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Abstract

Let Σ2n be the set of all partitions of the even integers from the interval (4, 2n],
n > 2, into two odd prime parts. We show that |Σ2n| ∼ 2n2/ log2 n as n → ∞.
We also assume that a partition is selected uniformly at random from the set Σ2n.
Let 2Xn ∈ (4, 2n] be the size of this partition. We prove a limit theorem which
establishes that Xn/n converges weakly to the maximum of two random variables
which are independent copies of a uniformly distributed random variable in the
interval (0, 1). Our method of proof is based on a classical Tauberian theorem
due to Hardy, Littlewood and Karamata. We also show that the same asymptotic
approach can be applied to partitions of integers into an arbitrary and fixed number
of odd prime parts.

1 Introduction and Statement of the Main Result

For a given sequence of positive integers Λ = {λ1, λ2, . . .}, by a Λ-partition of the positive
integer n, we mean a way of writing it as a sum of positive integers from Λ without
regard to order; the summands are called parts. Let P = {p1, p2, . . .} be the sequence
of all odd primes arranged in increasing order. A prime partition is a Λ-partition with
Λ = P . Let Q(n) be the number of prime partitions of n. Hardy and Ramanujan [6, 7]
were apparently the first who studied the asymptotic behavior of the number of integer
(Λ = {1, 2, . . .}) and prime partitions for large n. For prime partitions they proved the
following asymptotic formula:

logQ(n) ∼ 2π

√
n

3 log n
, n→∞.
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The study of the asymptotic behavior of Q(n) itself is quite complicated. It turns out
that the corresponding asymptotic formula contains transcendental sums over the primes
which can be expressed in terms of zeros of the Riemann zeta function (for more details,
see e.g. [9]; p. 240). Recently Vaughan [16] proposed and studied a modification of the
problem, where n is replaced by a continuous real variable. His asymptotic results avoid
transcendental sums over primes.

Consider now the number Qm(n) of prime partitions of n into m parts (1 6 m 6 n).
The bivariate generating function of the numbers Qm(n) is of Euler’s type, namely,

G(x, z) = 1 +
∞∑
n=1

zn
n∑

m=1

Qm(n)xm =
∏
pk∈P

(1− xzpk)−1 (1)

(the proof may be found in [1]; Section 2.1). In this note we focus on the asymptotic
behavior of the coefficients Q2(n) of x2 and zn in the power series expansion of G(x, z) in
powers of x and z. For n > 4, Q2(n) counts the number of ways of representing n as a
sum of two odd primes. Obviously, Q2(n) = 0 if n is odd. In 1742 Goldbach conjectured
that Q2(n) > 1 for every even integer n > 4. This problem remains still unsolved (for
more details, see e.g. [8]; Section 2.8 and p. 594). Another famous conjecture related to
prime partitions was stated by Hardy and Littlewood [5], who predicted the asymptotic
form of Q2(n) for large even n. They conjectured that

Q2(n) ∼ 2C2

 ∏
pk∈P, pk|n

pk − 1

pk − 2

∫ n

2

du

log2 u

∼ 2C2

 ∏
pk∈P, pk|n

pk − 1

pk − 2

 n

log2 n
, n→∞, (2)

where C2 is the twin prime constant

C2 :=
∏
pk∈P

(
1− 1

(pk − 1)2

)
= 0.6601618158 . . .

(for the role of C2 in the distribution of the prime numbers, see again [8]; Section 22.20).
This conjecture remains also still open.

In the present note we do not deal with the asymptotic equivalence (2) but consider
the sum function

S(2n) =
∑

2<k6n

Q2(2k), n > 2, (3)

counting all partitions of the even integers from the interval (4, 2n] into two odd prime
parts. Sometimes this kind of partitions are called Goldbach partitions. Let Σ2n denote
the set of these partitions. Our main result is the following asymptotic equivalence.
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Theorem 1. We have

|Σ2n| = S(2n) ∼ 2n2

log2 n
, n→∞.

Consider now a random experiment. Suppose that we select a partition uniformly
at random from the set Σ2n, i.e. we assign the probability 1/S(2n) to each Goldbach
partition. We denote by P the uniform probability measure on Σ2n. Let 2Xn ∈ (4, 2n]
be the number that is partitioned by this random selection. 2Xn is also called the size
of this partition. Using Theorem 1, we determine the limiting distribution of the random
variable Xn.

Theorem 2. If 0 < u < 1, then

lim
n→∞

P
(
Xn

n
6 u

)
= u2.

Remark 1. Using the Prime Number Theorem [8], Section 1.8, it is easy to show that
the number of ordered pairs of primes not exceeding 2n is also ∼ 2n2/ log2 n; cf. with the
result of Theorem 1. Hence, we conclude that almost all even integers that are 6 2n have
only one partition into two prime parts.

Remark 2. In probabilistic terms Theorem 2 shows that the typical size of a random
Goldbach partition is a fraction of 2n. Moreover, Theorem 2 implies that Xn/n converges
weakly, as n→∞, to a random variable whose cumulative distribution function is

F (u) =


0 if u 6 0,
u2 if 0 < u < 1,
1 if u > 1.

It can be easily seen that F (u) is the distribution function of max {U1, U2}, where U1 and
U2 are two independent copies of a uniformly distributed random variable in the interval
(0, 1).

Remark 3. One reason to study the sum function (3) is motivated by a result due to
Brigham [2]. He has studied the asymptotic behavior of a similar sum function related to
integer partitions weighted by the sequence of the von Mangoldt functions (the definition
of a von Mangoldt function and its role in the proof of the Prime Number Theorem may
be found in [8]; Section 17.7). The asymptotic behavior of a single term in Brigham’s
sum function was subsequently studied by Richmond [13] and Yang [17]. Their results
are essentially based on Brigham’s observations.

Remark 4. Another interesting problem on prime partitions is related to the asymp-
totic behavior of the coefficients Qm(n), the number of prime partitions of n with m parts
(see (1)). Haselgrove and Temperley [9], p. 240, found an asymptotic form for Qm(n),
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whenever m = m(n) → ∞ as n → ∞ in a proper way. In probabilistic terms their re-
sult can be stated as follows. Consider a random variable, whose probability distribution
function is defined by the ratio

Qm(n)

Q(n)
, m = 1, . . . , n. (4)

Haselgrove and Temperley [9] showed that this random variable converges weakly to a non-
degenerate random variable as n → ∞. They also determined the moment generating
function of this limiting variable. The asymptotic form of the mean and the variance of
probability distribution (4) were found recently by Ralaivaosaona [12].

Our paper is organized as follows. Section 2 contains some preliminaries. The proofs
of Theorems 1 and 2 are given in Section 3. Our method of proof is essentially based on
a classical Tauberian theorem due to Hardy, Littlewood and Karamata (see [4]). Finally,
in Section 4 we present an extension of our main result. In particular, we show that the
same approach yields similar results for prime partitions of n into m > 2 parts whenever
m is fixed integer.

2 Preliminary Results

We start with a generating function identity for the sequence {Q2(2k)}k>2 of the counts
of Goldbach partitions.

Lemma 3. For any real variable z with |z| < 1, let

f(z) =
∑
pk∈P

zpk . (5)

Then, we have

2
∑
k>2

Q2(2k)z2k = f 2(z) + f(z2). (6)

Proof. Differentiating the left-hand side of (1) twice with respect to x and setting then
x = 0 and m = 2, we get

∂2G(x, z)

∂x2

∣∣∣∣
x=0,m=2

=
∞∑
n=1

zn
n∑

m=2

m(m− 1)Qm(n)xm−2
∣∣
x=0,m=2

= 2
∞∑
n=1

Q2(n)zn = 2
∑
k>2

Q2(2k)z2k.

The last equality follows from the obvious identities Q2(1) = Q2(2) = Q2(4) = 0 and
Q2(2k + 1) = 0 for k = 1, 2, . . .. The right-hand side of (1) can be also written as
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exp (−
∑

pk∈P log (1− xzpk)). Differentiating it twice, in the same way we find that

∂2G(x, z)

∂x2

∣∣∣∣
x=0

=

(
exp

(
−
∑
pk∈P

log (1− xzpk)

))(∑
pk∈P

zpk

1− xzpk

)2
∣∣∣∣∣
x=0

+

(
exp

(
−
∑
pk∈P

log (1− xzpk)

))(∑
pk∈P

z2pk

(1− xzpk)2

)∣∣∣∣∣
x=0

= f 2(z) + f(z2),

which completes the proof.

Further, we will use a Tauberian theorem by Hardy-Littlewood-Karamata whose proof
may be found in [4]; Chapter 7. We use it in the form given by Odlyzko [11]; Section 8.2.

Hardy-Littlewood-Karamata Theorem. (See [11]; Theorem 8.7, p. 1225.) Sup-
pose that ak > 0 for all k, and that

g(x) =
∞∑
k=0

akx
k

converges for 0 6 x < r. If there is a ρ > 0 and a function L(t) that varies slowly at
infinity such that

g(x) ∼ (r − x)−ρL

(
1

r − x

)
, x→ r−, (7)

then
n∑
k=0

akr
k ∼

(n
r

)ρ L(n)

Γ(ρ+ 1)
, n→∞. (8)

Remark. A function L(t) varies slowly at infinity if, for every u > 0, L(ut) ∼ L(t) as
t→∞.

3 Proof of the Main Result

Proof of Theorem 1. We need to show that power series (6) satisfies the conditions of
Hardy-Littlewood-Karamata theorem. The next lemma establishes an asymptotic equiv-
alence of f(z) as z → 1−.

Lemma 4. Let f(z) be the power series defined by (5). Then, as z → 1−,

f(z) ∼ − 1(
log 1

z

) (
log log 1

z

) .
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Proof. As usual, by π(y) we denote the number of primes which do not exceed the positive
real number y. In (5) we set z = e−t, t > 0, and apply an argument similar to that given
by Stong [15] (see also [3]). We have

f(e−t) =

∫ ∞
0

e−ytdπ(y) =

∫ ∞
0

te−ytπ(y)dy =

∫ ∞
0

π(s/t)e−sds = I1(t) + I2(t), (9)

where

I1(t) =

∫ t1/2

0

π(s/t)e−sds, I2(t) =

∫ ∞
t1/2

π(s/t)e−sds.

For I1(t) we use the bound π(s/t) 6 s/t. Hence, for enough small t > 0, we obtain

0 6 I1(t) 6
1

t

∫ t1/2

0

se−sds =
1

t

(
−se−s

∣∣t1/2
0

+

∫ t1/2

0

e−sds

)
=

1

t
O(t1/2) = O(t−1/2). (10)

The estimate for I2(t) follows from the Prime Number Theorem with an error term given
in a suitable form. So, it is known that, for y > 1,

π(y) =
y

log y
+O

(
y

log2 y

)
(see e.g. [10]; Theorem 23, p. 65). Furthermore, for s > t1/2, we have log s > −1

2
log 1

t
.

Hence, as in [15], we get

π(s/t) =
s

t

1

log 1
t

+ log s
+O

(
s

t
(
log 1

t
+ log s

)2
)

=
s

t log 1
t

(
1 +O

(
| log s|
log 1

t

))
+O

(
s

t log2 1
t

)

=
s

t log 1
t

+O

(
s(1 + | log s|)

t log2 1
t

)
. (11)

We also recall that in (10) we have used the obvious estimate∫ t1/2

0

se−sds = O(t1/2). (12)
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Combining (11) and (12), we obtain

I2(t) =
1

t log 1
t

∫ ∞
t1/2

se−sds+O

(
1

t log2 1
t

∫ ∞
t1/2

s(1 + | log s|)e−sds

)

=
1

t log 1
t

(∫ ∞
0

se−sds+O(t1/2)

)
+O

(
1

t log2 1
t

)

=
1

t log 1
t

+O

(
1

t1/2 log 1
t

)
+O

(
1

t log2 1
t

)
∼ 1

t log 1
t

, t→ 0+. (13)

Hence, by (9), (10) and (13),

f(e−t) ∼ 1

t log 1
t

, t→ 0+.

The proof is now completed after the substitution t = log 1
z
.

Since

log
1

z
= − log z = − log (1− (1− z)) ∼ 1− z, z → 1−,

the asymptotic equivalence in Lemma 4 becomes

f(z) ∼ 1

(1− z) log 1
1−z

, z → 1−.

Therefore,

f 2(z) + f(z2) ∼ 1

(1− z)2 log2 1
1−z

, z → 1−,

which implies that the series
∑

k>2Q(2k)z2k satisfies condition (7) of Hardy-Littlewood-
Karamata Tauberian theorem with r = 1, ρ = 2 and L(t) = 1

log2 t
(see also (6)). The

asymptotic equivalence of Theorem 1 follows immediately from (8).

Proof of Theorem 2. Recall that 2Xn ∈ (4, 2n] equals the size of a Goldbach partition that
is chosen uniformly at random from the set Σ2n of all such partitions. Since S(2n) = |Σ2n|
and, for any N ∈ (2, n], S(2N) = |Σ[2N ]| (where [a] denotes the integer part of the real
number a), from (3) it follows that

P(2Xn 6 2N) =
S(2N)

S(2n)
. (14)

Setting N ∼ un, 0 < u < 1, and applying Theorem 1 twice - to the numerator and the
denominator of (14), we see that the limit of (14), as n → ∞, is u2. This completes the
proof.
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4 Prime Partitions with More Than Two Parts

Let m > 2 be an integer and let Σm,n denote the set of prime partitions of the integers
from the interval (4, n] into m parts. The goal of this section is to extend the results of
Theorems 1 and 2 to prime partitions from the class Σm,n. We state them below as two
separate theorems.

Theorem 5. For any fixed integer m > 2, we have

|Σm,n| ∼
1

m!

(
n

log n

)m
, n→∞.

Furthermore, letXm,n denote the size of a prime partition selected uniformly at random
from the class Σm,n. (The uniform probability measure on Σm,n is again denoted by P.)

Theorem 6. If 0 < u < 1 and m is as in Theorem 5, then

lim
n→∞

P
(
Xm,n

n
6 u

)
= um.

Theorem 6 shows a weak convergence similar to that established in Theorem 2.
Namely, for any fixed integer m, Xm,n/n converges, as n → ∞, to max {U1, . . . , Um},
where U1, . . . , Um are independent copies of a random variable that is uniformly dis-
tributed in the interval (0, 1).

Below we only sketch the proof of Theorem 5. The proof of Theorem 6 is almost
identical to that of Theorem 2.

Proof of Theorem 5. (Sketch.) Our main tool is again the generating function identity
(1). We notice first that the coefficients Qm(n) are = 0 if either m is odd and n is even
or m is even and n is odd. By the definition of Qm(n), we also have

|Σm,n| =
∑
k6n

Qm(k). (15)

We compute the mth derivative of the infinite product in (1) using Faa di Bruno formula
for derivatives of compound functions (see e.g. [14]; Section 2.8). We introduce the
following auxiliary notations:

b(x) = b(x, z) := −
∑
pk∈P

log (1− xzpk),

bj = bj(x, z) :=
∂jb(x, z)

∂xj
, j = 1, . . . ,m. (16)

Using formulae (43) and (46) of [14]; Section 2.8, we obtain

dm

dxm
eb(x) = eb(x)bm1 +Rm, (17)
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where

Rm = Rm(x, z) = eb(x,z)
∑̃ m!

k1! · · · km!

(
b1
1!

)k1
· · ·
(
bm
m!

)km
(18)

and
∑̃

denotes the sum over all integers kj > 0, j = 1, . . . ,m, such that
∑m

j=1 jkj = m and

k1 < m. Setting x = 0 in (16), we find that b(0, z) = 0 and bj(0, z) = f(zj), j = 1, . . . ,m,
where the function f(z) is defined (5). Moreover, in the right-hand side of (18) we have

k1 + · · · + km 6 m − 1. In fact, since k1 < m by the definition of
∑̃

at least one kj
is > 0 for j > 2. Hence if m = k1 + k2 + · · · + km, then m < k1 +

∑m
j=2 jkj = m.

Since f(zj) = O(f(z)) as z → 1− and since k1 + · · · + km 6 m − 1, we conclude that
Rm(0, z) = O(fm−1(z)). Therefore (17) becomes

dm

dxm
eb(x) = fm(z) +O(fm−1(z)),

or, equivalently,
∂mG(x, z)

∂xm

∣∣∣∣
x=0

= fm(z) +O(fm−1(z)) (19)

as z → 1−. On the other hand,

∂mG(x, z)

∂xm

∣∣∣∣
x=0

= m!
∑
k>m

Qm(k)zk. (20)

Applying Lemma 4, as in the proof of Theorem 1, we obtain the asymptotic equivalence

fm(z) ∼ 1

(1− z)m logm 1
1−z

, z → 1−. (21)

The observations in (19)-(21) imply that

∂mG(x, z)

∂xm

∣∣∣∣
x=0

∼ 1

(1− z)m logm 1
1−z

, z → 1−.

So, condition (7) of Hardy-Littlewood-Karamata theorem is satisfied with r = 1, ρ = m
and L(t) = 1

logm t
. The required result follows at once from (15) and (8).
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