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Abstract

We investigate the minimum distance of the error correcting code formed by
the homomorphisms between two finite groups G and H. We prove some general
structural results on how the distance behaves with respect to natural group oper-
ations, such as passing to subgroups and quotients, and taking products. Our main
result is a general formula for the distance when G is solvable or H is nilpotent, in
terms of the normal subgroup structure of G as well as the prime divisors of |G|
and |H|. In particular, we show that in the above case, the distance is independent
of the subgroup structure of H. We complement this by showing that, in general,
the distance depends on the subgroup structure of H.

1 Introduction

1.1 Error correcting codes

The theory of error correcting codes studies codes, which are subsets of Σn for some
alphabet Σ and block length n. The distance between two strings of equal length is
the number of coordinates in which they differ. The distance ∆ of a code is simply
the minimum distance between any pair of distinct codewords (elements of the code).
Hamming [Ham50] identifies the distance of a code as the key parameter measuring
the error correcting capability of the code. As long as the number of coordinates in
which a codeword is corrupted is less than ∆/2, one can uniquely recover the original
codeword. Elias [Eli57] and Wozencraft [Woz58] proposed list decoding, in which one
insists only on recovering a list, whose size is at most polynomial in n, which contains
the original codeword. The Johnson bound [Joh62] shows that codes can list decode
errors beyond ∆/2. Codes with efficient list decoding algorithms include the Hadamard
code [GL89], Reed-Solomon codes and variants thereof [Sud97, GS99, GR08, Gur11],
Reed-Muller codes [GKZ08, Gop13], multiplicity/derivative codes [Kop12, GW11], and
abelian group homomorphisms [GKS06, DGKS08]. For some of these codes, in particular
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for carefully chosen subcodes the folded Reed-Solomon codes and multiplicity/derivative
codes [DL12], the Reed-Muller codes, and abelian group homomorphisms, it was shown
that for any constant ε > 0 one can algorithmically list decode up to ∆− εn errors with
a constant list size, depending only on 1/ε. For all of these codes, the codewords are
interpreted as certain functions f : A→ B from some domain A to codomain B. In this
case, the coordinates of the codeword are indexed by A and the alphabet is B.

In a companion work [GS14], the author and Sudan show the analogous list decoding
results for group homomorphisms between supersolvable groups. A technical obstacle
which did not arise in the previous works of [GKS06, DGKS08] on list decoding abelian
group homomorphisms is actually determining the distance of the code. This turns out
to be a nontrivial problem and serves as the primary motivation of this paper.

1.2 Group homomorphisms

Let G and H be finite groups, with homomorphisms Hom(G,H). A function φ : G→ H
is a (left) affine homomorphism if there exists h ∈ H and φ0 ∈ Hom(G,H) such that
φ(g) = hφ0(g) for every g ∈ G. The set of left affine homomorphisms from G to H by
aHom(G,H). Note that the set of left affine homomorphisms equals the set of right affine
homomorphisms, since

hφ0(g) = (hφ0(g)h−1)h

and ψ0(g) , hφ0(g)h−1 is a homomorphism.
The equalizer of two functions f, g : G→ H, denoted Eq(f, g), is the set

Eq(f, g) , {x ∈ G | f(x) = g(x)}.

More generally, if Φ ⊆ {f : G → H} is a collection of functions, then the equalizer of Φ
is the set

Eq(Φ) , {x ∈ G | f(x) = g(x) ∀f, g ∈ Φ}.

In the theory of error correcting codes, the usual measure of distance between two strings
is the relative Hamming distance, which is the fraction of symbols on which they differ.
In the context of group homomorphisms, we find it more convenient to study the com-
plementary notion, the fractional agreement. We define the agreement agr(f, g) between
two functions f, g : G→ H to be the quantity

agr(f, g) ,
|Eq(f, g)|
|G|

.

The maximum agreement of the code aHom(G,H), denoted by ΛG,H , is defined as

ΛG,H , max
φ,ψ∈aHom(G,H)

φ 6=ψ

agr(φ, ψ)

In Section 2, we study the structure of the equalizers of homomorphisms and prove some
basic results that will be useful later. As we will see (Proposition 2.5), adding affine
homomorphisms does not change the distance of this code. However, we include these
functions in the code so that ΛG,H is well-defined when |Hom(G,H)| = 1, as long as H
is nontrivial.
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1.3 Our results

Our main result is the following formula for ΛG,H when G is solvable or H is nilpotent.

Theorem 1.1. Let G and H be finite groups. Define

PG,H , {p | p is a prime divisor of gcd(|G|, |H|)}

and
NG , {m | G has a proper normal subgroup of index m}.

If G is solvable or H is nilpotent, then

ΛG,H =

{
0 if PG,H ∩NG = ∅,

1
minPG,H∩NG

if PG,H ∩NG 6= ∅.

In Section 3, we prove general facts about ΛG,H , such as how it behaves with respect
to group decompositions, subgroups, and quotients.

The proof of Theorem 1.1 is divided into two sections. Section 4 handles the case
where H is nilpotent, and Section 5 handles the case where G is solvable.

In Section 6, we investigate ΛG,H when G is a non-abelian simple group, and in
particular when G = An is the alternating group on n > 5 objects. We show that the
formula for ΛG,H for solvable G does not apply to non-abelian simple groups, and hence
does not extend to arbitrary groups. We also see that, in general, ΛG,H depends not only
on the prime divisors of |G| and |H| but also on the subgroup structure of H, in particular
whether H contains isomorphic copies of G and how these copies are embedded in H.

2 Equalizers

We begin by observing that the equalizer of a set of (affine) homomorphisms is a (coset
of a) subgroup of G.

Proposition 2.1. Let G and H be finite groups. If Φ ⊆ Hom(G,H), then Eq(Φ) is a
subgroup of G. If Φ′ ⊆ aHom(G,H) and Eq(Φ′) 6= ∅, then there exists Φ ⊆ Hom(G,H)
with |Φ| = |Φ′| such that Eq(Φ′) is a coset of Eq(Φ).

A basic question we would like to answer is the following: if φ, ψ ∈ Hom(G,H),
then must the index of Eq(φ, ψ) divide |H|? Note that this is true when one of the
homomorphisms, say ψ, is the trivial homomorphism mapping to 1H , so that Eq(φ, ψ) =
kerφ. This follows from the fact that G/ kerφ ∼= imφ which is a subgroup of H, so
[G : kerφ] = | imφ| divides H. We will show in Proposition 2.6 that the more general
statement holds when H is a p-group. Before doing so, we collect a few more basic facts
that will be useful to us.

Proposition 2.2. Let G and H be finite groups and let Φ ⊆ Hom(G,H). For h ∈ H, if
the set

⋂
φ∈Φ φ

−1(h) is nonempty, then it is a coset of the subgroup
⋂
φ∈Φ kerφ.

Proposition 2.3. Let G be a group with normal subgroups N1, . . . , Nk / G. Then N ,⋂k
i=1Ni is a normal subgroup of G and G/N is isomorphic to a subgroup of

⊕k
i=1(G/Ni).
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Proof. Consider the homomorphism φ : G →
⊕k

i=1(G/Ni) which is defined by φ(g) =

(gN1, . . . , gNk). Then kerφ =
⋂k
i=1Ni = N , which shows that N is a normal subgroup.

Moreover, imφ is a subgroup of
⊕k

i=1(G/Ni), and by the First Isomorphism Theorem,
G/N = G/ kerφ ∼= imφ.

Proposition 2.4. Let G and H be finite groups, and let Φ ⊆ Hom(G,H). Let K ⊆ H
be the set of h ∈ H such that

⋂
φ∈Φ φ

−1(h) is nonempty. Then

|Eq(Φ)| =

∣∣∣∣∣⋂
φ∈Φ

kerφ

∣∣∣∣∣ · |K| .
Proof. We decompose Eq(Φ) into the disjoint union

Eq(Φ) =
⋃
h∈K

(⋂
φ∈Φ

φ−1(h)

)
.

The result then follows from the fact that each
⋂
φ∈Φ φ

−1(h) is a coset of
⋂
φ∈Φ kerφ,

which follows from Proposition 2.2.

The following proposition is simply the observation that the maximum agreement
between two affine homomorphisms is achievable by two homomorphisms, which will
allow us to reason about homomorphisms rather than affine homomorphisms in later
proofs, without loss of generality.

Proposition 2.5. If G and H are finite groups, then there exist φ, ψ ∈ Hom(G,H) such
that agr(φ, ψ) = ΛG,H , so if |Hom(G,H)| > 1, then

ΛG,H = max
φ,ψ∈Hom(G,H)

φ 6=ψ

agr(φ, ψ)

Proof. Let φ′, ψ′ ∈ aHom(G,H) such that agr(φ′, ψ′) = ΛG,H . By Proposition 2.1, there
exist φ, ψ ∈ Hom(G,H) such that |Eq(φ, ψ)| = |Eq(φ′, ψ′)|, hence agr(φ, ψ) = agr(φ′, ψ′).

Finally, we conclude this section by proving the following.

Proposition 2.6. Let G be a finite group and let H be a finite p-group. If Φ ⊆
aHom(G,H) and Eq(Φ) 6= ∅, then [G : Eq(Φ)] is a power of p. In particular,

ΛG,H 6
1

p
.

Proof. By Proposition 2.1, we may assume that Φ ⊆ Hom(G,H). It follows from

Proposition 2.3 that G/
(⋂

φ∈Φ kerφ
)

is isomorphic to a subgroup of
⊕

φ∈Φ(G/ kerφ) ∼=⊕
φ∈Φ imφ. But the imφ are subgroups of H, so they are p-groups, hence

⊕
φ∈Φ imφ is

a p-group, and so G/
(⋂

φ∈Φ kerφ
)

is a p-group, i.e.

|G|∣∣∣⋂φ∈Φ kerφ
∣∣∣ = pk
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for some k. By Proposition 2.4, there is some integer m such that

|G|
|Eq(Φ)|

=
|G|∣∣∣⋂φ∈Φ kerφ

∣∣∣ ·m =
pk

m
.

By Proposition 2.1, Eq(Φ) is a subgroup of G, and so by Lagrange’s theorem, pk

m
= |G|
|Eq(Φ)|

is an integer, hence m divides pk, therefore pk

m
is a power of p.

3 General facts

In this section, we investigate general properties of ΛG,H .

3.1 Subgroups and Quotients

Proposition 3.1. If G and H are finite groups and K 6 H is a subgroup, then

ΛG,H > ΛG,K .

Proof. This follows from the fact that aHom(G,K) ⊆ aHom(G,H).

Proposition 3.2. If G,H are nontrivial finite groups and N / G is a normal subgroup,
then

ΛG,H > ΛG/N,H .

Proof. By Proposition 2.5, there exist φG/N , ψG/N ∈ Hom(G/N,H) such that

agr(φG/N , ψG/N) = ΛG/N,H .

Define φ, ψ : G → H as follows. For x ∈ G, define φ(x) = φG/N(xN) and ψ(x) =
ψG/N(xN). Then φ, ψ ∈ Hom(G,H) since φ is the composition of φG/N with the natural
quotient map G → G/N , and similarly for ψ. It suffices to show that agr(φ, ψ) =
agr(φG/N , ψG/N), for which it suffices to show that |Eq(φ, ψ)| = |N | · |Eq(φG/N , ψG/N)|.
This follows from the fact that φ and ψ are constant on cosets, so Eq(φ, ψ) is a disjoint
union of cosets, and the cosets xN on which φ and ψ agree are exactly those for which
φG/N(xN) = ψG/N(xN).

Proposition 3.3. If G,H are nontrivial finite groups and S 6 G is a subgroup of G such
that |Hom(S,H)| = 1, then Hom(G,H) ∼= Hom(G/N,H), where N E G is the smallest
normal subgroup of G containing S. In particular,

ΛG,H = ΛG/N,H .

Proof. Let φ ∈ Hom(G,H). The restriction of φ to the domain S is a homomorphism in
Hom(S,H), which is trivial by assumption. This means that S 6 kerφ. Since kerφ E G,
by minimality of N it follows that N 6 kerφ. In particular, φ = φ′ ◦ π where φ′ ∈
Hom(G/N,H) and π : G→ G/N is the natural quotient map.
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3.2 Zappa-Szép products

Proposition 3.4. If G and H are finite groups and G = G1 ./ G2 for some subgroups
G1, G2 6 G, then

ΛG,H 6 max{ΛG1,H ,ΛG2,H}.

Proof. If |Hom(G,H)| = 1, then ΛG,H = 0 and so the bound is trivial. Assume
that |Hom(G,H)| > 1. By Proposition 2.1, there exist φ, ψ ∈ Hom(G,H) such that
agr(φ, ψ) = ΛG,H . First, we introduce some convenient notation. Denote by φG1 : G1 →
H and φG2 : G2 → H the restrictions of φ to G1 and G2 respectively, and similarly for ψG1

and ψG2 . For y ∈ G2, denote by φy : G1 → H the restriction φy(x) , φ(xy). It is straight-
forward to verify that φGi

, ψGi
∈ Hom(Gi, H) for i ∈ {1, 2} and φy, ψy ∈ aHom(G1, H)

for y ∈ G2.
By averaging, there exists y ∈ G2 such that agr(φy, ψy) > ΛG,H . If φy 6= ψy, then we

are done since
ΛG,H 6 agr(φy, ψy) 6 ΛG1,H .

Otherwise, suppose φy = ψy. Then φG1 = ψG1 , since for x ∈ G1,

φ(x) = φy(x)φy(1G)−1 = ψy(x)ψy(1G)−1 = ψ(x).

We claim that
Eq(φ, ψ) = G1 ./ Eq(φG2 , ψG2).

For the forward containment, observe that if xz ∈ Eq(φ, ψ) with x ∈ G1 and z ∈ G2,
then

φ(z) = φ(x)−1φ(xz) = φG1(x)−1φ(xz) = ψG1(x)−1ψ(xz) = ψ(x)−1ψ(xz) = ψ(z)

and so z ∈ Eq(φG2 , ψG2). Conversely, if x ∈ G1 and z ∈ Eq(φG2 , ψG2), then

φ(xz) = φG1(x)φG2(z) = ψG1(x)ψG2(z) = ψ(xz)

and so xz ∈ Eq(φ, ψ). This completes the proof of our claim. Moreover, since Eq(φ, ψ) 6=
G, Eq(φG2 , ψG2) 6= G2, hence φG2 6= ψG2 . Therefore,

ΛG,H =
|Eq(φ, ψ)|
|G|

=
|Eq(φG2 , ψG2)|

|G2|
6 ΛG2,H .

Proposition 3.5. If G and H are finite groups and G = G1 ./ G2 for some subgroups
G1, G2 6 G and |Hom(G2, H)| = 1, then every φ ∈ aHom(G,H) is of the form φ(xy) =
ψ(x) for some ψ ∈ aHom(G1, H) and every x ∈ G1 and y ∈ G2. In particular,

ΛG,H 6 ΛG1,H

Proof. Suppose φ ∈ aHom(G,H). Then there is some a ∈ H and some φ0 ∈ Hom(G,H)
such that φ(xy) = aφ0(x)φ0(y) for every x ∈ G1 and y ∈ G2. The restriction of φ0 to G2 is
a homomorphism from G2 → H, which is trivial by assumption. The restriction of φ0 to
G1 is also a homomorphism from G1 → H. Thus, φ(xy) = ψ(x) where ψ ∈ aHom(G1, H)
is defined by ψ(x) = aφ0(x).
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3.3 Direct products

Proposition 3.6. If G,H,G1, G2, H1, H2 are finite groups, then

1. ΛG,H1×H2 = max{ΛG,H1 ,ΛG,H2}

2. ΛG1×G2,H = max{ΛG1,H ,ΛG1,H}

Proof. 1. Since H1 is isomorphic to the subgroup H1 × {1H2} 6 H1 × H2, it follows
from Proposition 3.1 that ΛG,H1×H2 > max{ΛG,H1 ,ΛG,H2}. For the reverse bound,
if |Hom(G,H1 × H2)| = 1, then it is trivial, so assume |Hom(G,H1 × H2)| > 1.
By Proposition 2.5, there exist φ, ψ ∈ Hom(G,H) with agr(φ, ψ) = ΛG,H1×H2 .
Write φ = (φ1, φ2) and ψ = (ψ1, ψ2) where φi, ψi : G → Hi for i ∈ {1, 2}. Then
agr(φ1, ψ1), agr(φ2, ψ2) > agr(φ, ψ) = ΛG,H1×H2 . Moreover, since φ 6= ψ, we have
φi 6= ψi for at least one of the i ∈ {1, 2}. Therefore, ΛG,H1×H2 6 agr(φi, ψi) 6
ΛG,Hi

6 max{ΛG,H1 ,ΛG,H2}.

2. Since direct products are Zappa-Szép products, it follows from Proposition 3.4 that
ΛG1×G2,H 6 max{ΛG1,H ,ΛG2,H}. For the reverse bound, assume without loss of
generality that ΛG1,H > ΛG2,H . If |Hom(G1, H)| = 1, then the bound is trivial, so
assume |Hom(G1, H)| > 1. By Proposition 2.5, there exist φ1, ψ1 ∈ Hom(G1, H)
such that agr(φ, ψ) = ΛG1,H . Define φ, ψ : G1 × G2 → H by φ(x, y) , φ1(x)
and ψ(x, y) , ψ1(x). Then φ, ψ ∈ Hom(G1 × G2, H), so ΛG1×G2,H > agr(φ, ψ) =
agr(φ1, ψ1) = ΛG1,H > max{ΛG1,H ,ΛG2,H}.

3.4 Key facts

Here we prove some key facts that will help us characterize ΛG,H when G is solvable.

Lemma 3.7. If G and H are finite groups and p is the smallest prime divisor of |G|,
then

ΛG,H 6
1

p
.

Proof. Suppose φ, ψ ∈ aHom(G,H) are distinct. By Proposition 2.1, Eq(φ, ψ) is a coset
of a subgroup S of G, and hence |Eq(φ, ψ)| = |S|. By Lagrange’s theorem, |G|/|S|
is a divisor of |G|, and since φ 6= ψ it must be greater than 1, hence |G|/|S| > p, so

agr(φ, ψ) = |Eq(φ,ψ)|
|G| = |S|

|G| 6
1
p
.

Lemma 3.8. If G has a normal subgroup of index p and p divides |H|, then

ΛG,H >
1

p
.

Proof. Let N / G be a normal subgroup of index p. Let φ1 : G → G/N be the natural
quotient homomorphism. Since p divides |H|, by Cauchy’s theorem, there is an element
h ∈ H of order p. The subgroup 〈h〉 6 H generated by h is isomorphic to Zp, and
since G/N has order p, it is also isomorphic to Zp, hence there is an isomorphism φ2 :
G/N → 〈h〉. Define φ : G → H to be the composition φ = φ2 ◦ φ1. Since φ1, φ2

are homomorphisms, φ is a homomorphism, and moreover since φ2 is an isomorphism,
kerφ = kerφ1 = N . Therefore, | kerφ| = |N | = |G|/p.
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Proposition 3.9. If G and H are finite groups and gcd(|G|, |H|) = 1, then aHom(G,H)
consists of constant functions. In particular,

ΛG,H = 0.

Proof. It suffices to show that the only homomorphism φ : G → H is the trivial map
1H . If φ ∈ Hom(G,H), then G/ kerφ ∼= imφ. Moreover, since kerφ 6 G and imφ 6 H,
| imφ| = |G|/| kerφ| divides both |G| and |H|, hence | imφ| = 1 and so imφ = {1H}.

4 Nilpotent codomain

In this section, we prove Theorem 1.1 when H is nilpotent.
We begin by considering the case where G has no normal subgroups of index p for

any prime p dividing gcd(|G|, |H|). The following fact will be useful.

Proposition 4.1. If G is a finite solvable group and N/G is a maximal normal subgroup,
then N has prime index in G.

We proceed to prove that ΛG,H = 0. In fact, we prove it for the case where H is
solvable.

Proposition 4.2. Let G and H be finite groups, with H solvable. If G has no normal
subgroup of index p for any prime p dividing gcd(|G|, |H|), then |Hom(G,H)| = 1 and
in particular

ΛG,H = 0.

Proof. Suppose φ ∈ Hom(G,H) is nontrivial. Then kerφ/G is a proper normal subgroup
of G, and G/ kerφ ∼= imφ which is a subgroup of H, and hence solvable. Let N / G be
a maximal proper normal subgroup of G containing kerφ. By the Lattice Theorem,
N/ kerφ /G/ kerφ is a maximal proper normal subgroup, so by the Second Isomorphism
Theorem and Proposition 4.1, [G : N ] = [G/ kerφ : N/ kerφ] = p for some prime p
dividing |G/ kerφ| = |G|/| kerφ|. In particular, p divides |G|. But p = [G : N ] divides
[G : kerφ] = | imφ|, which divides |H|, so p divides gcd(|G|, |H|). The existence of N
contradicts our hypothesis, so φ must be trivial.

This does not hold in general as, for instance, when G = H = An for n > 5, which
is a non-abelian simple group, G has no normal subgroups of prime index, yet there are
certainly nontrivial homomorphisms An → An.

Now we proceed to the case where G has a normal subgroup of index p for some
prime p dividing gcd(|G|, |H|). We use the well-known fact that finite nilpotent groups
are direct products of their Sylow subgroups [DF04, Ch 6, Theorem 3].

Theorem 4.3. If G is a finite group, H is a finite nilpotent group, and p is the smallest
prime divisor of gcd(|G|, |H|) such that G has a normal subgroup of index p, then

ΛG,H =
1

p
.
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Proof. The lower bound follows from Lemma 3.8 so it suffices to show the upper bound.
Write H = P1×· · ·×Pr where Pi is the Sylow pi-subgroup of H, and the pi are distinct. If
pi < p, then G has no normal subgroup of index pi by assumption, so by Proposition 4.2
it follows that ΛG,Pi

= 0. On the other hand, if G has a normal subgroup of index
pi, then it follows from Proposition 2.6 and Lemma 3.8 that ΛG,Pi

= 1
pi

. Therefore, by

Proposition 3.6, it follows that ΛG,H = maxi ΛG,Pi
= 1

p
.

5 Solvable domain

In this section, we prove Theorem 1.1 when G is solvable. As in Section 4, we begin by
considering the case where G has no normal subgroups of index p for any prime p dividing
gcd(|G|, |H|).

Proposition 5.1. Let G be a finite solvable group and let H be any finite group. If G has
no normal subgroup of index p for any prime p dividing gcd(|G|, |H|), then |Hom(G,H)| =
1 and in particular

ΛG,H = 0.

Proof. Suppose φ ∈ Hom(G,H) is nontrivial. Then kerφ/G is a proper normal subgroup
of G, and G/ kerφ is isomorphic to a subgroup of H, by the First Isomorphism Theorem.
In particular, [G : kerφ] divides |H|. Let N / G be a maximal proper normal subgroup
of G containing kerφ. By Proposition 4.1, [G : N ] = p for some prime p dividing |G|.
But p = [G : N ] divides [G : kerφ] which divides |H|, so p divides gcd(|G|, |H|). By our
hypothesis, N cannot exist, so φ must be trivial.

We proceed to the case where G has a normal subgroup of index p for some prime
p dividing gcd(|G|, |H|). Let p be the minimal such prime, so that we wish to show
ΛG,H = 1

p
. We first consider the special case where every prime divisor of |G| less than

p also divides |H|. In this case, we show that G has no subgroups of index less than p,
which yields the upper bound. To show this, we use the following fact, due to Berkovich,
found as an exercise in [Isa08].

Proposition 5.2 ([Isa08, Exercise 3B.15]). Let G be a finite solvable group. Suppose
H < G is a proper subgroup of G with smallest index. Then H / G.

We now prove the upper bound for the special case.

Lemma 5.3. Suppose G is a finite solvable group, H is any group, and p is the smallest
prime divisor of gcd(|G|, |H|) such that G has a normal subgroup of index p. If every
prime less than p dividing |G| also divides |H|, then

ΛG,H 6
1

p
.

Proof. We claim that G has no subgroups of index less than p. Let S be the subgroup
with smallest possible index. By Proposition 5.2, S is normal. Since S is a maximal
normal subgroup, by Proposition 4.1 it follows that the index [G : S] = q for some prime
q dividing |G|. If q < p, then our hypotheses imply that q divides |H|, so G has a normal
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subgroup of prime index less than p dividing |H|, contradicting the minimality of p. Thus
[G : S] > p, proving our claim.

By Lemma 3.8, |Hom(G,H)| > 1, so by Proposition 2.5, there exist homomorphisms
φ, ψ ∈ Hom(G,H) such that agr(φ, ψ) = ΛG,H . By Proposition 2.1, Eq(φ, ψ) is a sub-
group of G, so it follows that ΛG,H = agr(φ, ψ) = 1/[G : Eq(φ, ψ)] 6 1/p.

We deal with the general case using the following theorem of Hall [Hal38] character-
izing finite solvable groups as those with Sylow bases.

Theorem 5.4 ([Hal38]). Let G be a finite group with order prime factorization |G| =∏m
i=1 p

ei
i . Then G is solvable if and only if it has Sylow pi-subgroups Pi such that G =

P1 ./ · · · ./ Pm.

We use this decomposition to filter out all the prime divisors of |G| not dividing |H|
to reduce to our special case.

Theorem 5.5. If G is a finite solvable group, H is any group, and p is the smallest
prime divisor of gcd(|G|, |H|) such that G has a normal subgroup of index p, then

ΛG,H =
1

p
.

Proof. The lower bound follows from Lemma 3.8 so it suffices to show the upper bound.
By Hall’s theorem (Theorem 5.4), we can write G = G1 ./ G2 where gcd(|G2|, |H|) = 1
and every prime dividing |G1| divides |H|. By Proposition 3.9, |Hom(G2, H)| = 1.
Let N / G be the smallest normal subgroup of G containing G2. By Proposition 3.3,
ΛG,H = ΛG/N,H , so it suffices to upper bound ΛG/N,H .

Since |G2| divides |N |, it holds that [G : N ] divides [G : G2] = |G1|. In particular,
every prime dividing |G/N | divides |H|. Moreover, G/N has no normal subgroups of
index q < p, for if it did, it would follow from the Lattice Theorem that G has a normal
subgroup of index q, and moreover q divides gcd(|G|, |H|), contradicting the minimality
of p. Thus, G/N has no normal subgroups of index less than p. Thus, by Lemma 5.3, it
follows that ΛG/N,H 6 1

p
.

The formula for ΛG,H for solvable G does not extend to arbitrary finite groups for
the obvious reason that G may not have any normal subgroups of prime index. This
holds, for instance, if G is any non-abelian simple group. One might then hope that the
modified statement, where we drop the requirement that p be prime, holds. For simple
G, this formula would be ΛG,H = 1

|G| . However, the following is a simple (pun intended)
counterexample.

Let G = H = A5. Consider the automorphisms which are conjugation by (123), and
its inverse, conjugation by (132). Then these are distinct homomorphisms, since they
disagree on (12) because (132)(12)(123) = (13) while (123)(12)(132) = (23). However,
they agree on (45) since (45) is a fixed point. This shows that ΛA5,A5 >

1
30
> 1
|G| . In fact,

we show in Section 6 that ΛA5,A5 = 1
10

.
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6 Non-abelian simple groups

We would like to determine ΛG,H for arbitrary finite groups G and H. We propose a
two-part strategy for doing this. First, understand ΛG,H for simple groups G. Then, un-
derstand how to determine ΛG,H for arbitrary G by cleverly decomposing G. In Section 3,
we proved some general facts about ΛG,H which could be useful (but far from complete)
for the second part of this program. In this section, we explore the first part, namely
we investigate ΛG,H for non-abelian simple groups G. A full investigation would entail
using the classification of finite simple groups and considering each family of finite simple
groups, which we do not do in this work. Instead, we prove some nontrivial lower bounds
on ΛG,H for general non-abelian simple G. We then prove some lower and upper bounds
on ΛG,G for the specific family {An}n>5 of alternating groups and pin down ΛA5,A5 = 1

10

exactly. We highlight a major difficulty, which is that in the general setting, unlike in
the setting where G is solvable, ΛG,H depends on how copies of G are embedded in H,
not just on the prime divisors of |G| and |H| and the normal subgroup structure of G.

6.1 Domain and codomain are isomorphic

If H does not contain a subgroup isomorphic to G, then Hom(G,H) is trivial. Let
us assume that G = H. Since G is simple, Hom(G,H) = Aut(G) ∪ {g 7→ 1G}. For
φ ∈ Aut(G), kerφ = {1G}, so clearly ΛG,G > 1

|G| . Can we achieve better agreement?

Better agreement must come from two automorphisms φ, ψ ∈ Aut(G). Note that
φ(g) = ψ(g) if and only if (φ−1 ◦ ψ) ∈ Aut(G) fixes g, so we wish to find a non-identity
automorphism φ ∈ Aut(G) which maximizes |Gφ|, where

Gφ , {g ∈ G | φ(g) = g}

is the subset of G fixed by φ ∈ Aut(G). Observe that the group Aut(G) naturally acts
on the set G via φ · g = φ(g). Let G/Aut(G) denote the orbits of G under this group
action. By Burnside’s lemma,

|G/Aut(G)| = 1

|Aut(G)|
∑

φ∈Aut(G)

|Gφ|.

Since Gid = G, where id ∈ Aut(G) is the identity automorphism,

|G/Aut(G)| − |G|
|Aut(G)|

=
1

|Aut(G)|
∑

φ∈Aut(G),φ 6=id

|Gφ|,

or

|Aut(G)|
|Aut(G)| − 1

(
|G/Aut(G)| − |G|

|Aut(G)|

)
=

1

|Aut(G)| − 1

∑
φ∈Aut(G),φ 6=id

|Gφ|.

By averaging, this implies that there is some non-identity automorphism φ ∈ Aut(G)
such that

|Gφ| > |Aut(G)|
|Aut(G)| − 1

(
|G/Aut(G)| − |G|

|Aut(G)|

)
the electronic journal of combinatorics 22(1) (2015), #P1.4 11



and thus, by dividing by |G|, we have

ΛG,G >
|Aut(G)|
|Aut(G)| − 1

(
|G/Aut(G)|
|G|

− 1

|Aut(G)|

)
.

6.2 Alternating groups

In this section, we prove the following.

Proposition 6.1. For n > 5,

2

n(n− 1)
6 ΛAn,An 6

1

n
.

When n 6= 6, the upper bound is strict.

For n = 5, the lower bound is tight, that is ΛA5,A5 = |S3|
|A5| = 1

10
. This is because

the only subgroups of An larger than S3, up to isomorphism, are the dihedral group D10

of order 10 generated by (1 2 3 4 5) and (2 5)(3 4), and A4. One can check that no
conjugation fixes all of A4 nor all of D10.

For the proof of Proposition 6.1, we use the following fact.

Claim 6.2. Let n > 3. The subgroup An−1 6 An is the unique subgroup (up to isomor-
phism) of An of smallest index. That is, there are no subgroups of An with index less
than n, and any subgroup of index n is isomorphic to An−1.

Proof. First, we show that there are no subgroups of index less than n. Suppose H 6 An
with m , [An : H] < n. The group An acts on the left cosets An/H by left multiplication,
i.e. there is a homomorphism ρ : An → Perm(An/H) ∼= Sm. This action is clearly
nontrivial, and since An is simple, this means ρ is injective, so An embeds into Sm. This
is impossible since n > 2 implies |An| = n!

2
> (n− 1)! > m! = |Sm|.

Now, we show uniqueness up to isomorphism. Let H 6 An have index n. We will
show that H ∼= An−1. Again, consider the action ρ as defined above. We established that
An acts faithfully on An/H. Observe that H acts on An/H by fixing the coset H and
permuting the other n− 1 cosets. Therefore, ρ(H) is a subgroup of a copy of An−1 inside
Perm(An/H). Since ρ is injective, |ρ(H)| = (n− 1)!, and so ρ(H) is actually isomorphic
to An−1. Moreover, H is isomorphic to ρ(H) by the injectivity of ρ, so H is isomorphic
to An−1.

Proof of Proposition 6.1. For the lower bound, note that there is a twisted copy of Sn−2

inside An, generated by the elements (1 2 · · · n − 2) and (n − 1 n) when n is even,
and by (1 2 · · · n − 1) and (n − 1 n) when n is odd. In either case, the automorphism
φρ : σ 7→ ρσρ−1 with ρ = (n− 1 n) fixes this copy of Sn−2.

The upper bound follows from the fact that An−1 is the unique subgroup (up to
isomorphism) of An of smallest index (Claim 6.2). For n 6= 6, every automorphism of An
is conjugation by some σ ∈ Sn, but no σ ∈ Sn fixes every element of An−1.
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6.3 Codomain contains copies of domain

If H contains a copy of G, then ΛG,H > ΛG,G, by Proposition 3.1. When G is solvable, it
follows from Proposition 5.5 that this is an equality. One might hope to show that if G is
non-abelian simple, then this is actually an equality, but this is not true. An easy coun-
terexample is whenH = A6 with subgroups Alt({1, 2, 3, 4, 5}) and Alt({1, 2, 3, 4, 6}) (both
isomorphic copies of A5) with G = Alt({1, 2, 3, 4, 5}). Then φ1 : G → Alt({1, 2, 3, 4, 5})
defined by φ1(σ) = σ and φ2 : G → Alt({1, 2, 3, 4, 6}) defined by φ2(σ) = (5 6)σ(5 6)
agree on Alt({1, 2, 3, 4, 5}) ∩ Alt({1, 2, 3, 4, 6}) = Alt({1, 2, 3, 4}) ∼= A4. Thus ΛA5,A6 =
|A4|
|A5| = 1

5
> 1

10
= ΛA5,A5 .
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