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Abstract

We study noncommutative continuant polynomials via a new leapfrog construc-
tion. This needs the introduction of new indeterminates and leads to generalizations
of Fibonacci polynomials, Lucas polynomials and other families of polynomials. We
relate these polynomials to various topics such as quiver algebras and tilings. Fi-
nally, we use permanents to give a broad perspective on the subject.

1 Introduction

The continuants (or continuant polynomials) pn were introduced in the noncommutative
setting in [6] by P.M. Cohn, who used them to describe some groups of invertible matrices
and, under suitable hypotheses, to analyze comaximal relations in a ring. See [5] for more
details. Continuants also appear in connection with the weak algorithm [5] and more
recently they have been used to characterize Euclidean pairs and quasi Euclidean rings
[1]. Cohn also calls the construction of continuants leapfrog construction.

In this paper, we prefer to present Cohn’s construction with a different notation, which
we think is more convenient, and which highlights the leapfrog structure of the construc-
tion of the polynomials pn (Section 2). We reinterpret the continuants pn in term of
suitable quiver algebras with two vertices A and B, in which the paths leap alternatively
from A to B. Cohn’s polynomials pn are related to the elementary group E2(R) (equa-
tion (8)). Here we find the leapfrog structure again, because the n-th powers of a suitable
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coset E2(R)P (0) of an element P (0) of GLn(R) modulo E2(R) jump alternatively from
E2(R) when n is even to E2(R)P (0) when n is odd.

In a completely different setting, other polynomials hn were introduced in [2], to
compute the inverse of an isomorphism f in a factor category A/I1 ∩ · · · ∩ In from the
inverses of the images of the isomorphism f in factor categories A/It of Amodulo ideals It
of A. Since there is a surprising similarity between the structure of Cohn’s polynomials pn
and that of the polynomials hn, we have studied whether both families of polynomials were
specializations of a more general class of polynomials. In this investigation, we have met
with other classes of noncommutative polynomials (the generalized Fibonacci polynomials
fn, the generalized Lucas polynomials `n and other “circular” polynomials cn), which
have evident combinatorial interpretations: they parametrize tilings and circular tilings
of stripes of squares with dominoes (Section 7). Commutative generalized Fibonacci
polynomials appear naturally in Combinatorics [3], related to the Fibonacci sequence, and
in Complex Analysis [7], related to generalized continuous fractions. Our noncommutative
generalized Fibonacci polynomials are the noncommutative analogue of the generalized
Fibonacci polynomials studied in [3].

We have thus found a very natural “hierarchy” of polynomials (see the diagram in
Remark 16(4)). Our polynomials turn out to be noncommutative permanents of suitable
matrices in noncommutative indeterminates (Theorem 17 and Corollary 18).

The rings and algebras we work with are associative and have an identity element.

2 Two sets of indeterminates in Cohn’s continuants pn

We begin this Section by recalling the definition of the continuants [6], which are non-
commutative polynomials with coefficients in the ring Z of integers. Let t1, t2, t3, . . .
be infinitely many noncommutative indeterminates over the ring Z. There is a strictly
ascending chain

Z〈t1〉 ⊂ Z〈t1, t2〉 ⊂ Z〈t1, t2, t3〉 ⊂ . . .

of noncommutative integral domains, where Z〈t1, . . . , tn〉 denotes the ring of polynomials
in the noncommutative indeterminates t1, . . . , tn with coefficients in Z, and the union of
this chain is the ring Z〈t1, t2, t3, . . . 〉. The continuants pn = pn(t1, . . . , tn) are defined by
the recursion formulae:

p−1 = 0, p0 = 1, and, for n > 1,
pn(t1, . . . , tn) = pn−1(t1, . . . , tn−1)tn + pn−2(t1, . . . , tn−2).

(1)

For every f ∈ Z〈t1, t2, t3, . . . 〉, we will use P.M. Cohn’s convenient notation, introduced

in [5, p. 147], denoting the 2× 2-matrix

(
f 1
1 0

)
by P (f). Then

P (t1)P (t2) . . . P (tn) =

(
pn(t1, . . . , tn) pn−1(t1, . . . , tn−1)
pn−1(t2, . . . , tn) pn−2(t2, . . . , tn−1)

)
. (2)
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Since the inverse of the matrix P (f) is given by P (0)P (−f)P (0), we easily get that
the inverse of the matrix in (2) is given by

(−1)n
(
pn−2(tn−1, . . . , t2) −pn−1(tn−1, . . . , t1)
−pn−1(tn, . . . , t2) pn(tn, . . . , t1)

)
. (3)

This leads to the following well-known relations:

pn(t1, . . . , tn)pn−1(tn−1, . . . , t2)− pn−1(t1, . . . , tn−1)pn−1(tn, . . . , t2) = (−1)n (4)

pn(t1, . . . , tn)pn−1(tn−1, . . . , t1) = pn−1(t1, . . . , tn−1)pn(tn, . . . , t1) (5)

This last relation is due to Wedderburn [9].
Using the associativity of the product of matrices in (2), we also get, for any 1 6 k 6 n,

the formula:

pn(t1, . . . , tn)

= pk(t1, . . . , tk)pn−k(tn−k+1, . . . , tn) + pk−1(t1, . . . , tk−1)pn−k−1(tn−k, . . . , tn). (6)

For k = 1, this gives back the equation given in [5, (14), page 148]:

pn(t1, . . . , tn) = t1pn−1(t2, . . . , tn) + pn−2(t3, . . . , tn).

The continuant polynomial pn(t1, . . . , tn) can be presented via a leapfrog construction
in the following sense. The first term of pn is t1t2 · · · tn. The next terms are obtained by
erasing two consecutive indeterminates (the frog leaps over them) from t1t2 · · · tn to get
the sum: t3t4 · · · tn + t1t4t5 · · · tn + t1t2t5 · · · tn + . . . . As far as the following terms are
concerned, we erase 2 pairs of consecutive indeterminates (2 jumps) and get the terms∑

16i1<i2−16n

t1 · · · t̂i1 t̂i1+1 · · · t̂i2 t̂i2+1 · · · tn.

We then continue adding terms corresponding to 3 leaps, 4 leaps, and so on. Finally, we
can write

pn(t1, . . . , tn) =
∑

i1,i2,...,ij

t1 · · · t̂i1 t̂i1+1 · · · t̂i2 t̂i2+1 · · · t̂ij t̂ij+1 · · · tn, (7)

where 1 6 j 6 bn/2c and ij + 1 < ij+1 for every j,
As we have already said in the Introduction, in order to highlight another leapfrog

structure of the construction of the polynomials pn, we find more convenient to denote the
indeterminates t2n−1 with odd index 2n− 1 by xn, the indeterminates t2n with even index
2n by yn, and, similarly, the continuants p2n by Gn and the continuants p2n−1 by Hn, so
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that Gn is a polynomial in the indeterminates x1, y1, . . . , xn, yn, and Hn is a polynomial
in the indeterminates x1, y1, . . . , xn−1, yn−1, xn.

In order to convince the reader that our different notation is more expressive than the
original one, consider the first continuants pn. They are

p0 = 1, p1 = t1, p2 = t1t2 + 1, p3 = t1t2t3 + t1 + t3,
p4 = t1t2t3t4 + t1t2 + t1t4 + t3t4 + 1,
p5 = t1t2t3t4t5 + t1t2t3 + t1t2t5 + t1t4t5 + t3t4t5 + t1 + t3 + t5,
p6 = t1t2t3t4t5t6 + t1t2t3t4 + t1t2t3t6 + t1t2t5t6 + t1t4t5t6 + t3t4t5t6

+ t1t2 + t1t4 + t1t6 + t3t4 + t3t6 + t5t6 + 1, . . .

It is rather difficult to recognize the symmetry and the pattern of the polynomials pn.
But notice that the monomials in pi are of even degree if i is even and of odd degree if i
is odd. The same polynomials with the new notation become

G0 = 1, G1 = x1y1 + 1, G2 = x1y1x2y2 + x1y1 + x1y2 + x2y2 + 1,
G3 = x1y1x2y2x3y3 + x1y1x2y2 + x1y1x2y3 + x1y1x3y3

+ x1y2x3y3 + x2y2x3y3 + x1y1 + x1y2 + x1y3 + x2y2 + x2y3 + x3y3 + 1

and
H0 = 0, H1 = x1, H2 = x1y1x2 + x1 + x2,
H3 = x1y1x2y2x3 + x1y1x2 + x1y1x3 + x1y2x3 + x2y2x3 + x1 + x2 + x3.

The pattern with the notation xi, yi, Gi and Hi is much clearer.
Moreover, the ring Z〈t1, t2, t3, . . . 〉 is 2-graded, that is, graded over the group Z/2Z,

because every polynomial is the sum of a sum of monomials of even degree and a sum
of monomials of odd degree. The polynomials Gn turn out to be homogeneous of degree
0 ∈ Z/2Z, and the polynomials Hn turn out to be homogeneous of degree 1 ∈ Z/2Z. The
reason of this lies in the defining recursion relation pn = pn−1tn + pn−2. Here the indices
n and n − 2 in pn and pn−2 have the same parity. The index n − 1 in pn−1 has different
parity, but the degree of pn−1tn has the same parity as pn and pn−2.

From

P (xi)P (yi) =

(
xiyi + 1 xi
yi 1

)
,

it follows that(
x1y1 + 1 x1

y1 1

)
· · ·
(
xnyn + 1 xn

yn 1

)
=(

Gn(x1, y1, . . . , xn, yn) Hn(x1, y1 . . . , yn−1, xn)
Hn(y1, x2, . . . , xn, yn) Gn−1(y1, x2, . . . , yn−1, xn)

)
.

(8)

Since, for any f ∈ Z〈x1, y1, . . . 〉, we have(
f 1
1 0

)−1
= P (0)P (−f)P (0) =

(
0 1
1 −f

)
,
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we easily conclude that the matrix on the right in equation (8) is invertible. Using the
remarks about the parity of the degree of the homogeneous polynomials Gn and Hn, we
get that the inverse of the matrix on the right in equation (8) is(

Gn−1(xn, yn−1, . . . , y1) −Hn(xn, . . . , y1, x1)
−Hn(yn, xn, . . . , y1) Gn(yn, xn, . . . , y1, x1)

)
. (9)

From this inverse, the interested reader can easily obtain the equations analogous to
the ones in (4) and (5).

The recursion formulae for pn translate into the following ones between the Gn, Hn, xn
and yn:

Gn+1 = Hn+1yn+1 +Gn and Hn+1 = Gnxn+1 +Hn. (10)

Using the associativity of the product of matrices, we easily obtain the following
formulas, for every 1 6 k 6 n:

Gn(x1, . . . , yn) = Gk(x1, . . . , xk−1, yk)Gn−k(xk+1, . . . , yn)
+Hk(x1, . . . , yk−1, xk)Hn−k(yk+1, xk+2 . . . , yn)

(11)

and

Hn(x1, y1, . . . , xn) = Gk(x1, . . . , yk)Hn−k(xk, y − k, . . . , xn)
+Hk(x1, y1, . . . , xk)Gn−k−1(yn−k, . . . , yn−1, xn).

(12)

All the polynomials pn, Hn and Gn are sums of monomials with all the coefficients
equal to 1. From the defining relations (10), it is easily seen that each Gn is a sum of
monomials of all possible even degrees 6 2n and each Hn is a sum of monomials of all
possible odd degrees 6 2n− 1. Also, the number mn of monomials in pn, which is clearly
equal to pn(1, 1, . . . , 1), satisfies the relations m0 = 1,m1 = 1,m2 = 2,mn = mn−1+mn−2,
hence mn = Fn+1, the (n + 1)-th Fibonacci number, defined by F0 = 0, F1 = 1 and
Fn = Fn−1 + Fn−2 for n > 2.

Now consider the following directed graph (quiver) Γn with two vertices A and B:

A B

x1

x2

xn

y1

y2

yn

For each i = 1, 2, . . . , n, the directed graph Γn has one arrow xi from A to B, and one
arrow yi from B to A. Thus Γn has 2n arrows.

Let k be a field. Consider the quiver algebra kΓn and the ideal I of kΓn generated

by all paths xiyj : A
xi−→ B

yj−→ A with i > j and all paths yixj : B
yi−→ A

xj−→ B with
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i > j. The quotient algebra kΓn/I is a finite dimensional k-algebra, because the longest
possible path not in I is the path x1y1x2y2 . . . xnyn of length 2n. In particular, R := kΓn/I
is an artinian ring, so that the Jacobson radical J(R) is a nilpotent ideal that contains
all nilpotent elements of R. Moreover, R/J(R) ∼= k × k. The algebra R = R0 ⊕ R1 is
2-graded, where R0 corresponds to the paths of even length and R1 to the paths of odd
length. In particular, the images of the polynomials Gn in R are in R0 and the images of
the polynomials Hn are in R1. Notice that Gn is a linear combination of paths from A
to A (i. e., cycles), and Hn is a linear combination of paths from A to B. The elements
xiyj with i > j are nilpotent of index 2, hence they belong to J(R), so

∑
16i6j6n xiyj is

nilpotent, and 1−
∑

16i6j6n xiyj is invertible in R. Here, and in the next Proposition, the
same symbol denotes both an element of kΓn and its image in R.

Theorem 1. In the ring R = kΓn/I, we have that

Hn =

(
1−

∑
16i6j6n

xiyj

)−1(∑
i=1

xi

)
and Gn =

(
1−

∑
16i6j6n

xiyj

)−1
for every n > 0.

Proof. We claim that Hn = Gn (
∑n

i=1 xi) and Gn

(
1−

∑
16i6j6n xiyj

)
= 1 in R for every

n > 1. The proof of the claim is by induction on n. For n = 1, we have G1x1 =
(x1y1 + 1)x1 = x1 = H1 and G1(1 − x1y1) = (1 + x1y1)(1 − x1y1) = 1, because y1x1 ∈ I.
Now assume that the claim is true for n in R := kΓn/I. We will show that the claim is
also true for n+ 1 in R′ := kΓn+1/I

′. Using the relations (10), we have

Hn+1 −Gn+1

(
n+1∑
i=1

xi

)
= (Gnxn+1 +Hn)− (Hn+1yn+1 +Gn)

(
n+1∑
i=1

xi

)

= Gnxn+1 +Hn −Gn

(
n+1∑
i=1

xi

)

= Hn −Gn

(
n∑
i=1

xi

)
= 0.

This proves the first formula in the claim for n+ 1, i. e., that

Hn+1 = Gn+1

(
n+1∑
i=1

xi

)
in R′. But (Gn+1 − Gn)

(∑n+1
i=1 xi

)
= Hn+1yn+1

(∑n+1
i=1 xi

)
= 0, so that we also have

Hn+1 = Gn

(∑n+1
i=1 xi

)
in R′. Finally, in R′ := kΓn+1/I

′, we have that

Gn+1

(
1−

∑
16i6j6n+1 xiyj

)
= (Hn+1yn+1 +Gn)

(
1−

∑
16i6j6n xiyj −

∑n+1
i=1 xiyn+1

)
= Hn+1yn+1 +Gn

(
1−

∑
16i6j6n xiyj

)
−Gn

(∑n+1
i=1 xiyn+1

)
= 1 +

(
Hn+1 −Gn

(∑n+1
i=1 xi

))
yn+1 = 1.
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This concludes the proof of the claim. The statement of the Proposition for n > 1 follows
immediately from the claim. The case n = 0 is trivial.

This theorem again shows that the structure of the Hn’s is different from the struc-
ture of the Gn’s, so that the choice of using different notations for the two families of
polynomials is appropriate.

Notice that, in our graph Γn with two vertices, the paths leap alternatively from A to
B.

3 Continuants and groups of matrices

For any fixed ring R, let GL2(R) denote the group of all invertible 2 × 2-matrices with
entries in R, that is, GL2(R) = U(M2(R)), the group of units of the ring M2(R) of
all 2 × 2-matrices with entries in R. Let E2(R) be the elementary group, that is, the

subgroup of GL2(R) generated by all triangular matrices

(
1 x
0 1

)
and all triangular

matrices

(
1 0
y 1

)
, where x and y range in R. Notice that the triangular matrices(

1 x
0 1

)
and

(
1 0
y 1

)
in GL2(R) generate E2(R) as a semigroup, because the inverse

of the triangular matrix

(
1 x
0 1

)
is

(
1 −x
0 1

)
, and similarly for

(
1 0
y 1

)
. Since the

matrices of the type

(
1 x
0 1

)
form an abelian group isomorphic to the additive group of

R, and similarly for the matrices

(
1 0
y 1

)
, an arbitrary element of E2(R) is a product

of finitely many elements of the form(
1 x
0 1

)(
1 0
y 1

)
=

(
xy + 1 x
y 1

)
.

These are exactly the factors on the left in the equation (8). Thus an arbitrary element
of E2(R) is a matrix of the form(

Gn(x1, y1, . . . , xn, yn) Hn(x1, y1 . . . , yn−1, xn)
Hn(y1, x2, . . . , xn, yn) Gn−1(y1, x2, . . . , yn−1, xn)

)
,

with x1, y1, . . . , xn, yn ∈ R.
Let G be the subsemigroup of the multiplicative semigroup M2(R) generated by all

matrices of type

P (x) :=

(
x 1
1 0

)
,

where x ranges in R. As Cohn proved in [6], the semigroup G, set of all products
P (x1) · · ·P (xn) with n > 1 and x1, . . . , xn ∈ R, is a group, because P (0)2 is the identity
of GL2(R) and P (x)−1 = P (0)P (−x)P (0).
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Theorem 2. For any ring R, exactly one of the following two conditions holds:

(a) Either G = E2(R), or

(b) The group G is the semidirect product E2(R)oC of the group E2(R) and the cyclic

group C of order 2 generated by the involution P (0) =

(
0 1
1 0

)
.

The action of P (0) on E2(R) is given by(
1 x
0 1

)
7→ P (0)

(
1 x
0 1

)
P (0) =

(
1 0
x 1

)
and (

1 0
y 1

)
7→ P (0)

(
1 0
y 1

)
P (0) =

(
1 y
0 1

)
.

Proof. Suppose G 6= E2(R). Then

(
1 x
0 1

)
= P (x)P (0) and

(
1 0
y 1

)
= P (0)P (y),

so that E2(R) is contained in G. It is easily verified that the action of P (0) on E2(R),
given by conjugation by the involution P (0), is as in the last part of the statement of

the Theorem. Since every generator P (x) of G can be written as P (x) =

(
1 x
0 1

)
P (0),

where

(
1 x
0 1

)
∈ E2(R), it follows that E2(R) is a normal subgroup of G and G =

E2(R)C. In order to conclude the proof that G is the semidirect product of E2(R) and
C, it remains to notice that P (0) /∈ E2(R), because G 6= E2(R) and G = E2(R)C.

Proposition 3. If R is any ring of characteristic 2, then G = E2(R).

Proof. If R has characteristic 2, then, for x1 = 0 and y1 = x2 = y2 = 1, we have that

P (0) =

(
1 0
1 1

)(
0 1
1 1

)
=(

x1y1 + 1 x1
y1 1

)(
x2y2 + 1 x2

y2 1

)
∈ E2(R).

Thus G = E2(R) by Theorem 2.

In the next proposition, char(R) denotes the characteristic of the ring R and det(A)
denotes the determinant of the matrix A.

Proposition 4. Let R be a commutative ring. Then:

(a) E2(R) = {A ∈ G | det(A) = 1 }.

(b) G = E2(R) if and only if char(R) = 2.
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Proof. As R is a commutative ring, the determinant det : G→ U(R) is a group morphism,
whose kernel contains E2(R). Thus we have three groups G ⊇ ker det ⊇ E2(R). From
Theorem 2, we know that [G : E2(R)] 6 2. Thus we have three possible cases:

First case: G = ker det ⊃ E2(R). In this case, P (0) ∈ G = ker det, so that
det(P (0)) = 1, that is, −1 = 1, hence char(R) = 2. By Proposition 3, it follows that
G = E2(R). This is not true in this first case. Thus this first case can never take place.

Second case: G ⊃ ker det = E2(R). In this case, char(R) 6= 2 by Proposition 3. Thus
(a) and (b) both hold in this second case.

Third case: G = ker det = E2(R). Then (a) is trivially true. Moreover, as in the first
case, we have that P (0) ∈ ker det, so that det(P (0)) = 1, hence char(R) = 2. Thus (b)
also holds.

Let us go back to the case of R nonnecessarily commutative. When G = E2(R) o C,

we again found a leapfrog structure, because

(
ti 1
1 0

)
=

(
1 ti
0 1

)
P (0) is an element

of the coset E2(R)P (0) of G, so that the products on the left of (2) jump alternatively
from elements of E2(R) when n is even to elements of the coset E2(R)P (0) when n is odd.

4 A second sequence of noncommutative polynomials hn

In this Section, we study another sequence of noncommutative polynomials similar to
the sequence of continuants pn considered in the previous two sections. In Section 2,
we have preferred to present continuants as polynomials in two infinite sets of indeter-
minates x1, x2, x3, . . . and y1, y2, y3, . . . . The polynomials hn we will construct now are
noncommutative polynomials in the infinite set of indeterminates x1, x2, x3, . . . plus one
more indeterminate y. The polynomials hn have been introduced in [2], in the study of
semilocal categories, in order to present a sort of Chinese Remainder Theorem that holds
in preadditive categories. Let us recall the definition of those polynomials hn, adapting
the notation to the context of this paper.

In the paper [2], the authors essentially introduce noncommutative polynomials

hn = hn(x1, x2, . . . , xn, y)

with coefficients in Z, n > 1, defined as follows. Let x1, x2, x3, . . . , y be infinitely many
noncommutative indeterminates over the ring Z. Let Z〈x1, x2, x3, . . . , xn, y〉 denote the
ring of polynomials in the n+1 noncommutative indeterminates x1, x2, x3, . . . , xn, y with
coefficients in Z. For each n > 1, there is a unique polynomial hn = hn(x1, x2, . . . , xn, y)
in Z〈x1, x2, . . . , xn, y〉 such that

1 + hny = (1 + x1y)(1 + x2y) . . . (1 + xny). (13)

In fact, such a polynomial hn exists because the product on the right in the equation (13) is
of the form “1+ monomials that terminate with y”. Moreover, hn is the unique polynomial
that satisfies the equation (13), because Z〈x1, x2, . . . , xn, y〉 is an integral domain.
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Proposition 5. The polynomials hn, n > 1, have the following properties:

(a) 1 + yhn = (1 + yx1)(1 + yx2) . . . (1 + yxn) for every n > 1.

(b) h1 = x1, and hn = xn + hn−1(1 + yxn) for every n > 2.

(c) For every n > 1,

hn =
∑
16i6n

xi +
∑

16i1<i26n

xi1yxi2

+
∑

16i1<i2<i36n

xi1yxi2yxi3 + · · ·+ x1yx2y . . . yxn.

Proof. (a) Multiplying the equation (13) by y on the left, we get that

y(1 + hny) = y(1 + x1y)(1 + x2y) . . . (1 + xny)

= (y + yx1y)(1 + x2y) . . . (1 + xny) = (1 + yx1)y(1 + x2y) . . . (1 + xny)

= (1 + yx1)(1 + yx2)y . . . (1 + xny)

...

= (1 + yx1)(1 + yx2) . . . (1 + yxn)y.

But
y(1 + hny) = y + yhny = (1 + yhn)y,

so that (a) holds because Z〈x1, . . . , xn, y〉 is an integral domain.
(b) Induction on n > 1. From the definition of h1, we have that 1 + h1y = 1 + x1y, so

h1 = x1. As far as an arbitrary n > 1 is concerned, we have, from (13), that

1 + hn+1y = (1 + x1y) . . . (1 + xn+1y) = (1 + hny)(1 + xn+1y)

= 1 + hny + xn+1y + hnyxn+1y,

from which hn+1 = hn + xn+1 + hnyxn+1 = xn+1 + hn(1 + yxn+1).
(c) follows from the equation (13).

Corollary 6. hn(x1, x2, . . . , xn, y) = x1 + (1 + x1y)hn−1(x2, x3 . . . , xn, y)

Proof. From Proposition 5(a), applied to n+ 1 and n, we have that

1 + yhn+1 = (1 + yx1)(1 + yx2) . . . (1 + yxn+1)
= (1 + yx1)(1 + yhn(x2, x3 . . . , xn+1, y))
= 1 + y(x1 + (1 + x1y)hn(x2, x3 . . . , xn+1, y)).

Now we conclude from the fact that our ring is an integral domain.
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Corollary 6 is the analogue of the formula (14) in [5, p. 148].
The first polynomials hn are

h1 = x1, h2 = x1yx2 + x1 + x2,
h3 = x1yx2yx3 + x1yx2 + x1yx3 + x2yx3 + x1 + x2 + x3.

Thus
h1(x1) = H1(x1), h2(x1, x2, y) = H2(x1, y, x2),

where Hn denotes the continuant introduced in Section 2, but

h3(x1, x2, x3, y) 6= H3(x1, y, x2, y, x3).

The product decomposition analogous to (2) and (8) for the polynomials hn is the
decomposition(

x1 1
1 −y

)(
y 1
1 0

)(
x2 1
1 −y

)
· · ·
(
y 1
1 0

)(
xn 1
1 −y

)
=

(
hn 1
1 −y

)
. (14)

The proof is by induction on n. The case n = 1 is trivial. For the inductive step, it
sufficies to check that(

hn 1
1 −y

)(
y 1
1 0

)(
xn+1 1

1 −y

)
=

(
hn+1 1

1 −y

)
,

and this trivially follows from Proposition 5(b).

As usual, from the associativity of the product of matrices, we get the following for-
mula, true for all 1 6 l 6 n and relating hn, hl and hn−l:

hn = hl(yhn−l(xl+1, . . . , xn, y) + 1) + hn−l(xl+1, . . . , xn, y), (15)

where hn = hn(x1, . . . , xn, y) and hl = hl(x1, . . . , xl, y).
The properties of these polynomials hn are very similar to the properties of the con-

tinuants studied in the previous sections. For instance, the analogues of the first formulae
in [5, p. 148, (16) and (17)] are the equalities

hn(x1, . . . , xi−1, 0, xi+1, . . . , xn, y) = hn−1(x1, . . . , xi−1, x̂i, , xi+1, . . . , xn, y)

for every i = 1, 2, . . . , n. To prove this, set xi = 0 in the defining formula (13). The
second formula in [5, p. 148, (16)] is:

Lemma 7. hn(1, x2, . . . , xn, y) = hn−1(1 + x2 + yx2, x3, . . . , xn, y).

Proof. From Corollary 6, we have that

hn−1(1 + x2 + yx2, x3, . . . , xn, y)
= 1 + x2 + yx2 + (1 + (1 + x2 + yx2)y)hn−2(x3, . . . , xn, y)
= 1 + (1 + y)x2 + (1 + y + x2y + yx2y)hn−2(x3, . . . , xn, y)
= 1 + (1 + y)x2 + (1 + y)(1 + x2y)hn−2(x3, . . . , xn, y)
= 1 + (1 + y)(x2 + (1 + x2y)hn−2(x3, . . . , xn, y))
= 1 + (1 + y)hn−1(x2, . . . , xn, y) = hn(1, x2, . . . , xn, y)

by Corollary 6 again.
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Similarly, changing the sign of all the indeterminates x1, . . . , xn, y in (13), we see that

hn(−x1, . . . ,−xn,−y) = −hn(x1, . . . , xn, y),

which is the analogue of [5, p. 148, (19)].

All the polynomials hn are sums of monomials with all the coefficients equal to 1.
From Proposition 5(b), it is easily seen that each hn is a sum of monomials of all possible
odd degrees 6 2n − 1. Also, the number of monomials on the right hand side of (13) is
2n, so that hn is a sum of 2n − 1 monomials, that is, hn(1, 1, . . . , 1; 1) = 2n − 1.

The results in this Section show that the polynomials hn have a behavior that is very
similar to the behavior of the polynomials Hn defined in Section 2. It is very natural
to ask what are the analogues of the polynomials Gn. The answer is that they are the
noncommutative polynomials qn defined by

q0 = 1 and qn = (1 + x1y)(1 + x2y) . . . (1 + xny).

We have that(
x1 1
1 −y

)(
y 1
1 0

)(
x2 1
1 −y

)
· · ·
(
xn 1
1 −y

)(
y 1
1 0

)
=

(
qn hn
0 1

)
. (16)

Each qn is a sum of 2n distinct monomials, and qn(1, 1, . . . , 1; 1) = 2n.

Similar results hold for the polynomials q′n defined by q′0 = 1 and

q′n(x1, . . . , xn, y) = (1 + yx1)(1 + yx2) . . . (1 + yxn).

Then q′n = yhn + 1 (Proposition 5(a)). Trivially,

q′n(x1, . . . , xn, y) = (1 + yx1)q
′
n−1(x2, . . . , xn, y).

Moreover, (
y 1
1 0

)(
x1 1
1 −y

)(
y 1
1 0

)(
x2 1
1 −y

)
· · ·

· · ·
(
y 1
1 0

)(
xn 1
1 −y

)
=

(
q′n 0
hn 1

)
.

(17)

We collect some formulae for qn and q′n. We leave the easy proofs to the reader.

Lemma 8. (a) qn(x1, . . . , xn, y) = hn(x1, . . . , xn, y)y + 1
(a’) q′n(x1, . . . , xn, y) = yhn(x1, . . . , xn, y) + 1.
(b) hn+1(x1, . . . , xn+1, y) = qn(x1, . . . , xn, y)xn+1 + hn(x1, . . . , xn, y).
(b’) hn+1 = x1q

′
n(x2, . . . , xn, y) + hn(x2, . . . , xn, y).
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(c) qn(x1, . . . , xi−1, 0, xi+1, . . . , xn, y) = qn−1(x1, . . . , xi−1, x̂i, . . . , xn−1, y).
(c’) q′n(x1, . . . , xi−1, 0, xi+1, . . . , xn, y) = q′n−1(x1, . . . , xi−1, x̂i, xi+1, . . . , xn, y).
(d) qn(−x1, . . . ,−xn,−y) = qn(x1, . . . , xn, y).
(d’) q′n(−x1, . . . ,−xn,−y) = q′n(x1, . . . , xn, y).
(e) For 1 6 l 6 n, qn(x1, . . . , xn, y) = ql(x1, . . . , xl, y)qn−l(xl+1, . . . , xn, y).
(e’) For 1 6 l 6 n, q′n(x1, . . . , xn, y) = q′l(x1, . . . , xl, y)q′n−l(xl+1, . . . , xn, y).
(f) For 1 6 l 6 n,

hn(x1, . . . , xn, y) = ql(x1, . . . , xl, y)hn−l(xl+1(xl+1, . . . , xn, y) + hl(x1, . . . , xl, y)

(f’) For 1 6 l 6 n,

hn(x1, . . . , xn, y) = hl(x1, . . . , xl, y)q′n−l(xl+1, . . . , xn, y) + hn−l(xl+1, . . . , xn, y).

5 The graph algebra for the polynomials hn

The polynomials hn are also elements of a graph algebra with relations k∆n/I. The quiver
∆n is the following:

A B
.
..

x1

x3

xn

x2

y

Thus the directed graph ∆n has n arrows x1, . . . , xn from A to B and one arrow y
from B to A, so that ∆n has n + 1 arrows. Let k be a field, consider the quiver algebra
k∆n and the ideal I of k∆n generated by all paths xiyxj with i > j. The quotient algebra
k∆n/I is a finite dimensional k-algebra, because the longest possible path not in I is the
path yx1yx2y . . . xny of length 2n+ 1. In particular, R := k∆n/I is an artinian ring with
R/J(R) ∼= k × k. The algebra R = R0 ⊕ R1 is 2-graded, where R0 corresponds to the
paths of even length and R1 to the paths of odd length. In particular, the images of the
polynomials hn in R are all in R1. The elements xiy are nilpotent of index 2, hence they
belong to J(R), so

∑n
i=1 xiy is nilpotent, and 1−

∑n
i=1 xiy is invertible.

Theorem 9. In the ring R = k∆n/I, we have that:
(a) hn = (1−

∑n
i=1 xiy)

−1
(
∑n

i=1 xi) ,

(b) qn = (1−
∑n

i=1 xiy)
−1
,

(c) hn = (
∑n

i=1 xi) (1−
∑n

i=1 yxi)
−1
,

(d) q′n = (1−
∑n

i=1 yxi)
−1
, and

(e) hn (
∑n

i=1 yxi) = (
∑n

i=1 xiy)hn, for every n > 1.
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Proof. (a) It suffices to show that(
1−

n∑
i=1

xiy

)
hn =

(
n∑
i=1

xi

)
.

We do it by induction on n > 1. The case n = 1 is easy, because

(1− x1y)h1 = (1− x1y)x1 = x1.

Suppose our formula true for n. Then(
1−

n+1∑
i=1

xiy

)
hn+1

=

(
1−

n∑
i=1

xiy − xn+1y

)
(xn+1 + hn(1 + yxn+1))

=

(
1−

n∑
i=1

xiy

)
xn+1 +

(
1−

n∑
i=1

xiy

)
hn(1 + yxn+1)− xn+1yhn(1 + yxn+1)

= xn+1 −
n∑
i=1

xiyxn+1 +

(
n∑
i=1

xi

)
(1 + yxn+1)

=
n+1∑
i=1

xi,

which concludes the proof of (a).
(b) We will prove that qn (1−

∑n
i=1 xiy) = 1 in R by induction on n > 1. The case

n = 1 is trivial. Suppose the formula true for n− 1. Then

qn (1−
∑n

i=1 xiy) = qn−1(1 + xny) (1−
∑n

i=1 xiy)

= qn−1 (1 + xny −
∑n

i=1 xiy) = qn−1
(
1−

∑n−1
i=1 xiy

)
= 1

by the inductive hypothesis.
(e) is easy and left to the reader.
(d) Like for (b), it suffices to show by induction on n that

q′n

(
1−

n∑
i=1

yxi

)
= 1.

(c) From (e) and (a), we have that

hn

(
1−

n∑
i=1

yxi

)
=

(
1−

n∑
i=1

xiy

)
hn =

n∑
i=1

xi.

Thus (c) also holds.
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Again, in our graph ∆n with two vertices A and B, the paths leap alternatively from
A to B.

Proposition 10. The matrices

(
xi 1
1 −y

)
(i = 1, 2, . . . , n) and

(
y 1
1 0

)
are invertible

in the ring R = k∆n/I (that is, they are invertible elements of the ring M2(R)). Their
inverses are (

y − yxiy 1− yxi
1− xiy −xi

)
and P (0)P (−y)P (0)

respectively.

6 The generalized Fibonacci polynomials fn

We now generalize the continuants pn(t1, t2, . . . , tn) of Section 2 from the case of one
sequence of indeterminates tn to the case of two sequences of indeterminates. The new
polynomials we obtain appear in the study of generalized continued fractions, hence we
call them generalized Fibonacci polynomials.

Our new polynomials fn are again polynomials with coefficients in Z and in the non-
commutative indeterminates x1, x2, x3, . . . and y1, y2, y3, . . . They are defined by the re-
cursion formulae:

f−1 = 0, f0 = 1,
fn(x1, . . . , xn, y1, . . . , yn) = fn−1(x1, . . . , xn−1, y1, . . . , yn−1)xn

+ fn−2(x1, . . . , xn−2, y1, . . . , yn−2)yn.
(18)

Thus, when we specialize all the indeterminates yi to 1, these polynomials turn out
to be the continuants pn of Section 2 in one countable set of indeterminates, that is,
pn(t1, . . . , tn) = fn(t1, . . . , tn, 1, 1, . . . , 1). Also,

fn(x, . . . , x, 1, 1, . . . , 1) = Fn(x),

the commutative Fibonacci polynomials, which have received much attention [3, Intro-
duction]. Moreover, fn(x, . . . , x, y, . . . , y) turns out to be the noncommutative analogue
of the generalized Fibonacci polynomial {n}x,y studied in [3].

The first of these polynomials fn are

f0 = 1, f1 = x1, f2 = x1x2 + y2,
f3 = x1x2x3 + x1y3 + y2x3,
f4 = x1x2x3x4 + x1x2y4 + x1y3x4 + y2x3x4 + y2y4,
f5 = x1x2x3x4x5 + x1x2x3y5 + x1x2y4x5 + x1y3x4x5

+ x1y3y5 + y2x3x4x5 + y2x3y5 + y2y4x5, . . .

The number of monomials in each fn is the (n+ 1)-th Fibonacci number Fn+1.
These polynomials can be built using a leapfrog construction similar to that in Section

2 for continuants polynomials. For fn, start writing the product x1 . . . xn and add all the
monomials obtained by replacing all the possible disjoint consecutive pairs xixi+1 by yi+1.
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Notice that the indeterminate y1 does not appear in any polynomial

fn(x1, . . . , xn, y1, . . . , yn),

that is, every fn(x1, . . . , xn, y1, . . . , yn) has degree 0 in the indeterminate y1. Let us prove
by induction on n that

fn(x1, . . . , xn, y1, x1x2, x2x3, x3x4, . . . , xn−1xn) = Fn+1x1x2 . . . xn. (19)

For n = −1, we have that f−1 = 0 = F0. For n = 0, we have that f0 = 1 = F1. Assume
the result true for the indices smaller than n. Then

fn(x1, . . . , xn, y1, x1x2, x2x3, x3x4, . . . , xn−1xn)
= fn−1(x1, . . . , xn−1, y1, x1x2, x2x3, x3x4, . . . , xn−2xn−1)xn

+ fn−2(x1, . . . , xn−2, y1, x1x2, x2x3, x3x4, . . . , xn−3xn−2)xn−1xn
= Fnx1x2 . . . xn−1 · xn + Fn−1x1x2 . . . xn−2 · xn−1xn
= Fn+1x1x2 . . . xn.

Let us mention another interesting specialization: if one puts yi = xi, for any i =
1, . . . , n we obtain new polynomials in the variables x1, . . . , xn:

dn(x1, . . . , xn) = fn(x1, . . . , xn, x1, . . . , xn).

In particular, we have d0 = 1, d1(x1) = x1, d2(x1, x2) = x1x2 + x2, d3(x1, x2, x3) =
x1x2x3 + x1x3 + x2x3. Specializing further, we get the sequence of natural numbers
Dn = dn(0, 1, 2, . . . , n−1) that gives the number of derangements in the symmetric group
Sn. We will see that the polynomials fn admit a matrix presentation (cf. (20)). This
easily leads to a presentation of the elements of the sequence Dn (cf. also [8]).

The polynomials fn are also homogeneous polynomials of degree n if we give all the
indeterminates xi degree 1 and all the indeterminates yi degree 2. Thus, if we view
fn(x1, . . . , xn, y1, . . . , yn) as an element of k〈x1, . . . , xn, y1, . . . , yn〉, where k is any com-
mutative ring and k〈x1, . . . , xn, y1, . . . , yn〉 is the free k-algebra in the noncommutative
indeterminates x1, . . . , xn, y1, . . . , yn, then

fn(λx1, . . . , λxn, λ
2y1, . . . , λ

2yn) = λnfn(x1, . . . , xn, y1, . . . , yn)

for every λ ∈ k.
Finally, it is not difficult to see that fn(x, . . . , x, y, . . . , y) is the sum of all monic

monomials of degree n in the free algebra Z〈x, y〉 in the two indeterminates x, y when
the indeterminate x is given degree 1 and y is given degree 2. Two other formulae, that
essentially appear in [3], are

fn(2, 2, . . . , 2,−1,−1, . . . ,−1) = n

and, more generally,

fn(x+ 1, x+ 1, . . . , x+ 1,−x,−x, . . . ,−x) = 1 + x+ x2 + · · ·+ xn−1.
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These new polynomials fn are also entries of 2 × 2-matrices, as in the identity (2).
Now we have that(

x1 1
y1 0

)
· · ·
(
xn 1
yn 0

)
=

(
fn(x1, . . . , xn, y1, . . . , yn) fn−1(x1, . . . , xn−1, y1, . . . , yn−1)

y1fn−1(x2, . . . , xn, y2, . . . , yn) y1fn−2(x2, . . . , xn−1, y2, . . . , yn−1)

)
.

(20)

This is clear for n = 1. The general case can be proved by induction, since on writing
fi = fi(x1, . . . , xi, y1, . . . , yi), f

′
i = fi(x2, . . . , xi+1, y2, . . . , yi+1), we have that(

fn−1 fn−2
y1f

′
n−2 y1f

′
n−3

)(
xn 1
yn 0

)
=

(
fn fn−1

y1f
′
n−1 y1f

′
n−2

)
. (21)

Regrouping the first k matrices, for 1 6 k 6 n, in (20), we get that the matrix on the
right hand side of this equation is equal to the product(

fk(x1, . . . , yk) fk−1(x1, . . . , yk−1)
y1fk−1(x2, . . . , yk) y1fk−2(x2, . . . , yk−1)

)
·
(

fn−k(xk+1, . . . , yn) fn−k−1(xk+1, . . . , yn−1)
yk+1fn−k−1(xk+2, . . . , yn) yk+1fn−k−2(xk+2, . . . , yn−1)

)
Comparing the (1, 1) entry of this product with the corresponding entry in (20), we

obtain:

fn(x1, . . . , yn) = fk(x1, . . . , yk)fn−k(xk+1, . . . , yn)
+ fk−1(x1, . . . , yk−1)yk+1fn−k−1(xk+2, . . . , yn).

(22)

Let us now mention a few consequences of the equation (22). First we remark that
for k = 1, we have

fn(x1, . . . , xn, y1, . . . , yn)
= x1fn−1(x2, . . . , xn, y2, . . . , yn) + y2fn−2(x3, . . . , xn, y3, . . . , yn).

(23)

The formula obtained in (22) can also be considered as a generalization of an anal-
ogous classical relation for the usual Fibonacci numbers Fn; that is, if one specializes
x1 = · · · = xn = y1 = · · · = yn = 1, we get that Fn = FkFn−k + Fk−1Fn−k−1.

Using the recursive relation in the definition of fn and the above equation (22), we
easily obtain the following useful formula: for 1 6 k < n,

fn(x1, x2, . . . , yn)
= fk+1(x1, . . . , xk, fn−k(xk+1, . . . , yn), y1, . . . , yk, fn−k−1(xk+2, . . . , yn))

(24)

In the free algebra Z < x1, x2, . . . ; y1, y2, · · · >, we can define the standard partial
derivations ∂

∂xk
and ∂

∂yk
, for k > 1.

Using the equation (22), we then have the following:
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∂fn(x1,...,yn)
∂xk

= fk−1(x1, . . . , yk−1)fn−k(xk+1, . . . , yn), for 1 6 k 6 n.
∂fn(x1,...,yn)

∂yk
= fk−2(x1, . . . , yk−2)fn−k(xk+1, . . . , yn), for 2 6 k 6 n.

(25)

As mentioned above, the polynomials fn, specialized in y1 = · · · = yn = 1, give the
continuant polynomials pn. In particular, it is easy to obtain formulas for the continuant
polynomials analogous to the equations (22) and (25). On the other hand, we may as well
specialize the polynomials fn in x1 = · · · = xn = 1; we then get a family of polynomials
rn(y1, . . . , yn). The first values of these polynomials are r1 = 1, r2 = 1 + y2, r3 =
1 + y2 + y3, r4 = 1 + y2 + y3 + y4 + y2y4, r5 = 1 + y2 + y3 + y4 + y5 + y2y4 + y2y5 + y3y5.
They satisfy the recurrence relation

rn+1(y1, . . . , yn+1) = rn(y1, . . . , yn) + rn−1(y1, . . . , yn−1)yn+1.

In particular, if we specialize further, we obtain the following sequence of natural numbers
In = rn(0, 1, . . . , n− 1) which gives the number of involutions in the symmetric group Sn.
As for earlier sequences, these can be presented using a specialization of the matrices in
Equation (20) (cf. also [8]).

Using the polynomials rn and the equation (22), we easily obtain, for 1 6 k 6 n, that

fn(1, . . . , 1, xk+1, . . . , xn, y1, . . . , yn)
= rk(y1, . . . , yk)xk+1fn−k(xk+1, . . . , yn)

+ rk−1(y1, . . . , yk−1)yk+1fn−k−1(xk+2, . . . , yn).
(26)

From (23), we get the formulae analogous to those given by P. M. Cohn for the
continuant polynomials in [5, formulae (16), p. 148]:

fn(0, x2, . . . , xn, y1, . . . , yn) = y2fn−2(x3, . . . , xn, y3, . . . , yn)

and
fn(1, x2, . . . , xn, y1 . . . yn) = fn−1(x2 + y2, x3, . . . , xn, y2, y3, . . . , yn).

Conjugating all the matrices in the equation (20) by the invertible matrix P (0), we
find that(

0 y1
1 x1

)
· · ·
(

0 yn
1 xn

)
=

(
y1fn−2(x2, . . . , xn−1, y2, . . . , yn−1) y1fn−1(x2, . . . , xn, y2, . . . , yn)
fn−1(x1, . . . , xn−1, y1, . . . , yn−1) fn(x1, . . . , xn, y1, . . . , yn)

)
.

(27)

We may also look at our noncommutative indeterminates x1, . . . , xn, y1, . . . , yn in the
polynomial fn(x1, . . . , xn, y1, . . . , yn) as arrows in a quiver En with two vertices A and B,
where xi is an arrow from A to B for i odd, xi is an arrow from B to A for i even, yi is
an arrow from A to A for i odd, and yi is an arrow from B to B for i even. The quiver
En is the following:
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A B
x2i

x2i−1

y2i y2i−1

The quiver En has 2n arrows. The polynomials fi turn out to be linear combinations
of paths with all the coefficients equal to one, and these paths in fi are from A to A
(hence they are cycles) when i is even, and are paths from A to B when i is odd.

Notice that we have(
x2i−1 1
y2i−1 0

)(
A
B

)
=

(
B
A

)
and

(
x2i 1
y2i 0

)(
B
A

)
=

(
A
B

)
, (28)

so that again, in the product (20), the matrices alternatively leap from A to B.

7 Circular tilings and the polynomials cn

The classes of polynomials studied in this paper have a clear combinatorial interpretation.
For instance:

(1) The monomials in the polynomial hn parametrize the nonempty subsets of a set
of n elements. It suffices to associate to the monomial xi1yxi2y . . . yxit of hn the subset
{i1, i2, . . . , it} of {1, 2, . . . , n}.

(2) The monomials in the polynomial

fn = fn(x1, . . . , xn, y1, . . . , yn)

studied in Section 6 parametrize the possible ways one can tile a strip of 1×n square cells
with 1× 1 squares and 1× 2 dominos. Essentially, this is the standard interpretation of
the Fibonacci numbers Fn via linear tilings. A linear tiling of a row of squares (a 1 × n
strip of square cells) is a covering of the strip of squares with squares and dominos (which
cover two squares). For instance, the polynomial f3 = x1x2x3 + x1y3 + y2x3 parametrizes
the set of the three linear tilings

of a row of three squares. Here xi denotes the i-th square and yi denotes the domino that
covers the (i−1)-th and the i-th square (yi is the domino that “ends on the i-th square”.)
The Fibonacci number Fn represents the number of tilings of a strip of length n using
length 1 squares and length 2 dominos.

It is also possible to consider circular tilings, where the deformed square are arranged
in a circle [3]. For instance, the four possible circular tilings of a circle of three squares
are
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But for us it will be more convenient to represent the same four possible circular tilings
of a circle of three squares as follows:

In this representation, we use an “out-of-phase domino” which spans the first and last
cells of the tiling.

This suggests that there must also exist noncommutative polynomials cn which par-
ametrize the set of circular tilings of a circle of n squares. The idea is the following. Any
circular tiling of a circle of n squares s1, . . . , sn either does not contain the out-of-phase
domino which spans sn and s1 or contains the out-of-phase domino. The circular tilings of
the circle that do not contain the out-of-phase domino are in one-to-one correspondence
with the linear tilings of a row of squares s1, . . . , sn, hence they are parametrized by the
monomials of the polynomial fn(x1, . . . , xn, y1, . . . , yn). The circular tilings of the circle
that do contain the out-of-phase domino are in one-to-one correspondence with the linear
tilings of the row of squares s2, . . . , sn−1, hence they are parametrized by the monomials
of the polynomial

fn−1(x2, . . . , xn−1, y2, . . . , yn−1).

Now, as we have already said, the indeterminate xi denotes a length 1 square in the i-th
position, and the indeterminate yi denotes a length 2 domino that ends in the i-th position.
Thus we will denote the out-of-phase domino, which starts from the n-th position and
ends in first one, by y1. Hence we find that the circular tilings of a circle of n squares
(n > 1) are parametrized by the noncommutative polynomials cn defined by

cn(x1, . . . , xn, y1, . . . , yn) =
= fn(x1, . . . , xn, y1, . . . , yn) + y1fn−2(x2, . . . , xn−1, y2, . . . , yn−1).

(29)

Notice that:
(1) The indeterminate y1 does not appear in the polynomials fn, it appears in these

new polynomials cn for the first time.
(2) In the polynomials fn (n > 1), all the monomials begin with x1 or y2 and end with

xn or yn. In the polynomials cn, all the monomials begin with x1, y1 or y2 and end with
xn−1, yn−1, xn or yn.

(3) The first polynomials cn are

c1(x1, y1) = x1, c2(x1, x2, y1, y2) = x1x2 + y1 + y2,
c3(x1, x2, x3, y1, y2, y3) = x1x2x3 + x1y3 + y1x2 + y2x3,
c4(x1, x2, x3, x4, y1, y2, y3, y4) = x1x2x3x4 + x1x2y4 + x1y3x4

+ y1x2x3 + y1y2 + y2x3x4 + y2y4.
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(4) Once again these polynomials can be obtained by a leapfrog construction as follows:
to obtain cn you write x1 . . . xn and replace every possible disjoint pairs xixi+1 by yi+1

(indexing module n so that for a word terminating in xn and starting by x− 1 the letter
xn is erased and the letter x1 is replaced by y1).

(5) The polynomial c2(x1, x2, y1, y2) = x1x2 + y1 + y2 parametrizes the three circular
tilings

of a circle of two squares, which we considered to be distinct. With these conventions, we
have that cn(1, 1, . . . , 1) = Ln for every n > 1, where Ln indicates the n-th Lucas number,
as desired. Here, the Lucas number Ln, defined by L0 = 2, L1 = 1 and Ln = Ln−1 +Ln−2
when n > 2, represents for n > 1 the number of circular tilings of a strip of length n using
length 1 squares and length 2 dominos.

To relate the polynomials cn with a suitable product of matrices we need the trace.
For any ring R, the abelian group Mn(R) of all n×n-matrices over R can be viewed as an
R-R-bimodule RMn(R)R. The trace tr : RMn(R)R → RRR, defined by tr(aij)i,j =

∑n
i=1 aii,

is an R-R-bimodule morphism with the further property that

tr ((aij)i,j(bij)i,j) =
n∑
i=1

n∑
j=1

aijbji.

From (20) and (29), we get that

Theorem 11.

cn(x1, . . . , xn, y1, . . . , yn) = tr

((
x1 1
y1 0

)
· · ·
(
xn 1
yn 0

))

8 The generalized Lucas polynomials `n and negative indices

Now we can define the generalized Lucas polynomials by the recursion formulae:

`0 = 2, `1 = x1,
`n(x1, . . . , xn, y1, . . . , yn) = `n−1(x1, . . . , xn−1, y1, . . . , yn−1)xn

+ `n−2(x1, . . . , xn−2, y1, . . . , yn−2)yn,
(30)

generalizing [4, p. 142].
The first of these polynomials are

`0 = 2, `1 = x1, `2 = x1x2 + 2y2,
`3 = x1x2x3 + x1y3 + 2y2x3,
`4 = x1x2x3x4 + x1x2y4 + x1y3x4 + 2y2x3x4 + 2y2y4,
`5 = x1x2x3x4x5 + x1x2x3y5 + x1x2y4x5 + x1y3x4x5

+ x1y3y5 + 2y2x3x4x5 + 2y2x3y5 + 2y2y4x5, . . .
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The number of monomials in each `n is the (n+ 1)-th Fibonacci number and, for n > 1,
one has that `n(1, 1, . . . , 1) = Ln, the n-th Lucas number. The polynomial

`n(x1, . . . , xn, y1, . . . , yn)

belongs to Z〈x1, . . . , xn, y1, . . . , yn〉, though in this case also the indeterminate y1 does not
appear. But the polynomials `n are just a specialization of the polynomials fn, as the
following result shows.

Theorem 12.

`n(x1, . . . , xn, y1, . . . , yn) = fn(x1, x2, x3 . . . , xn, y1, 2y2, y3, y4, . . . , yn)

for every n > 1.

Proof. Induction on n. The cases n = 1 and n = 2 are easily checked directly. For n > 3,
assume that the theorem is true for n− 1 and n− 2. Then

`n(x1, . . . , xn, y1, . . . , yn)

= `n−1(x1, . . . , xn−1, y1, . . . , yn−1)xn + `n−2(x1, . . . , xn−2, y1, . . . , yn−2)yn

= fn−1(x1, . . . , xn−1, y1, 2y2, . . . , yn−1)xn + fn−2(x1, . . . , xn−2, y1, 2y2 . . . , yn−2)yn

= fn(x1, x2, x3 . . . , xn, y1, 2y2, y3, y4, . . . , yn).

Let us consider negative indices n. The sequence of Fibonacci numbers Fn can be
extended to any negative index n using the recurrence formula Fn−2 = Fn − Fn−1, and
one finds that F−n = (−1)n+1Fn for every n > 0. It is clear that our sequences of
polynomials can be also extended to negative indices n.

Let us begin with the continuants pn(t1, . . . , tn), for which we have that

pn(1, 1, . . . , 1) = Fn+1.

The difference of 1 in the indices in this formula is due to Cohn’s original choice of the
initial conditions p−1 = 0, p0 = 1. Though the usual modern definition of Fibonacci
numbers with F0 = 0, F1 = 1 is more appropriate, we prefer to continue using Cohn’s
original notation with p−1 = 0 and p0 = 1.

The recursion formula must now be re-written as pn−2 = pn−pn−1tn. Substituting n−2
with −m, we get that p−m = p−(m−2) − p−(m−1)t−(m−2). We thus find that p0 = 1, p−1 =
0, p−2 = 1, p−3 = −t−1, p−4 = t−1t−2 + 1, and so on. The polynomial p−n for n > 0 turns
out to be an element of the free algebra Z〈t−1, t−2, . . . , t−(n−2)〉 in the noncommutative
indeterminates t−1, t−2, . . . , t−(n−2). The general formula is given in the next proposition.
Its proof is left to the reader.

Proposition 13.

p−n(t−1, t−2, . . . , t−(n−2)) = (−1)npn−2(t−1, t−2, . . . , t−(n−2))
= pn−2(−t−1,−t−2, . . . ,−t−(n−2))

for every integer n > 0.
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Notice that relation (2) now becomes(
−t−1 1

1 0

)
· · ·
(
−t−n 1

1 0

)
=

(
p−(n+2)(t−1, . . . , t−n) p−(n−1)(t−1, . . . , t−(n−1))
p−(n−1)(t−2, . . . , t−n) p−n(t−2, . . . , t−(n−1))

)
. (31)

For the generalized Fibonacci polynomials fn(x1, x2, . . . , xn, y1 . . . yn), we have that
the recursion formula

fn(x1, . . . , xn, y1, . . . , yn) = fn−1(x1, . . . , xn−1, y1, . . . , yn−1)xn
+ fn−2(x1, . . . , xn−2, y1, . . . , yn−2)yn

now becomes

fn−2(x1, . . . , xn−2, y1, . . . , yn−2)

= fn(x1, . . . , xn, y1, . . . , yn)y−1n − fn−1(x1, . . . , xn−1, y1, . . . , yn−1)xny−1n . (32)

Thus we get that, for any integer n > 0, the polynomial f−n−2 must belong to the
Z-algebra Z〈x−1, x−2, . . . , x−n, y±10 , y±11 , . . . , y±1−(n−2)〉, obtained from Z adjoining 2n alge-
braically independent elements x−1, x−2, . . . , x−n, y0, y−1, y−2, . . . , y−(n−1) with y0, y−1,
. . . , y−(n−1) invertible. The proof of the following proposition, by induction, is left to the
reader.

Proposition 14.

f−n−2(x−1, x−2, . . . , x−n, y0, y1, . . . , y−(n−1))
= fn(−y−10 x−1,−y−1−1x−2, . . . ,−y−1−(n−1)x−n, 1, y

−1
0 , y−1−1, . . . , y

−1
−(n−2))y

−1
−(n−2)

for every integer n > 0.

In extending the generalized Lucas polynomials `n to negative indices n, we have, like
for the fn’s in (32), that `n−2 = `ny

−1
n − `n−1xny−1n . It is easily seen that

Proposition 15.

`−n(x1, x0, x−1 . . . , x−(n−2), y0, y−1, y−2, . . . , y−(n−2))
= (−1)n`n(x1y

−1
1 , x0y

−1
0 , x−1y

−1
−1, . . . , x−(n−2)y

−1
−(n−2); 1, y−10 , y−1−1, . . . , y

−1
−(n−2))

for every integer n > 0.

9 The general pattern: the polynomials gn

Now consider the following family of polynomials gn, with n > 0. To define them, we
need countably many noncommutative indeterminates xij, where 1 6 i 6 j. Set g0 = 1
and

gn =
n∑
i=1

gi−1xin, for n > 1. (33)
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For instance, the first polynomials gn are

g1 = x11, g2 = x12 + x11x22, g3 = x13 + x11x23 + x12x33 + x11x22x33,
g4 = x14 + x11x24 + x12x34 + x11x22x34 + x13x44 + x11x23x44

+ x12x33x44 + x11x22x33x44.

For every n > 1, the polynomial gn turns out to be a polynomial with integer coef-
ficients in the n(n + 1)/2 indeterminates xij with 1 6 i 6 j 6 n, as is easily seen. The
polynomial gn is a sum of monic monomials that parametrize all linear tilings of a strip
of n square cells, that is, all coverings of the strip of squares with rectangles of any length
1, 2, . . . , n. The indeterminate xij indicates the rectangle of length j − i + 1 that starts
covering the i-th square and ends covering the j-th square.

For instance, g3 = x13 + x11x23 + x12x33 + x11x22x33 and, correspondingly, the tilings
of a strip of three squares are

The first tiling consists of a unique rectangle of length 3. The second and the third of one
rectangle of length 1 and one of length 2, in the two possible orders. The fourth tiling
consists of three squares.

Remarks 16. (1) Let us show how we can recover the previous families of polynomials
using the polynomials gn. As we have seen, the family fn parametrizes tilings of a strip
of length n with tiles of length 1 (represented by the indeterminates xi in the definition
of fn) and of length 2 (represented by the indeterminates yi in the definition of fn). It is
clear from the equation (33) that fn can be obtained by equating, in this expression of
gn, all the indeterminates xij to zero for j > i+ 2. In other words, the polynomial fn can
be obtained from gn by specializing in the polynomial gn the indeterminates xij to zero
whenever j > i+ 2, the indeterminates xii to xi and the indeterminates xi,i+1 to yi+1.

(2) Since the polynomials pn are obtained from fn by specializing the indeterminates
yi (in the definition of fn) to 1 and the indeterminates xi to ti, we can also obtain the
polynomials pn by specializing the indeterminates of the polynomial gn. To be more
precise this specialization is obtained by sending xij to zero whenever j > i + 2, xii to ti
and xi,i+1 to 1.

(3) The polynomial gn is the sum of 2n−1 monomials, which parametrize the subsets of
a set of n− 1 elements. Hence there is a clear immediate connection with the monomials
of the polynomial hn, which parametrize the nonempty subsets of a set of n elements.
To this end, it suffices to send every monomial xi1j1xi2j2 . . . xit−1jt−1xitn of degree t in gn
to the subset {j1, j2, . . . , jt−1} of cardinality t − 1 of the set {1, 2, . . . , n − 1}. In order
to get the polynomial hn from gn+1, it suffices to specialize, in the polynomial gn+1, the
indeterminate xij to xjy for every i and j, then multiply by (xn+1y)−1 = y−1x−1n+1, subtract
1, and finally multiply by y−1 on the right. That is, after the specialization, we have that
hn = (gn+1y

−1x−1n+1 − 1)y−1.
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(4) The “hierarchy” of the polynomials we have studied in this paper follows therefore
the following pattern. Each family of polynomials is a “specialization” of the families
above it, as the remarks (1), (2), (3) above, Theorem 12 and (29) show.

gn

hn
fn

pn cn `n

(3) (1)

(2)
(29)

(12)

Notice that, in this diagram, cn is not really obtained via some specialization from fn,
because (29) is simply the definition of the cn’s, in terms of the polynomials fn.

Equation (33) leads to

(g1, . . . , gn) = (g0, . . . , gn−1)


x11 x12 . . . x1n
0 x22 . . . x2n
...

. . . . . .
...

0 . . . 0 xnn


Since, for 1 6 l 6 n, a tiling of a strip of length n is obtained by a tile of length l

followed by a tiling of length n−l, the following formula, where we have specified explicitly
the indeterminates (“the tiles”) for each polynomial, is easy to get:

gn(xij; 1 6 i 6 j 6 n) =
n∑
l=1

x1lgn−l(xl+i,l+j; 1 6 i 6 j 6 n− l) (34)

The row (gn, . . . , g1) is also given by the first row of the following matrix product.
This can be seen as a generalization of the equality (20).

x11 1 0 . . . 0

∗ 0 1 0
...

...
...

. . . 0
∗ 0 0 . . . 1
∗ 0 0 . . . 0




x22 1 0 . . . 0

x12 0 1 0
...

∗ 0
. . . . . . 0

... 0 0 . . . 1
∗ 0 0 . . . 0

 · · ·


xnn 1 0 . . . 0

xn−1,n 0 1 0
...

...
...

. . . 0
x2n 0 0 . . . 1
x1n 0 0 . . . 0


10 Permanents

Let R be a nonnecessarily commutative ring, n > 1 be an integer, Mn(R) the n×n-matrix
ring, and Sn be the symmetric group. Define a mapping perm: Mn(R) → R setting, for
every matrix A = (ai,j)i,j ∈Mn(R),

perm(A) :=
∑
σ∈Sn

a1,σ(1) . . . an,σ(n).
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If Ai,j denotes the (n − 1) × (n − 1)-matrix that results from A removing the i-th row
and the j-th column, then perm(A) :=

∑n
j=1 a1,j perm(A1,j) =

∑n
j=1 perm(An,j)an,j (it is

possible to easily expand our permanent along the first row or the last row only).

Theorem 17. For every n > 1,

gn(xij) = perm(An) = perm(Atn), (35)

where

An =


x11 x12 x13 . . . x1n
1 x22 x23 . . . x2n

0 1 x33
. . . x3n

...
. . . . . . . . .

...
0 . . . 0 1 xnn


Proof. Let us show that gn(xij) = perm(An) by induction on n. The case n = 1 is trivial.

Let us assume that the formula holds for n and expand perm(An+1) along the last
row: perm(An+1) = perm(Bn) + gnxn+1,n+1 where Bn is the n × n matrix given by

Bn =

(
An−1 C
U xn,n+1

)
, where C is the column (x1,n+1, . . . , xn−1,n+1)

t and U is the row

(0, . . . , 0, 1). In particular, the matrix Bn is obtained from the matrix An changing the
last column. Notice that in the expression gn =

∑n
i=1 gi−1xin, the polynomials g0, . . . , gn−1

do not depend on the indeterminates xin. Since the expression of perm(An) given by the
inductive hypothesis is perm(An) = gn, we get that perm(Bn) = g0x1,n+1+g1x2,n+1+ · · ·+
gn−1xn,n+1. Thus we have perm(An+1,n+1) =

∑n+1
i=1 gi−1xi,n+1 = gn+1, as desired. The fact

that perm(Atn) = gn as well is proved similarly, using the equality (34).

Let us remark that, contrary to the case of permanents defined over commutative
rings, we do not have in general that perm(A) = perm(At).

From Theorems 17, 12 and Remarks 16((1) and (2)), we immediately get that:

Corollary 18. The polynomials fn(x1, . . . , xn, y1, . . . , yn) and pn(t1, . . . , tn) are the per-
manents of the n× n tridiagonal matrices

x1 y2 0 . . . 0
1 x2 y3 . . . 0

0 1 x3
. . . 0

...
. . . . . . . . .

...
0 . . . 0 1 xn

 and


t1 1 0 . . . 0
1 t2 1 . . . 0

0 1 t3
. . . 0

...
. . . . . . . . .

...
0 . . . 0 1 tn

 ,

and their transposes, respectively.

The analogue of formula (23) is the following:
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Proposition 19.

gn = x11gn−1(xi+1 j+1) + x12gn−2(xi+2 j+2) + x13gn−3(xi+3 j+3)
+ · · ·+ x1 n−1g1(xi+n−1 j+n−1) + x1ng0

Proof. It suffices to apply Theorem 17 expanding the permanent along the first row. The
t-th term in this expansion is

xit perm



1
1 ∗
0

. . . ∗
1

xt+1 t+1 xt+1 t+2 . . . xt+1 n

1 xt+2 t+2 xt+2 n

0
. . . . . .

...
0 1 xnn



= xit perm


xt+1 t+1 xt+1 t+2 . . . xt+1 n

1 xt+2 t+2 xt+2 n

. . . . . .
...

0 1 xnn

 = xitgn−t(xi+t j+t).
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