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Abstract

Answering a question of Kolaitis and Kopparty, we show that, for given integer
q > 1 and pairwise nonisomorphic connected graphs G1, . . . , Gk, if p = p(n) is such
that Pr(Gn,p ⊇ Gi) → 1 ∀i, then, with ξi the number of copies of Gi in Gn,p,
(ξ1, . . . , ξk) is asymptotically uniformly distributed on Zkq .

1 Introduction

For graphs G,H write N(G,H) for the number of unlabeled copies of H in G (e.g.
N(Kr, Ks) =

(
r
s

)
). We use both Gn,p and G(n, p) for the ordinary (“binomial” or “Erdős-

Rényi”) random graph.
We are interested here in extending to nonconstant p the following beautiful result of

Kolaitis and Kopparty [4].

Theorem 1. Fix an integer q > 1, p ∈ (0, 1) and pairwise nonisomorphic connected
graphs G1, . . . , Gk, each with at least two vertices, and let ξi be N(Gn,p, Gi) (mod q).
Then the distribution of ξ = (ξ1, . . . , ξk) is e−Ω(n)-close to uniform on Zkq . In particular,
for each a ∈ Zkq , Pr(ξ = a)→ q−k as n→∞.

(Recall two distributions are ε-close if their statistical (a.k.a. variation) distance is at
most ε.) Essentially, this theorem states that for constants p and q, subgraphs of G(n, p)
are uniformly distributed modulo q.
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Theorem 1 was motivated by an application to 0-1 laws for first order logic with a
parity quantifier or, more generally, a quantifier that allows counting modulo q; see Section
3 for a little more on this.

A natural question raised in [4] (and communicated to the authors by S.K.) asks, to
what extent does Theorem 1 remain true if p is allowed to tend to zero as n grows, e.g. if
p = n−α for some fixed α > 0? Our purpose here is to answer this question.

We need a little notation. For a graph H = (V,E), set vH = |V |, eH = |H| := |E|,
ρ(H) = eH/vH and m(H) = max{ρ(H ′) : H ′ ⊆ H, vH′ > 0}. Recall (see e.g. [2]) that
n−1/m(H) is a threshold function for containment of H; that is, the probability that Gn,p

(p = p(n)) contains a copy of H tends to 0 if pn1/m(H) → 0 and to 1 if pn1/m(H) → ∞.
Given a collection G of graphs, set m(G) = max{m(G) : G ∈ G}, pG(n) = n−1/m(G) and

ΦG(n, p) = min
G∈G

min{nvHpeH : H ⊆ G, vH > 0}.

Theorem 2. Let q, G1, . . . , Gk and ξ = (ξ1, . . . , ξk) be as in Theorem 1 and G =
{G1, . . . , Gk}. If p = ω(pG(n)), then the distribution of ξ is exp[−Ω(ΦG(n, p))]-close
to uniform on Zkq .

(Of course the constant in the exponent depends on q and G.)
Suppose e.g. that q = k = 2, G1 = K3, and G2 = K4. Then m(G) = m(G2) = 3/2

(m(G1) = 1) and pG(n) = n−2/3, so the theorem says that, asymptotically speaking, the
parities of the numbers of copies of K3 and K4 are independent with each equally likely
to be even or odd, provided p = ω(n−2/3).

For the special case G = {K3}, a somewhat weaker version of Theorem 2—with
exp[−Ω(ΦG(n, p))] replaced by something polynomial in n and p—has been shown by
Noga Alon [3].

We should also note here an immediate consequence of Theorem 2, which again answers
a question from [4].

Corollary 3. Let q, G be as in Theorem 1, fix a positive irrational α, and let I = {i ∈
[k] : m(Gi) < α−1} and J = [k] \ I. Then for p = n−α and a ∈ Zkq (and ξ as in Theorem
1),

Pr(ξ = a)→
{
q−|I| if aj = 0 ∀j ∈ J ,
0 otherwise.

This is of interest partly for its possible relevance to proving a modular convergence law
(again see Section 3) for p = n−α with α irrational (cf. [5, Theorem 6], which says that
for such p a 0-1 law holds for any first order property); but we also have, again from
[4]: “Even the behavior of subgraph frequencies mod 2 in this setting [i.e. with p as in
Corollary 3] seems quite intriguing.”

The proof of Theorem 2, given in the next section, is similar to that of Theorem 1 in
[4]. In truth, we just add one little idea to the machinery of [4]; nonetheless, as the proof
answers a rather basic question, and was apparently not quite trivial to find, it seems
worth recording.

the electronic journal of combinatorics 22(1) (2015), #P1.37 2



2 Proof

We will need the following two facts, the first of which, from [4], generalizes a result of
Babai, Nisan and Szegedy [1].

Lemma 4. Let q > 1 and d > 0 be integers and p ∈ (0, 1). Let F ⊆ 2[m] and let
Q(z1, . . . zm) ∈ Zq[z1, . . . zm] be a polynomial of the form∑

S∈F

aS
∏
i∈S

zi +Q′(z1, . . . zm),

where deg(Q′) < d. Suppose there is some E = {E1, . . . Er} ⊆ F such that

• |Ej| = d for all j,

• aEj
6= 0 for all j,

• Ej ∩ Ej′ = ∅ for all j 6= j′, and

• for each S ∈ F\E, |S ∩ (∪jEj)| < d.

Let z = (z1, . . . zm) ∈ Zmq be the random variable where, independently for each i, Pr(zi =
1) = p and Pr(zi = 0) = 1− p. Then for ω ∈ C a primitive qth-root of unity,

|E[ωQ(z)]| 6 2−Ω(r). (1)

(We again observe that the implied constant in the Ω(r) term depends on q, p and d.)

Lemma 5 (“Vazirani XOR Lemma”). Let q > 1 be an integer and ω ∈ C a primitive
qth-root of unity. Let ξ = (ξ1, . . . , ξl) be a random variable taking values in Zlq. Suppose
that for every nonzero c ∈ Zlq,

|E[ω
∑
ciξi ]| 6 ε.

Then the distribution of ξ is (qlε)-close to uniform on Zlq.

Proof of Theorem 2. Letting e run over edges of Kn, the argument of [4] expresses each∑
ciξi in the natural way as a polynomial in the indicators ze := 1{e∈G(n,p)} (e ∈ E(Kn))—

namely, ∑
i

ciξi =
∑
i

ci
∑
{
∏
e∈H

ze : Gi
∼= H ⊆ Kn}

—and for the E of Lemma 4 uses Ω(n) vertex-disjoint copies of some largest Gi among
those with ci 6= 0. The problem with this in the present situation is the (hidden) depen-
dence of the bound in (1) on p.

We get around this difficulty by choosing our random graph in two steps, so that when
we come to apply Lemma 4 we are back to constant p. For simplicity we now write Φ
for ΦG(n, p), G

′ for G(n, 2p) and G for the random subgraph of G′ in which each edge
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is present, independently of other choices, with probability 1/2; in particular, our ξi’s are
functions of G (= G(n, p)).

Given G′, we will apply Lemma 4 with variables ze = 1{e∈G} (e ∈ G′), F the collection
of copies of G1, . . . , Gk in G′, and E ⊆ F a large collection of vertex-disjoint copies of an
appropriate Gi; so first of all we need existence of such an E . For a given ε, let D = Dε
be the event that G′ contains, for each i, a collection of r := εΦ vertex-disjoint copies of
Gi.

Proposition 6. There is a fixed ε > 0 (depending on G) for which

Pr(D) < exp[−Ω(Φ)]. (2)

Proof.
Though we don’t know a reference, this is presumably not new and the ideas needed

to prove it may all be found in [2];
so we just indicate what’s involved.
Fix i ∈ [k] and write H for Gi. Let Y be the maximum size of a collection of

disjoint copies of H in G′. It is enough to show that the (more properly, “a”) median
of Y is Ω(Φ); (2) then follows via an inequality of Talagrand ([7] or [2, Theorem 2.29])
as in the argument for the edge-disjoint analogue of Proposition 6 given on page 77
of [2]. (In our case Talagrand’s inequality says that for a median m of Y and t > 0,
Pr(Y 6 m− t) 6 2 exp[−t2/(4ψ(m))], where ψ(r) = r|H|.)

For a lower bound on the median of Y , write X for the number of copies of H (in G′)
and Z for the number of (unordered) pairs of non-disjoint copies. Then:

(i) E(X) = Ω(Φ) (this is immediate from the definitions);

(ii) w.h.p. X > (1 − o(1))EX (a basic application of the 2nd moment method; see [2,
Remark 3.7]);

(iii) EZ < cE2X/Φ for a suitable fixed c (a straightforward calculation using the definition
of Φ), so with probability at least 3/4, Z < 4cE2X/Φ;

(iv) by Turán’s Theorem (applied to the graph with vertices the copies of H, edges
the non-disjoint pairs and (therefore) independence number Y ; cf. [2, Eq. (3.21)]),
Y > X2/(X + 2Z); and thus

(v) with probability at least 3/4− o(1),

Y >
(1− o(1))E2X

EX + 8cE2X/Φ
= Ω(Φ)

(where the first inequality uses the fact that x2/(x+2z) is increasing in x for x, z > 0).

In view of Proposition 6 it is enough to show that for any G′ satisfying D, the condi-
tional distribution of ξ given {G′ = G′} is exp[−Ω(Φ)]-close to uniform on Zkq . Given such
a G′ and 0 6= c ∈ Zkq , take Fi to consist of all copies of Gi in G′ (i ∈ [k]) and F = ∪{Fi :
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ci 6= 0}. Fix, in addition, some i0 ∈ [k] with ci0 6= 0 and |Gi0| = max{|Gi| : ci 6= 0} =: d,
and some E = {E1, . . . , Er} ⊆ Fi0 , with the Ei’s vertex-disjoint.

We have ∑
i∈[k]

ciξi =
∑
i∈[k]

ci
∑
H∈Fi

∏
e∈H

ze =: Q(z),

where ze = 1{e∈G} for e ∈ G′. We then need to say that Q, F and E (with q, d and
p = 1/2) satisfy the requirements of Lemma 4. But the first three of these are immediate
and the fourth follows from the connectivity of the Gi’s: for H ∈ F \ E , if V (H) 6⊆
V (Ei) ∀i, then (since H is connected and the Ei’s are vertex-disjoint) H 6⊆ ∪Ei, whence
|H ∩ (∪Ei)| < |H| 6 d; otherwise we have V (H) ⊆ V (Ej) for some j and, since H 6= Ej,
|H ∩ (∪Ei)| = |H ∩ Ej| < |Ei| = d. Thus Lemma 4 applies, yielding

|E ωQ(z)| 6 exp[−Ω(Φ)], (3)

and then (since this was for any c 6= 0) Lemma 5 says that, as desired, the conditional
distribution of ξ given {G′ = G′} is exp[−Ω(Φ)]-close to uniform on Zkq .

3 Discussion

As mentioned earlier, Theorem 1 is a key ingredient in the proof of the Kolaitis-Kopparty
“modular convergence law” for first order logic with a parity quantifier, or, more generally,
a quantifier that allows counting mod q. This law says, briefly, that, for fixed p and
n→∞, the probability of a given sentence in the system under consideration tends to a
limit that depends only on the congruence class of n mod q. (See also [6] for an in-depth
discussion of 0-1 laws for random graphs.)

As suggested in [4], it would be interesting to understand to what extent such a
law holds in the sparse setting. Theorem 2 gets about half way to this goal (for p in
its range); but the other half—an assertion like Theorem 2.3 of [4] to the effect that all
relevant information is contained in the subgraph frequencies—seems to require something
new, since the quantifier elimination process underlying that step depends critically on
properties of G(n, p) that hold for constant p but fail when p tends to zero.

In closing we just mention that it would be interesting to find a proof of Theorem 2
that proceeds from first principles and does not depend on the “generalized inner product”
polynomials underlying Lemma 4.
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