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Abstract

We determine the largest difference between the number of atoms and number of
coatoms of a Bruhat interval of the symmetric group Sn. We then pose the question
of describing such extremal intervals [u, v] ⊂ Sn and give a partial description by
specifying the elements v that can occur.
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1 Introduction

Much work has been done on understanding the structure of Bruhat intervals of the
symmetric group (see, e.g., [BW82], [Hul03] and [BB05] along with references therein).
Recently, particular interest has arisen in understanding the number of atoms and coatoms
of Bruhat intervals of the symmetric group [AR06, Kob11]. There, the maximum number
of atoms and coatoms of an interval of a given length is determined. In this note, we
determine the largest difference between the number of atoms and the number of coatoms
of a Bruhat interval of Sn.

Our main results in this note are as follows.

Theorem 3.2. Let I be the set of intervals in Sn and for I ∈ I, let a(I) and c(I) denote
the number of atoms and coatoms of I respectively. Then

max
I∈I

c(I)− a(I) = bn2/4c − n + 1.

Theorem 3.3. Let n > 4. An interval I = [u, v] ⊂ Sn maximizes c(I)− a(I) if and only
if c(I) = bn2/4c and a(I) = n− 1.
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Since the symmetric group is self-dual via an order-reversing automorphism, all the
results above hold when c(I) and a(I) are switched.

2 Facts about Bruhat Intervals in Sn

We will be needing the following definition and three results.

Definition 2.1. [TW14, Definition 4.9] Let u 6 v be permutations in Sn, and let
T ([u, v]) := {t ∈ T : u l ut 6 v} and T ([u, v]) := {t ∈ T : v m vt > u} be the
transpositions labeling the cover relations corresponding to the atoms and coatoms in the
interval. Define a labeled graph Gat (resp. Gcoat) on [n] such that Gat (resp. Gcoat) has an
edge between a and b if and only if the transposition (ab) is a member of T ([u, v]) (resp.
(ab) is a member of T ([u, v])).

The next result allows us to relate the atoms and coatoms of a Bruhat interval.

Theorem 2.2. [TW14, Proposition 4.10] Let [u, v] ⊂ Sn. The labeled graphs Gat and
Gcoat have the same connected components.

The following result on the structure of Gat and Gcoat is a slight generalization of
[AR06, Lemma 2.7]. An ordered graph G is a graph with a total order over its nodes.
For instance, Gat and Gcoat inherit a total order from [n]. A cycle of an ordered graph
is a tuple of vertices (v0, v1, . . . , vk) such that vk = v0, vi is adjacent to vi+1 for each
0 6 i 6 k − 1, and v0 < v1 < · · · < vk−1.

Proposition 2.3. The ordered graphs Gat and Gcoat have no cycles. In particular, they
are simple and triangle-free.

Proof. The assertion that Gat is simple is immediate. Assume by contradiction that
C = (v0, v1, . . . , vk) is a cycle in Gat with k > 2. By properties of Bruhat order on the
symmetric group, the existence of an edge {a, b} with a < b implies that u(a) < u(b) and
for any a < c < b, u(c) 6∈ [u(a), u(b)]. Looking at edges {vivi+1}, i = 0, 1, . . . , k − 2, of
cycle C, we see that

u(v0) < u(v1) < . . . < u(vk−1).

However, the existence of edge {vk−1, vk} = {v0, vk−1} implies that u(vi) 6∈ [u(v0), u(vk−1)]
for any 1 6 i 6 k − 2, which is a contradiction. The proof for Gcoat is analogous.

Finally, any triangle gives rise to an ordered cycle since it is a complete graph. This
proves that the graphs are triangle-free.

The final result describes the permutations v for which the number of coatoms is
maximal.

Theorem 2.4. [AR06, Proposition 2.9] For every positive integer n,

#{v ∈ Sn |#T ([1, v]) = bn2/4c} =

{
n, if n is odd;

n/2, if n is even.
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Each such permutation has the form

v = [t + m + 1, t + m + 2, . . . , n, t + 1, t + 2, . . . , t + m, 1, 2, . . . , t], (1)

where m ∈ {bn/2c, dn/2e} and 1 6 t 6 n−m.

3 Largest gap between the number of atoms and coatoms of an
interval in the symmetric Group

In this section, we consider the question of how large a gap can there be between the
number of atoms and coatoms of a Bruhat interval of the symmetric group Sn. The first
result is a simple inequality that will be used later in finding a maximum.

Lemma 3.1. For all k1, k2 ∈ N with ki > 2,

bk2
1/4c+ bk2

2/4c+ 1 < b(k1 + k2)
2/4c.

Proof. We have
bk2

1/4c+ bk2
2/4c 6 bk2

1/4 + k2
2/4c.

Therefore it suffices to prove that

bk2
1/4 + k2

2/4c+ 1 < b(k1 + k2)
2/4c.

Observe that for k1, k2 > 2,

k2
1/4 + k2

2/4 + 1 < k2
1/4 + k2

2/4 +
k1k2

2
= (k1 + k2)

2/4.

We now prove the main result of this note, which states that the largest difference
between the number of coatoms and atoms of an interval of Sn is equal to bn2/4c−n+ 1.

Theorem 3.2. Let I be the set of intervals in Sn and for I ∈ I, let a(I) and c(I) denote
the number of atoms and coatoms of I respectively. Then

max
I∈I

c(I)− a(I) = bn2/4c − n + 1.

Proof. Let I ∈ I and consider Gat and Gcoat as in Definition 2.1. By Theorem 2.2, Gat

and Gcoat have the same connected components. Let Ki, i = 1, 2, . . . ,m, be the connected
components of Gat and Gcoat, and let ki > 1 denote their respective number of vertices.
Let p be the number of active components, i.e., components with more than one vertex,
and let q = m − p. By Proposition 2.3 and Turán’s Theorem, a connected component
of Gat or Gcoat with k vertices can have at most bk2/4c edges. Consequently, the total
number of edges c(I) satisfies

c(I) 6
m∑
i=1

bk2
i /4c.
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Also, since each Ki is connected, it must have at least ki − 1 edges. Consequently,

a(I) >
m∑
i=1

(ki − 1).

Therefore

c(I)− a(I) 6
m∑
i=1

bk2
i /4c − (ki − 1). (2)

We maximize the right side of (2) over possible Ki. Let f(x) = bx2/4c − x + 1, so that

c(I)− a(I) 6
m∑
i=1

f(ki).

By Lemma 3.1, if k1, k2 > 2, then

f(k1 + k2) > f(k1) + f(k2). (3)

Note that
∑

ki = n− q because the number of connected components with no edges is q.
Using this statement and inequality (3) yields

m∑
i=1

f(ki) 6 f(n− q).

Since

∆[f ](n) := f(n + 1)− f(n) =

{
n
2
− 1 if n is even

n+1
2
− 1 if n is odd,

the function f : N→ R is monotonically increasing. It follows that for every I ∈ I,

c(I)− a(I) 6 f(n).

Next we show that the value f(n) is attained for some interval I = [u, v]. We consider any
v of the form (1). By Theorem 2.4, the interval [1, v] has bn2/4c coatoms. The identity
permutation has exactly n− 1 elements covering it. It follows that c(I)− a(I) > f(n), so
that equality must hold.

Theorem 3.3. Let n > 4. An interval I = [u, v] ⊂ Sn maximizes c(I)− a(I) if and only
if c(I) = bn2/4c and a(I) = n− 1.

Proof. From the proof of Theorem 3.2,

c(I)− a(I) 6 f(n− q).

The assumption that n > 4 implies that f(n) > f(n − q) for every q > 0. Moreover, we
know that the maximum value of f(n) is attainable. Therefore c(I)− a(I) is maximized
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only if q = 0. So assume that q = 0. Let K be the single connected component of Gat

and Gcoat which contains n vertices. Then

c(I) 6 bn2/4c

and
a(I) > n− 1.

Corollary 3.4. Let n > 4. Suppose that I = [u, v] ⊂ Sn is an interval for which c(I)−a(I)
is maximized. Then v is of the form (1).

Proof. The number of coatoms of [u, v] is less than or equal to the number of coatoms of
[1, v]. By Theorem 2.4, the number of coatoms of [1, v] is bn2/4c only for v of the form
(1).

A family of intervals for which the optimal value c(I) − a(I) = bn2/4c − n + 1 is
attained is given by

I = [1, v]

for v as in (1). There exist other intervals for which this maximum is attained. For
example, in S4, the intervals for which the maximum is attained are

[1234, 3412], [1234, 4231], [1243, 4231], [2134, 4231].

It is natural, then, to ask the following question:

Question 3.1. What are the intervals I ⊂ Sn such that c(I) − a(I) is equal to the
maximum value bn2/4c − n + 1?

Corollary 3.4 shows that if I = [u, v] then v is of the form (1). It remains to be
understood which combinations of u and v are extremal.
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