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A lattice path I" in the xy-plane with steps in a given set S C Z2 is a concatenation of
directed steps of S, i.e., I' = s189---5;, where s; € S for 1 <@ < [.
integer n, let My (n, k) denote the set of lattice paths from the point (0,0) to the point
(k,m), with step set S; = {H = (1,0),V = (0,1)}. Let Dy(n, k) be the number of lattice
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Abstract

In this article, we introduce a family of weighted lattice paths, whose step set
is {H = (1,0),V = (0,1),D; = (1,1),...,Dyp—1 = (1,m — 1)}. Using these lat-
tice paths, we define a family of Riordan arrays whose sum on the rising diagonal
is the k-bonacci sequence. This construction generalizes the Pascal and Delannoy
Riordan arrays, whose sum on the rising diagonal is the Fibonacci and tribonacci se-
quence, respectively. From this family of Riordan arrays we introduce a generalized
k-bonacci polynomial sequence, and we give a lattice path combinatorial interpre-
tation of these polynomials. In particular, we find a combinatorial interpretation of
tribonacci and tribonacci-Lucas polynomials.
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Introduction

paths of M (n, k), i.e., Di(n, k) = |[My(n, k)|. It is well known that

Dy(n. k) = <n:;k> _ <nzk>
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Let H; be the infinite lower triangular array defined by H; = [hgﬂ , where
1n,keN

O Dl(n_k,k):(Z), if n > k;
mE 0, if n < k.

Therefore, H; is the Pascal matrix. This matrix has a lot of interesting properties, (see
for instance [2, 5, 6, 7, 12, 23, 24]), one of them is the sum of the elements on the rising
diagonal is the Fibonacci sequence Fj,, (sequence A000045).

If we add a third step, D; = (1, 1), we obtain Delannoy paths; among other references
see [1, 9, 10, 13, 22]. We denote by My(n, k) the set of lattice paths from the point
(0,0) to the point (k,n), with step set Sy = {H = (1,0),V = (0,1),D; = (1,1)}. If
Ds(n, k) = |My(n, k)|, then it is known that

k :

n\ (n+k—i

D, k) = .

om0

The sequence Dy(n,n) is called central Delannoy numbers (sequence A001850). Let
Ho be the infinite lower triangular array defined by Hs = [hf;f] , where

In,keN
h(2) o Dg(n—k,k), ifn}k;
mk o, if n < k.

This array is called Delannoy or tribonacci matrix. It satisfies that the sum of the elements
on the rising diagonal is the tribonacci sequence t,, (sequence A000073).

A generalized Delannoy number D} (n, k) is the number of weighted lattice paths such
that the steps H,V and D are labelled with weights a, b and ¢, respectively. This kind of
paths is called (a, b, c)-weighted paths [9]. The generalized Delannoy numbers are given
by the following formula (cf. [15]):

Di(n, k) = zk: (’;) (” * : - Z) i (1)

1=0

Cheon et al. [9] defined the generalized Delannoy triangle Hs(a,b,¢) = [dnkl,, pon
where

. Di(n—k,k), ifn >k
ke 0, if n <k;

!'Many integer sequences and their properties are expounded on The On-Line Encyclopedia of Integer
Sequences [20].
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and, they studied this array by means of Riordan arrays. The first few terms of this
triangle are

1 0 0 0 0
b a 0 0 0
b c+2ab a? 0 0
Ha(a,b,0) = |3 b(2¢ + 3ab) a(2c¢ + 3ab) a? 0

b b?(3c+4ab) * + 6abe + 6a*b*  a*(3c + 4ab) at

Additionally, they introduced a generalized Lucas polynomial sequence, and they gave
a lattice path combinatorial interpretation for these polynomials. In particular, they
found a combinatorial interpretation of the polynomials of Fibonacci, Lucas, Pell, Pell-
Lucas Chebyschev of first and second kind, among others. The study of lattice paths
through Riordan arrays is not new, see [18, 21].

A natural questions is: What family of steps are required to find a Riordan array, such
that the sum of the elements on its rising diagonal is the k-bonacci numbers FF? The
k-bonacci numbers are defined by the recurrence

n n—

with initial values .Fﬁkl) = }"932) == .Fﬁkz)kfl) =0 and Fék) = 1. In particular, we obtain
the Fibonacci sequence and tribonacci sequence, in the case k = 2, 3, respectively.

In this paper, we introduce a family of weighted lattice paths whose step set is
Sy ={H =(1,0),V =(0,1),D; = (1,1),...,Dpp_y = (I,m — 1)},

where each step is labelled with weights aq,as, ..., a;11, respectively. From the number
of these weighted lattice paths, we obtain a new family of Riordan arrays, such that
the sum of the elements on its rising diagonal is the k-bonacci sequence. Moreover, we
obtain a generalized k-bonacci polynomial sequence. The new family of weighted lattice
paths leads us to a combinatorial interpretation for the generalized k-bonacci polynomial
sequence. In particular, we study a generalization of the tribonacci polynomials and
tribonacci-Lucas polynomials. We also show three combinatorial interpretations of the
central tetrabonacci numbers.

2 Riordan arrays

A Riordan matrix L = [ly], ey is defined by a pair of generating functions g(z) =
1+ g12+ g22%+ -+ and f(2) = fiz + foz® +- -+, where f; # 0, such that the k-th column

satisfies
> Lk =g(2) (f(2)"

n=0
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The first column being indexed by 0. From the definition, follows

Lk = 2" 9(2) (F(2))",

where [2"] is the coefficient operator. The matrix corresponding to the pair f(2), g(z) is
denoted by R(g(z), f(z)) or (g(z2), f(2)). The product of two Riordan arrays (g(z), f(2))
and (h(z),l(2)) is defined by:

The set of all Riordan matrices is a group under the operator *, (cf. [19]). The identity
element is I = (1, z), and the inverse of (g(z), f(2)) is (9(2), f(2)) "' = (1/ (g o f) (2), f(2)),

where f(z) is the compositional inverse of f(z).

Example 1. The Pascal matrix H; and the Delannoy matrix H, are given by the following
Riordan arrays, respectively.

B 1 z B 1 z2(1+2)
le_(l—z’l—z)7 H2_(1—z7 1—2z )

Example 2. ([9]) The generalized Delannoy array Hs(a, b, ¢) has a Riordan array expres-
sion given by

1—bz’zl—bz

Ho(a,b,c) = ( L CH_CZ).

The following theorem is known as the fundamental theorem of Riordan arrays or
summation property (cf. [21]).

Theorem 3. If [l"ak]n,keN = (9(2), f(2)) is a Riordan matriz. Then for any sequence
{ P b ren

S bk = [ 9(2)h(£(2),

k=0

where h(z) is the generating function of the sequence {hy}ren-

Let (1], ren = (9(2), f(2)) be a Riordan array, then the elements {l,_ : k > 0} are
called the d-diagonal of (g(2), f(2)) (cf. [21]).

3 Generalized Tribonacci and Tribonacci-Lucas polynomial se-
quence

In this section, we defined a new kind of lattice paths: (a,b, ¢, d)-weighted paths. From
the number of (a, b, ¢, d)-weighted lattice paths, we introduce a new infinite lower trian-
gular array. Then, we study its properties and we obtain the generalized tribonacci and
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tribonacci-Lucas polynomial sequence.

Let M3(n, k) denote the set of (a,b, ¢, d)-weighted paths from the point (0,0) to the
point (k,n), with step set S5 = {H = (1,0),V = (0,1),D; = (1,1), Dy = (1,2)}, where
each step is labelled with weights a,b,c and d, respectively. The weight of a weighted
path is the product of the weights of all its steps in the weighted path and the length of a
weighted path is the number of steps making up the path. For example, in Figure 1, we
show a (a, b, c, d)-lattice path of length 5 and weight a?bcd.

Figure 1: Example of (a, b, ¢, d)-weighted path.

The last step of any path from M (n, k) is one of S5. Therefore, the number D3(n, k) :=
|M3(n, k)| satisfies the following four-term recurrence relation:

Ds(n, k) = aDs(n — 1,k) +bD3(n,k — 1) + ¢Ds3(n — 1,k — 1) + dDs(n — 1,k — 2), (2)
with £ > 2,n > 1 and initial conditions D3(0, k) = b* and Ds3(n,0) = a™.
Theorem 4. The number of (a,b,c,d)-lattice paths is given by
n 7 . .
n\ (I (n+k—=27+1\ i k2
Di(n, k) = A
s{m &) Zl: (y) (l)( k—2j+1 )" ¢

=0 1=0

— >3 <n) (n — j) (k R l) o A dr—i— k-2
j=0 [=0 J / "

Proof. For n > 1, let
W (2) = ZDg(n,i)zi.
i=0

Then by Equation (2), we obtain

W,(f’)(z) = aW,(f_)l(z) + szT(f)(z) + CZWS)_)I(Z) + dz2W,(L3_)1(z).
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Then,

1—0bz 1—0bz
(a+cez+d2\" 1 (a+cz+dP)"
B 1—bz 1—bz  (1—bz)t!

Therefore, by the binomial theorem

[zk} W(3) a+ cz + dz? ) ( bz)_(”+1))

(
i v (kA ;
a"(cz)'(dz") Z ) (b2)
Jozo =0 !
noj )(j)(k+i>njldj Ui 2~ l+z>
: [ i
J=0 1=0 i=
"I /n n+k—25+1 Q" il
cd’'b .
e ] k)—?]‘l—l

a+cz+dz a+cz+d2\"
W) = (LEE W) - (EEE) Wi

J

Definition 5. Let Hs := Hs(a, b, c,d) == [dfj’;} . where
lnke

3)
dn,k =

Ds(n—k, k), ifn>k;
0, if n <k.

The first few terms of this triangle array are

1 0 0 0 0o ]
b a 0 0 0
b? 2ab + ¢ a® 0 0
Hs(a,b,¢,d) = 133 3052 +2cb + d 3ba® + 2ca a’ 0

bt 4ab® 4 3cb® + 2db  6a%b® + 6ach + 2 + 2ad  4ba® + 3ca®  a*

Theorem 6. The infinite triangular array Hs(a,b,c,d) has a Riordan array expression
given by

1-b2" 1—b2
Proof. The proof runs like in Theorem 4, because
[2"] Hs(a, b, e,d) = [2"] (F(a + cz + dz®)F(1 — bz)~(FH)
= [2"7*] ((a + cz + dz*)F(1 — bz) ") .

1 2
H3:H3(a,b,c,d):( a—l—cz—i—dz).
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Proposition 7. Let Aj3(z) be the generating function for the rows sums of the Riordan
array Hs. Then

B 1

S l—(a+b)z—cz2—d2?

As(2) (3)

Proof. By applying Theorem 3 to the Riordan array Hs with the generating function
h(z) = (1 —2)7!, we have

1 1 1

1—bz

]

Each step weight a,b,c,d can be considered as weighted functions a = a(x),b =
b(z),c=c(z) and d = d(x). Let a +b =p(x),c =q(z),d =T(z).

Let .7:7&3) () be the n-th row sum of Hs, then from above proposition we obtain the
generating function for 7\ (z):

B 1
C1-p(x)z —q(z)22 — F(z)23

(4)

The polynomials F¥ (x) are called generalized tribonacci polynomials. The first few terms
are

L, p, p*+q, p° +2pq+ 1, p'+3p°q+ 2pr +¢°, p° + 4p%q + 3p%r + 3pg® + 2q7, ..,
where ¢ = q(z),p = p(x),r = 7(x). If p = 2% ¢ =2 and r = 1, we get the tribonacci
polynomials (cf. [16]).

Theorem 8. For all integer n > 0, and for any polynomials p(x),q(x), 7(x)
L%Jin—i—ji-. . -
=23 (") (i erer o,

)
i=0 j=0 J

Proof. The generating function of the sum of elements on the rising diagonal lines (1-
diagonal) in the generalized Delannoy triangle Ha(q(z),p(x),7(x)) is

1 1
(1 B 73(w)2> 1— (zfq—(x”(?()w) T 1 pla)z —qe)2 —(2)2* As (2).

1-p(x)z

Then, by Equation (1)

L1251
FP(@)= Y Dij(n—1-i,i)
=0

Il
<D
~__
VR

3
|
—_
o
~.
|
.
~_
U,
d
S
S~—
=l
<
=
s
3
o
|
.
L
=
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We give an alternative proof of Theorem 8. Observe the equality
1 1 1

1 (@) —q(@)2 —F(2)  1—gqz)? 1—w

A3<Z)

where
p(x)z —7(2)2°

1 —q(x)z?

w =

Therefore by Theorem 3, polynomials F¥ (x) can be expressed by n-th sum of the rows
of the following Riordan array

1 0 0 0 0 0

0 » 0 0 0 0

3 3 q 0 p? 0 0 0
O T I
1—9q(z)z2" 1 —7q(x)z? 2 0 3p2q — 2pr 0 o0
0 3pg® — 2qr 0 4p3g —3p*r 0 p°

where ¢ = q(z),p = p(x),r = 7(z). So, the identity is clear.
Following the same ideas of Theorem 8 in [17], we obtain the following identity:

Proposition 9. For all integer n > 0, and for any polynomials p(z),q(z),7(z)
]_—7(L3) () = Z (n - Z> (Z — ]>gi—2j (x>7j(x>ﬁn—2i+j(x)'
o<jzicn N J J

Theorem 10. For all integer n > 3, the polynomials F¥ () satisfy the following recur-
rence:

FP () = p(2)F (2) +q(2) FPy(2) +7(2) FP4 (), (5)

where F§? (x) = 1, F{" (x) = pla), Fy” () = P*(w) + qx).
Proof. The result follows from the equality
As(2) = plw) 2 A3(2) + 4(2) 22 Az (2) + 7 () 2" A3 (2).

We can write the polynomials ff(lg)(x) as a Binet-like formula, i.e.,
_ a(z)"?
(a(z) = B(z))(a(z) —y(x))
N Bla)"? N (o)™
(B(x) — a(x)(B(x) = () (v(z) — alz)(v(z) — Blz))’

where «(z), f(x) and y(z) are the roots of the characteristic equation of (5).
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Definition 11. The generalized tribonacci-Lucas polynomials are defined by
LI (@) = alz)" + B(a)" + ()", n=0.

Note that

Il
3
<D
N~
N
3
|
o~
|
.
~
L
d
S
S~—
=
<
8
S]]
3
9
<
—~
=
3
V
~.
+
.
=

s
Il
=)
.
Il
=)

The first few terms are
3, p, p°+2q, p* +3pg+3r, p' +4p’q+ 4pr + 2¢*, p° + 5p°q + 5p*r + 5pg® + bar, . . .,

where ¢ = G(z),p = p(z),r = 7(z). If p = ¢ = r = 1, we obtain the tribonacci-Lucas
sequence, (sequence A001644).
Proposition 12. The generating function of the tribonacci-Lucas polynomials is

o0

ﬁg(z) e 251(3)(1:)22 _ - 3 — 2]_9(:)3)2 _ G(IL‘)Z2

—p(x)z —q(x)2? —7(x)23

Proof. From Equation (6), we have the following matrix equation:
T

R(1L+ ()2 + 27(0)2.2) - [FO@). FO )| = LeP@). 9. ] .

where A7 is the transpose of the matrix A.
Then by applying Theorem 3 to the Riordan array R(1+q(z)z*+ 27(z)23, 2) with the
generating function Asz(z), we get the generating function:

1 +q(z)2? 4 27(x) 23
1—p(x)z —q(x)22 —7(x)23

Therefore,

1+ q(z)2% + 2r(x)23 _ 3 —2p(x)z — q(x)2?
1—-p(x)z —q(x)22 —T(2)28  1—-p(x)z —q(x)22 —7(x)z3

Theorem 13. Let p(z) = ax + b,q(x) = cx, and 7(x) = dx. Then

n k i . .
EN G\ (n—27+1\ ,_ . 1 o .
(3) — k—jin—k—2j+1 1 15—1 k
Fy () ( E (j)(»( f )a b cd ):r;
k=0 \j=0 1=0
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Proof. By applying Theorem 3 to the Riordan array Hs with the generating function
h(z) =1/(1 — zz), we have

293(”‘ b k)t = [ (1 sz> (1 mp (1+—+d)>

1-bz

=[="] (1 Y ax)zl— cz2? — d:cz3>

- (e o)
O]

The coefficients of the above polynomial are the numbers of (a, b, ¢, d)-lattice paths.

3.1 Combinatorial Interpretations

The following theorem shows a combinatorial interpretation for the generalized tribonacci
and tribonacci-Lucas polynomial sequences.

Theorem 14. For any polynomial FY (x) and P (x), we have

(i) Fx)=> w(x), n>0,
k=0

n—1 n—2 n—3

(i) LP(x) =p(2) > W (@) +25(2) Y w, (@) +37() Y wiy (2), n >3,

k=0 k=0 —0
where
W (@) = w®) = B (&) = Dy(n — k, k)

is the sum of weights of (a(z), b(z), c(z), d(z))-weighted paths from (0,0) to (k,n—k) with
step set

o

53 = {H = (O7O)>V = (07 1)7D1 = (17 1)aD2 = (1’2>}>
such that a(x) 4+ b(z) = p(z), c(x) = g(x) and d(x) = 7(x).

Proof. By definition, F.” (x) is the n-th row sum of the Riordan array Hz. Then (i)
follows from Definition 5. Identity (i7) follows from Equation (6). O

Example 15. The tribonacci numbers are defined by the recurrence relation:
to = 1, tl = 1, tz = 2, tn+3 = tn+2 + tn+1 + tn, for n 2 0.

The first few terms of the tribonacci number are 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274,. . .,
(sequence A000073). Hoggatt and Bicknell [16] introduced tribonacci polynomials. The
tribonacci polynomials 7},(x) are defined by the recurrence relation

To(z) =1, Ti(z) =2 T(r)=2a"+uz,
This(w) = 2°Tyyo(x) + 2T 1 () + Ty(x), for n > 0.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P1.38 10



Note that T,(1) = t, for all integer positive n. The first few tribonacci polynomials
are

To(x) =1, Ty(x) = 2% + 32° + 322,

Ty(z) = 22, Ts(z) = 210 + 427 + 62 + 2z,

Ty(z) = 2* + =z, To(z) = a'? + 5a? + 102% + 72° + 1,
Ty(x) =28+ 223+ 1, Tr(z) = 2" + 62" + 152° + 162° + 622

The generating function of the tribonacci polynomials is

N 1
T, "= .
; (x)2 1 —x%2z —x22—23

If a(z) = z%,b(z) = 0,¢(x) = x and d(x) = 1 in (3), we obtain the tribonacci
polynomials from the row sums of the Riordan array Hs(z?,0,z,1):

10 0 0 0 0 0 1 11 [To(2)]
022 0 0 0 0 0 1 Ty(z)
0z 2t 0 0 0 0 1| | D)
0 1 222 25 0 0 0 1 Ty(x)
0 0 322 32° 2 0 0 1| = | Tu(x)
0 0 2z 62 427 2 0 1 T5(x)
0 0 1 72 102° 529 22 1 Te(x)

From Theorem 14-(i), we obtain a combinatorial interpretation of T, (x). For example,
Ty(x) = a® + 32° + 322 = >0, sz‘)~ Note that, wfg = wfl) = O,wa) = 3x2,wf§ = 32°

8

and wfi = 2°. In Figure 2, we show the corresponding weighted lattice paths.

Example 16. The tribonacci-Lucas numbers are defined by the recurrence relation:
k‘o = 3, k’l = 1, ]{32 = 3, k?n+3 = k’n+2 + kn—i—l + k’n, for n 2 0.

The first few terms of the tribonacci-Lucas numbers are 3, 1, 3, 7, 11, 21, 39, 71, 131,
241, 443, ..., (sequence A001644). The tribonacci-Lucas polynomials K, (x) are defined
by the recurrence relation

Ko(z) =3, Ki(z)=21% Ky(x)=2"+ 2z,
Kp3(z) = 22 Kpyo(2) + 0K, 41 (2) + K, (2), n>0.

Note that K, (1) = k, for all integer positive n. The first few tribonacci-Lucas polynomials
are

Ko(z) = 3, Ky(z) = 2% + 42° + 622,

Ki(z) = 22, Ks(x) = 21 + 527 + 102 + 5z,

Ky(z) = z* + 2z, Kg(z) = 22 + 62° + 152° + 1423 + 3,
Ki(z) = 2% + 323 + 3, Kq(x) =2 + T2M 4 2128 + 282° + 1422
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xZ
x
1 1 .1'2 .1'2 .1'2 .1'2
——Ppo—Ppo—Ppo———Po
x xs
12

32

12 12 12
x x x
12 12 12

R

Figure 2: (22,0, z,1)-weighted paths and tribonacci polynomials.

Using standard techniques it can be shown that the generating function of the tribonacci-

Lucas polynomials is
3 —2za? — 2%z

ZK T 122z —g22— 28
= ¢(x) = z and 7(z) = d(x) = 1, we may

Since p(z) = a(z) + b(z) = 2%,q(z) =
choose a(z) = 22, b(x) = 0,c(x) nd d(x) = 1. From Theorem 14-(ii), we obtain a
combinatorial interpretation of K, (x). For example,

Ki(z) =2+ 32° +3 = xZw +2xZw +3w00

Note that wg’g = 0,w§’ =z wé?’g =zt W18 =0 wll) = z? and Wog = 1. In Figure 3, we
show the corresponding weighted lattice paths.

T
x? z? x? 1
& B B L 3 B e

2z (2?) = 223 3(1)=3

22 (2t + z) = 28 + 23

Figure 3: (2°,0, x, 1)-weighted paths, and tribonacc-Lucas polynomials

12

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P1.38



3.2 The diagonal of Dj
Let the Riordan array #Hs(1,1,1,1). The first few terms of this array are

1 0 0 0 00
11 0 0 00
1 3 1 0 0O
Hs(1,1,1,1) = 1 6 5 1 00
1 9 15 7 10
1 12 33 28 9 1

From Theorem 6 of [3], we have that the generating function of the central sequence
{d5).} = {1,3,15,81,450,2673, ... } is
ne

o (o] 1
dP) o = Di(n,n)z" = :
2 B = 2 Dol )" = i

On the other hand, a Motzkin path of length n is a lattice path of Z x Z running from
(0,0) to (n,0) that never passes below the z-axis and whose permitted steps are the up
diagonal step U = (1,1), the down diagonal step D = (1,—1) and the horizontal step
H = (1,0), called rise, fall and level step, respectively. The number of Motzkin paths
of length n is the n-th Motzkin number m,, (sequence A001006). Many other examples
of bijections between Motzkin numbers and others combinatorial objects can be found
in [4]. A Grand Motzkin path of length n is a Motzkin path without the condition that
never passes below the z-axis. The number of Grand Motzkin paths of length n is the
n-th Grand Motzkin number g,, sequence A002426. A a’bV-Motzkin path is a Motzkin
path such that each horizontal step is colored with one of a specific colors and each up
diagonal step is colored with one of b specific colors. The number of a?bV-Motzkin paths
of length n is the n-th afbV-Motzkin number m'™”. Analogously, we have abV-Grand
Motzkin paths, the number of af/bV-Grand Motzkin paths of length n is denoted by g,
From Theorem 1 of [8], we have

= 1
Zgé3,3)zn _ ]
= V1—6z— 322

Then, we get the following corollary.

Corollary 17. The number of 373V-Grand Motzkin path is equal to the number of
(1,1, 1, 1)-weighted paths from the point (0,0) to the point (n,n), i.e.,

g3 = Dy(n,n).
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Let S(n, k) be the number of lattice paths from (0,0) to (n, k) in the plane Z x N with
set of steps S5 = {H = (1,0),V =(0,1),D = (1,1), L = (—1,1)}. In [11], Dziemianczuk
shows that

- 1
ZS(O,n)z” = :
g V1—6z — 322

Therefore
S(O7 n) - g’ELS 3 = D3(n7 ’I’L)

Moreover,
(S(i — 2jaj))i,j>0 = H3(1,1,1,1),
then S(i — 24,7) = Ds(i — j, j).

4 Riordan Arrays and Generalized k-bonacci numbers

In this section, we generalize the results of the above section. We introduce a new family
of weighted lattice paths, the A,-weighted paths.
Let As = (ay,as, ...,as) be a vector of weights. Then, we denote by M,,(n, k) the set

of ffmﬂ—weighted paths from the point (0,0) to the point (k,n), with step set
Sm={H =(1,0),V =(0,1),D; = (1,1),...,Dp_1 = (1,m — 1)},

where each step is labelled with weights aq, as, ..., ay41, respectively. Let D,,(n, k) =
IM,,,(n,k)|. Note that if m = 2,3 we obtain the generalized Delannoy paths and the
(a,b, c,d)-weighted paths, respectively.

Lemma 18. The numbers D,,(n, k) satisfy the following (m+ 1)-term recurrence relation

m—1
Dy (n,k) = a1Dp(n = 1, k) + asDp(n.k — 1) + > aj02Dp(n = Lk —5),  (9)

j=1
with k > m — 1,n > 1 and initial conditions D,,(0,k) = a5 and D,,(n,0) = a}.

Theorem 19. The number of gm+1—lattice paths is given by

ZZ Z ’ (”) (”‘_J‘l) (R—Z%zz)

j1=0 j2=0 ~1=0 J1 J2 Jm—1
n+k—u _yme
J1 . Jz . 7 1 1 ]z k—u
><< N )a1a3 St amﬂl as
where
m—1

u=(m-—1)(n—7ji)+ ) (i—m)j.

i

Il
¥
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Proof. For n > 1, let

Then
a1+ >0 ajioz ar+ >0 ajiaz "
WO () — m oy _ e
n(2) ( 1 — a2 n1(%) 1— a2 o (2)
a; + ij_ll 27’ | <a1 + 20 aJ+22‘7)
N 1 —asz 1 —ayz (1 — agz)nt!

Therefore, by the binomial theorem

[Zk} WT(Lm) = [Zk} <<a1 -+ Z_ aj+22j> (1 . CLQZ)_("'H))

7

Zi Z B (”) (W?’l) (n—Z?lfji)

3120 jo=0 -0 J1 J2 Jm—1
. , . e — +1
% alt J2 ... " m—2\Jm—2 " m—1 n—z:%-:ll]Z n l
0 (@522 - (2™ 2P (g 2 > ("))
n n n—32721 Ji oo m—2 .
01555 > i ol (4 (sl R G [ ()
Jj1=0 j2=0 1=0 I= Jm—1 K

x altal - alm- 2am+21:1 ! ﬁaéz“”)

—Zn:ni Zl jz(f’)(”__]’l)...<"—Z?L‘12j¢)(n+@—u)

_ /)
310 ja=0 P a—— J1 J2 Jm—1
m—1 -
Jigdz ... gim—2 =0 g k—u
X @y g S am+1 ay .

K , where

Definition 20. Let H,, := Hon(a1, as, .. ., amsr) = [d“")] )
" InkeN

d(m) . Dm(n — k,k‘), if n 2 k‘;
0, ifn <k.
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Theorem 21. The infinite triangular array H,, has a Riordan array expression given by

( 1 ay + asz + a2 + -+ am+1zm1)
Hpy = z .

1—ayz’ 1 —ayz
Proof. 1t is clear from Theorem 19. O]

For example, the first few terms of the Riordan array Hy(a,b,c,d, e) are

1 0 0 0 0]
b a 0 0 0
b? 2ab + ¢ a’® 0 0
Ha= |pp 3ab® + 2¢b + d 3ba® + 2ca a’ 0

bt 4dab® + 3cb® + 2db+ e 6a%b? + 6ach + ¢ + 2ad  4ba® + 3ca® ot

Proposition 22. Let A,,(z) be the generating function for the rows sums of the Riordan
array H,. Then

1

1 (a1 +ag)z —azz? — - — Qpy12™

An(2) (10)

Proof. The proof runs like in Proposition 7. ]

Let ]-"ék) () be the n-th row sum of Hy, then from above proposition we obtain the
generating function for F\”(z):

Anlz) = Z;}_i(k)(x)Zi "1 —pi(z)z — ﬁZ(x)l;,«? — o =y (x)2F (11)

where P, (7) = a1 +ay, and p;(z) = a;11,j = 2,..., k. The polynomials F¥ (x) are called
generalized k-bonacci polynomaials.

For example, if £ = 4 we obtain the tetrabonacci polynomials. The first few terms of
the tetrabonacci polynomials sequence are

17 P1, p% +p27 p? + 2p2p1 +p37 péljL + 3p2p% + 2p3p1 +pg +p47 R

where p; = p,(x),1=1,2,3, 4.

The sum on the rising diagonal in the Pascal triangle and in the tribonacci triangle
are the Fibonacci numbers and tribonacci numbers, respectively. In general, we have the
following proposition.

Proposition 23. The k-bonacci triangle Ty defined by the following Riordan array

1 I+4z4-- 421
7762( Z )7

1—2z’ 1—2

satisfies that the sum on the rising diagonal is the k-bonacci sequence Egk), where ]—"T(lk) =

F o+ 7+ + FYL
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From Theorem 3 and Theorem 19, we have the following identity.
=1,2,..., k+

Theorem 24. For all integer n > 0, and for any polynomials p,(x) = p(x), i

1,
L2z ]
= Z Dr(n—1—s,5)
i=0
L_lj s s—j Zk; ) Y
P I (s)(s—ﬁ),,,(s—zfzfji)
=0 j1=0ja=0 jea=0 M1 J2 Jk—1
— 1
" <n u+ )pil jo Jk 1pk+?z 1sz§ us—1
where
k—1

u=(k—=1)(s—7j)+ ) (i—k)j.

i

I|
N

(k)( ) satisfy the following recurrence for n >k

Theorem 25. The polynomials Fy
FP(x) = pi(@) F (@) + Pol@) B (@) + -+ Pila) 2, (0), (12)
where fék)(x) = l,ﬂ(k)(x) =0 fori=—-1,-2,...,—(k—1).
O

Proof. The identity follows from Equation (11).
We can write the polynomials 7" (x) as a Binet-like formula [14], i.e.,
k T’i,k(x)"+k

) () —
Fa” (@) Z Hf:u;éz‘(ri,k(x) = 75(2))

1=1

b

where r; () are the roots of the characteristic equation of (12)

Definition 26. The generalized m-bonacci-Lucas polynomials are defined by

£0m) (@) =11m(2)" + rom(@) 4+ -+ o (2)".

n

Note that
LM () = Py (@) FIM (2) 4 25, (2) FI (%) + - -+ i, (1) Fyrh (),
= FI) (@) + Do) F9 (@) + -+ + (m = 1), (2) F ().

For example, if m = 4 we obtain the tetrabonacci-Lucas polynomials. The first few terms

of this sequence are
4, p1, P+ 2pa, PY+ 3papr + 3ps, pi+ 4papi + Apspr + 2p3 + 4pa,
pi(x),i=1,2,3,4. If p; = 1,i = 1,2,3,4, we obtain the sequence A073817.

ey

where p; =
17

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P1.38



Proposition 27. The generating function of the m-bonacci-Lucas polynomials is

0o 3 gt = M = D)2 — (0 = D) B )
0 1—=pi(@)z = Py(x) 2> — - = Py ()27
Proof. The proof runs like in Proposition 4. O]
4.1 Combinatorial Interpretation
Theorem 28. For any polynomial Fi™ (x) and o (x), we have
(i) Fi() = o) forn >0,
(ii) Forn = m,
n—1 n—2 n—m
L™ (2) = i) D, 4(2) +25a(0) D w4 () + o+ mB(a) Do w ().
k=0 k=0 k=0

where w(w,?(x) = wf:? = h%g = D,(n — k, k) is the sum of weights of Ap41-weighted

n,

paths from (0,0) to (k,n — k) with step set
Sy ={H =1(0,0),V =(0,1),D; = (1,1), D = (1,2),...,Dpp_1 = (I,m — 1)},
such that ay(x) + as(x) =Dy (z), and a;(x) =p,_;(x) fori=1,...,m+ 1.
Example 29. The tetrabonacci numbers are defined by the recurrence relation:
=1, L=1, l,=2, Il3—=4
lpta = lngs + oy +lny1 + 1, for n > 0.

The first few terms of the tetrabonacci number are 1, 1, 2, 4, 8, 15, 29, 56, 108, 208,
401,..., (sequence A000078). The tetrabonacci polynomials R, (z) are defined by the
recurrence relation

Ro(z)1, Ri(z)=2° Ry(x)=2a5+22 Rs(z)=2"+22°+2z,
Rppa(r) = 2°R, 4 3(2) + 2°Ryio(z) + 2Ry (2) + Ry(x), forn > 0.

The generating function of the tetrabonacci polynomials is

- 1

g R,(x)z" = .
‘ () 1 — 232 — 222 — 23 — 24
n—=

If a;(z) = 23, as(x) = 0,a3(x) = 2%, a4(x) = x and as(xr) = 1 in (3), we obtain the
tetrabonacci polynomials from the row sums of the Riordan array Hy (23,0, 22, z, 1).
From Theorem 14-(7), we obtain a combinatorial interpretation of R, (z). For example,

3
Ry(w) = 2" +22° + o =Y wi) =0+ + 22" +2°.

k=0
In Figure 4, we show the corresponding weighted lattice paths.
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Figure 4: (2®, 22,0, x,1)-weighted paths and tretranacci polynomials.

Acknowledgements

We would like to thank the anonymous referee for valuable comments to improve the final
version. The second author thanks the invitation to Bogotda where the mayor part of this
paper was done.

References

[1] C. Banderier and S. Schwer. Why Delannoy numbers? J. Statist. Plann. Inference,
135:40-50, 2005.

[2] P. Barry. On integer-sequence-based constructions of generalized Pascal triangles. J.
Integer Seq., 9 Article 06.2.4, 2006.

[3] P. Barry. On the central coefficients of Riordan matrices. J. Integer Seq., 16 Article
13.5.1, 2013.

[4] F. Bernhart. Catalan, Motzkin, and Riordan numbers. Discrete Math., 204(1-3): 73—
112, 1999.

[5] B. Birregah, P. K. Dohb and K. H. Adjallah. A systematic approach to matrix forms
of the Pascal triangle: The twelve triangular matrix forms and relations. Furopean
J. Combin., 31:1205-1216, 2010.

[6] R. Brawer and M. Pirovino. The linear algebra of the Pascal matrix. Linear Algebra
Appl., 174:13-23, 1992

[7] G. S. Call and D. J. Velleman. Pascal’s matrices. Amer. Math. Monthly, 100: 372—
376, 1993.

[8] D. Callan. On generating functions involving the square root of a quadratic polyno-
mial. J. Integer Seq., 10 Article 07.5.2, 2007.

[9] G.-S. Cheon, H. Kim and L. W. Shapiro. A generalization of Lucas polynomial se-
quence. Discrete Appl. Math. 157: 920-927, 2009.

[10] L. Comtet. Advanced combinatorics. D. Reidel Publishing Company, 1970.

[11] M. Dziemiariczuk. Counting lattice paths with four types of steps. Graphs Combin.,
30:1427-1452, 2014.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P1.38 19



[12] A. Edelman and G. Strang. Pascal Matrices. Amer. Math. Monthly, 111(3): 361-385,
2004.

[13] L. Ericksen. Lattice path combinatorics for multiple product identities. J. Statist.
Plann. Inference, 140: 2213-2226, 2010.

[14] I. Flores. Direct calculation of k-generalized Fibonacci numbers. Fibonacci Quart.,
5(3): 259-266, 1967.

[15] R. D. Fray and D. P. Roselle. Weighted lattice paths. Pacific J. Math., 37(1): 85-96,
1971.

[16] V. E. Hoggatt Jr. and M. Bicknell. Generalized Fibonacci polynomials. Fibonacci
Quart., 11: 457-465, 1973.

[17] E. Kili¢ and H. Prodinger. Some double binomial sums related with the Fibonacci,
Pell and generalized order-k Fibonacci numbers. Rocky Mountain J. Math., 43(3):
975-987, 2013.

[18] D. Merlini, D. G. Rogers, R. Sprugnoli, M- Cecilia Verri. Underdiagonal lattice paths
with unrestricted steps. Discrete Appl. Math., 91(1-3): 197-213, 1999.

[19] L. W. Shapiro, S. Getu, W. Woan and L. Woodson. The Riordan group. Discrete
Appl. Math., 34: 229-239, 1991.

[20] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences.
https://oeis.org/.

[21] R. Sprugnoli. Riordan arrays and combinatorial sums. Discrete Math., 132: 267-290,
1994.

[22] R. Sulanke. Objects counted by the central Delannoy numbers. J. Integer Seq. 6
Article 03.1.5, 2003.

23] Y. Yang and C. Micek. Generalized Pascal functional matrix and its applications.
Linear Algebra Appl. 423: 230-245, 2007.

[24] Z. Zhang. The linear algebra of the generalized Pascal matrix. Linear Algebra Appl.
250: 51-60, 1997.

[25] Z. Zhang and X.Wang. A factorization of the symmetric Pascal matrix involving the
Fibonacci matrix. Discrete Appl. Math. 155: 2371-2376, 2007.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P1.38 20


https://oeis.org/

	Introduction
	Riordan arrays
	Generalized Tribonacci and Tribonacci-Lucas polynomial sequence
	Combinatorial Interpretations
	The diagonal of D3

	Riordan Arrays and Generalized k-bonacci numbers
	Combinatorial Interpretation


