O,maxal,maxa2,maxa3; //to record the coordinates of max value
maxa0=maxal=maxa2=maxa3=0;
double A23,A,B,C; //For precomputing parts of the function
double c=4;
for (double a3=minClass; a3 + 4*minClass<l; a3+=delta){
B=exp(c*a3)-1;
for (double a2=minClass; a3 + a2 + 3*minClass<1; a2+=delta){
A23=1/(pow(a2,a2)*pow(a3,ald)) * exp(-c/2)
* pow(exp(c*a2)-1,a3) * pow(l-exp(-a3/a2)*exp(-c*a3),a2);
for (double al=minClass;
a3+al<maxIndSet && a3 + a2 + al + 2*minClass<1;
al+=delta)q
A=A23/pow(al,al)* pow(exp(c*al)-1,a2);
for (double al0=max(max(minClass,.4-a2-a3), .4-al-a3);
a2+al<maxIndSet && a3+aO<maxIndSet && a3+a2+al+aO+minClass<li;
a0+=delta)q{
double a4=1-a0-al-a2-a3;
C=exp(c*al) ;
val=1/pow(a0,a0) * A * pow(BxC/a4,ad)* pow(C-1,al);
if (val>maxval){
maxval=val;
maxa0=a0; maxal=al,; maxa2=a2; maxa3=a3;

cout << "Max is "<<maxval<<", obtained at ("
<<maxal<<","<<maxal<<", "<<maxa2<<",'"<<maxa3<<",k"
<<1-maxaO-maxal-maxa2-maxa3<<")"<<endl;
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Program output:

$./bound
Max is 0.948754, obtained at (0.2904,0.2568,0.1704,0.1632,0.1192)
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