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Abstract

The Abelian Sandpile Model (Dhar 1990) is a discrete diffusion process, defined
on graphs, which serves as the standard model of self-organized criticality. One is
allowed to add sand particles on the nodes of the graph such that each node can
stably hold at most some bounded number of particles. The particles flow through
the graph as a consequence of surpassing the node capacities, until they reach a
special sink node possessing infinite capacity. These simple dynamics give rise to a
very interesting Markovian system. The transience class of a sandpile is defined as
the maximum number of particles that can be added without making the system
recurrent. We identify a small set of key graph properties that guarantee polynomial
bounds on transience classes of the sandpile families satisfying them. These proper-
ties governing the speed of sandpile diffusion process are volume growth parameters,
boundary regularity type properties and non-empty interior type constraints.

This generalizes a previous result by Babai and Gorodezky (2007) in which they
establish polynomial bounds on the n× n grid. Indeed the properties we show are
based on ideas extracted from their proof as well as the continuous analogs in the
theory of harmonic functions.

Keywords: Abelian Sandpile Model; Harmonic functions on graphs; Transience
Class Problem of Sandpiles

1 Introduction

The Abelian sandpile model(ASM) is a type of discrete diffusion process defined on graphs.
The model was pioneered by Dhar [21] while investigating the phenomena of self-organized
criticality in the dynamics of sandpile formation. A close cousin is the celebrated loop-
erased random walks model [33]. If one plots the length of a loop-erased random walk
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against time, the results obtained are qualitatively similar to the one obtained from observ-
ing sandpile weights against time. Indeed the similarity extends into numerous seemingly
different phenomena like stress distribution in earthquakes, size distribution in raindrops,
etc (see the recent comprehensive survey article by Dhar [20]).

In the ASM, “sand particles” are added at vertices of a (multi)graph. A site (vertex)
is stable as long as the number of particles at the site are less than its degree. Adding any
more particles makes the site unstable and is accompanied by the unstable site passing a
particle along each incident edge to its neighboring sites. This relaxation process is called
toppling. There is a special site called the sink which cannot topple. To ensure that every
relaxation process eventually stabilizes, one needs the condition that the sink is reachable
from every other site. In the course of evolution via particle additions and toppling, the
sandpile goes through a sequence of configurations. The configurations which cannot be
revisited are called transient, while those which are reachable from every other config-
uration are called recurrent. Typically, one starts with the empty configuration and as
particles are added, one moves through transient configurations till a recurrent configura-
tion is reached. Thereafter the configurations stay recurrent. The steady state behavior
of any Markovian system is characterized by its set of recurrent states. While modeling
natural phenomena, the set of recurrent stated is supposed to capture the behavior one
is trying to emulate. Intuitively, if the time taken to reach recurrence is too high (e.g.
exponential in model size), the identification of long-term behavior with recurrent states
becomes doubtful.

The parameter of importance in our discussion will be the number of particles needed
to reach recurrence. The case of a random adversary, where particles are added in a
uniformly random manner across the graph, yields to a simple coupon collector type
argument. This results in polynomial bounds on the expected time to recurrence (as
previously noted in [4]). The non-trivial case arises when particles are added adversatively.
Here the problem acquires a distinctly potential theoretic flavor. In this scenario, our
goal is to add particles so as to avoid a recurrent state for as long as possible. This
problem was highlighted by Babai and Toumpakari [4] where they define this number of
particles as the transience class of the sandpile. This later motivated the insightful work
by Babai and Gorodezky [3] on grid based sandpiles. In this breakthrough paper, the
authors show that for the standard n × n grid based sandpiles, the maximum number
of particles one can add before hitting a recurrent state is O(n30), later improved to
O(n15) [2]. Using arguments based on LP-duality, harmonic functions, and symmetry,
Choure and Vishwanathan [11] improve this bound to O(n7 log n). They also establish
a sandwich theorem for the transience class of any sandpile in terms of the values of
harmonic functions, establishing a correspondence between random walks and sandpile
diffusions.

The relevance of “grid” sandpile comes from the fact that grids serve as the standard
discrete substitutes of planar regions in statistical physics. It is therefore natural to
ask if other graphs which can arise as regular (or irregular even) tessellations of plane (or
higher dimensional spaces) also obey polynomial bounds on their transience classes. More
generally, one might not even want to pose restrictions on the integrality of dimension of
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the space from which these graphs arise. Indeed graphs associated with fractals are quite
well analyzed in potential theory. We refer the reader to the excellent monograph by Telcs
[46] for a succinct yet thorough introduction to literature in this area. Our study is aimed
at trying to understand the underlying potential theoretic properties which characterize
polynomial transience.

1.1 Our Contribution

To state our main result, we outline some basic notions in this section. These definitions
will be explained in detail with appropriate context in following sections. The informal
definition of a sandpile, and its dynamics are described above. We will call an indexed
countably infinite set of sandpiles, a sandpile family. For an instance of sandpile, we
will take an undirected connected graph G with a special sink node. The distances in
this graph will be defined using the shortest path metric. A ball B(v, r) is the set of all
nodes which are at a distance of at most r from v. The volume of this ball, denoted by
Vol(B(v, r)), is the number of edges in the induced subgraph of the ball. We define the
following properties.

Definition 1. Polynomial Volume Growth Property (Vα) : A graph family S has polyno-
mial volume growth property (Vα) with growth exponent α if there exist constants δ and
∆ such that for any graph Si ∈ S and every node v ∈ V (Si), if we consider the B(v, r)
around v, its volume satisfies the following bounds:

δ rα 6 Vol(B(v, r)) 6 ∆ rα

Definition 2. High Local-Conductance Property (hLC(Cσ)) : A sandpile family S sat-
isfies hLC(Cσ) if there exists a constant Cσ, independent of the index i of the sandpile
Si ∈ S, such that for any site v ∈ V (Si) and any ball B(v, r) in Si, placing Cσ.Vol(B(v, r))
particles at v allows every site in the ball B(v, r) to receive at least one particle.

We will be needing the definition of harmonic functions for describing the next prop-
erty. Given a connected graph G and a function π : V (G) → R, we say that π is harmonic
over the vertex set Vh if,

1

degree(v)

∑

u∼v

π(u) = π(v) v ∈ Vh

Using this, we define the mean value property over graphs.

Definition 3. Mean Value Property (MV(Ch)) : A sandpile family S satisfies MV(Ch)
if there exists a constant Ch, independent of the index i of the sandpile Si ∈ S, such that
for any graph Si = (Vh ∪ {s}, Eh ∪ δEVh) if π : V (Si) → [0, 1] is a function harmonic over
the ball B(v, r) ⊂ Vh, the following inequality holds,

∑

u∈B(v,r)

π(u) > Ch π(v) Vol(B(v, r)).
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Consider a sandpile family S and a member graph Si. Call a path P = v1, . . . , vk from
v1 to vk (1, l)−central if dist(vi, sink) varies linearly with i, or if its length is bounded
by l log(|Si|). We call it (k, l)−central if it is a juxtaposition of at most k central paths,
where k and l are constants independent of graph index (and size). The concept of linearly
varying distance functions is discussed with examples in later sections.

Definition 4. Non-empty Interior Property (NI(k, l)) : A sandpile family S has non-
empty interior property, NI(k, l), if for every member sandpile graph Si ∈ S and if for every
pair of vertices v, w ∈ V (Si), there exists a path between them which is (k, l)−central.
Here, k and l are constants independent of the sandpile index i.

Our main result is the Epicenter Propagation Theorem, which establishes polynomial
bounds on the maximum number of particles that can be added to a sandpile before
making it recurrent.

Theorem 1.1. (Epicenter Propagation Theorem) Given a sandpile family S which
satisfies hLC(Cσ), Vα, MV(Ch), and NI(k, l), then for any member sandpile Si ∈ S, the
transience class satisfies the following bounds

tcl(Si) 6 Cσ∆n
k+(2l+1)k logĝ

(

Cσ
Ch

∆(∆+1)
δ

3α
)

Here, n = |Si|.

To prove our main result, we first show that if the graph has uniform polynomial volume
growth, satisfies mean value property, and has high local conductance of particle percola-
tion, it satisfies a fundamental superposition property, which is the discrete analogue of
the celebrated superposition principal. This property allows one to place particles at a
suitable set of multiple nodes and observe the same potential response at a particular site,
as one would have by placing all these particles at one site. Using this we prove one of the
main results in this paper, the single step Epicenter Propagation Lemma. This is the gen-
eralization of the traveling diamond lemma proved in Babai and Gorodezky [3]. Finally,
using the single step version and the non-empty interior property, we derive the general
Epicenter Propagation theorem which demonstrates effective polynomial bounds on the
transience class of large class of sandpile graphs. This result forms the graph theoretic
analogue of the classical Harnack’s inequality and enables one to prove general bounds
on harmonic functions without resorting to limiting arguments linking random walks on
graphs to Brownian motions on Euclidean spaces. We conclude with a discussion on open
problems which form the logical next step of this work.

1.2 Related Work

Random walks and Sandpile: The connections between sandpiles and random walks
have been discussed under various contexts. Dhar [20], for example, summarizes the
connection between the Loop Erased Random Walks (LERW) and sandpiles. We refer
the reader to the excellent text by Lawler and Limic [33] for an introduction to basic
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properties of LERW. The connection with simple random walks is more intuitive and
reveals a natural analogy between properties of sandpiles and electric networks. Choure
and Vishwanathan [10] discuss a reduction of the transience class computation problem
to that of estimating potentials in a related electric circuit. These connections are not
surprising as the combinatorial Laplacian of the underlying graph of the sandpile, acts as
a kind of generator for both the models. For an introduction to these potential functions,
see Bollobás [9]. For a discussion on estimating these potentials on graphs coming from
geometric settings, see [46]. Levine and Peres [34] discuss a potential theoretic approach
to analyzing the rotor router model, the divisible sandpile and other related models. See
[35] for a discussion on the spherical asymptotics of diffusions on lattice graphs. One of
the key questions they answer is that, when diffusion starts from some point, then the
distances from starting point to the farthest and to the nearest boundary point of the hit
region, differ by some multiplicative constant. Boundary dissipations do not matter in
this scenario. In our present work, we analyze the transience class problem in the setting
of bounded graphs. Indeed, under the other assumptions we make about the graph fami-
lies, it is the presence of a sink node that makes the problem interesting and non-trivial.
Our results show that the dissipation of sand particles through the boundary is limited by
a polynomial. Consequently, the entire sandpile is flooded in polynomially many particle
additions, regardless of addition strategy.

Diffusions and Potential Theory on Graphs: Delmotte [19] shows how the Har-
nack’s inequality over graphs leads to non-trivial results on heat diffusions. They bound
the growth of harmonic functions using Gaussian estimates of the heat kernel, all of which
follows from the assumption that the graph under consideration follows a parabolic Har-
nack’s inequality. Chung and Yau [14] derive the Harnack inequality for certain degree
bound graphs. The inequality is then used to bound the graphs’ Neumann eigenvalues.
In [17], they derive Harnack’s inequality of Abelian homogenous graphs. Furthermore,
Chung and Yau [16] derive lower bounds on log-Sobolev constants by establishing log-
Harnack inequalities on graphs. Bounding the log-Sobolev constants is important as it
helps in establishing convergence bounds on random walks on graphs, see Diaconis and
Saloff-Coste [23]. Chung and Yau [15], derive bounds on the eigenvalues of the Laplacians
using the Sobolev inequalities and heat kernel estimates.

Electric Networks: The classical theory of random walks [24, 36, 37] has some very
powerful and intuitive results which have recently found widespread application in theo-
retical computer science. Christiano et. al. [13] discuss the fastest known algorithm for
computing approximate maximum s− t flows in capacitated undirected graphs. Their al-
gorithm constructs the approximate flows by essentially using the electric current flows on
the same network with s and t as poles. Earlier, Kelner et. al. [29] used arguments based
on random walks to formulate the fastest known algorithm for generating spanning trees
from the uniform distribution. Spielman and Srivastava [43] construct good sparsifiers of
weighted graphs via an efficient algorithm for computing approximate effective resistance
between any two vertices. Indeed, a deeper understanding of harmonic functions is as
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much of interest to a computer scientist as to a potential theorist and the benefit of this
confluence has been mutual. A significant example is the seminal work by Arora, Rao
and Vazirani [1] on embeddings of negative type which give an O(

√
log n) approximation

algorithm for computing graph conductance.

Other Results in Sandpiles: As already mentioned, research problems in the Abelian
sandpile model span across numerous areas. We make a passing mention to some of
this work. Notable advances in complexity theoretic flavor include proof of the one-
dimensional sandpiles prediction problem in LOGDCFL by Miltersen [39]. Schulz [41]
mentions a related NP-complete problem. The group structure of the space of recurrent
configurations, first introduced by Dhar et. al. [22] is also considered a fertile area
of analysis. Cori and Rossin [18] show that sandpile groups of dual planar graphs are
isomorphic. Toumpakari [48] discusses some interesting properties of sandpile groups
of regular trees. Questions related to group rank are studied in particular, the paper
is concluded with an interesting conjecture on the rank of all Sylow subgroups of the
sandpile group. Specific families of graphs like square cycles C2

n, K3 × Cn, 3× n twisted
bracelets, etc have been analyzed. We refer the reader to [26, 27, 42].

2 Basic Properties of The Abelian Sandpile Model

Our notation and terminology follows Babai and Gorodezky [3].

Definition 5. A graph G is an ordered pair (V (G), E(G)) where V (G) is called the set
of vertices and E(G) is a multiset of 2−subsets of V , called the set of edges.

The degree of a vertex v ∈ V is defined as the number of edges in E which contain v.
Two vertices v and u are called adjacent (or neighboring) if (u, v) ∈ E. A path between
two vertices u and v is an ordered sequence of edges e1, e2, . . . , ek such that u ∈ e1, v ∈ ek
and for all values of i, ei ∩ ei+1 6= φ. The graph G is connected if there exists a path
between any pair of vertices.

For an instance of Abelian Sandpile Model, we take a connected graph G with a special
vertex called the sink, denoted s ∈ V . Non-sink vertices in G are called ordinary vertices
and this set will be denoted by Vo = V − {s}.

Definition 6. The configuration c over a sandpile G is defined as a map c : Vo → Z
+. It

will be represented as a vector. The weight of c is |c| = ∑
v∈Vo

c(v).

The configuration c tells us the number of sand particles that each of the ordinary
sites currently contain. The empty configuration is the zero vector. The capacity of a site
is the maximum number of particles that it can hold and is one less then the degree of
the node.

Definition 7. An ordinary node v is said to be unstable in a configuration c if c(v) >

degree(v). If all the sites in a configuration stable, the configuration is stable, else it is
referred to as unstable.
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When a site is unstable it is said to topple, i.e. pass on some of its particles to its
neighbors. When a site v topples once, it loses degree(v) particles and each neighbor of
v acquires a particle for every edge common with v. The sink node, by definition, never
topples. We start with the empty configuration and keep adding particles one by one on
sites of our choice and topple when necessary.

The ASM evolves in time through two modes, particle addition at sites and relaxation
of unstable sites via topplings. A toppling sequence is an ordered set of configurations
where every configuration can be obtained from the previous one by toppling some site
unstable in it. The case of many sites becoming unstable simultaneously also poses no
complication as the order in which they are subsequently relaxed does not effect the final
stable configuration that is obtained at the end of toppling sequence, hence the prefix
abelian. Elementary proofs of such confluence properties can be found in the pioneering
paper on ASMs by Dhar [21].
Notation: We write c1 > c2 if ∀v, c1(v) > c2(v), and c1 ⊢ c2 if there is a toppling sequence
which takes c1 to c2. Lastly we write, c1 → c2 if ∃c3 > c1 such that c3 ⊢ c2. We say that a
configuration c2 is reachable from c1 if c1 → c2 and unreachable otherwise. In words, one
can add particles to certain sites in c1 so that there exists a toppling sequence leading to
c2. Note that being reachable is a transitive relation, i.e. c1 → c2, c2 → c3 ⇒ c1 → c3.

Theorem 8. ([21],[8]) Given any configuration c, there exists a unique stable configura-
tion σ(c) such that c ⊢ σ(c), independent of the toppling sequence chosen.

Property 9. If c ⊢ σ(c), then kc ⊢ kσ(c)

Property 9 will later be extensively used for proving gluing properties of potential
functions. Associated with every toppling sequence is the count of the number of times
each site has toppled, the vector of toppling potentials, also referred to as the score vector
in [3]. These toppling potentials are very closely related to the electric potentials that
develop at various nodes when power source-sink are appropriately applied, a connection
which we will discuss in detail in the coming sections.

Definition 10. Assuming c1 ⊢ c2, the toppling potential function zc1,c2 : V0 → Z
+ is

defined as zc1,c2(v) : the number of times v toppled in a toppling sequence from c1 to c2.
We denote zc,σ(c) by zc.

This function is well defined as the number of times a particular site topples is inde-
pendent of the toppling sequence chosen, already noted in [3]. A simple proof follows from
typical linear algebraic arguments and the fact that the principal minor of a connected
graph’s combinatorial Laplacian is of full rank.

A configuration is called recurrent if it is reachable from any configuration. As already
mentioned, we say that a configuration ci is reachable from a configuration cj if by adding
some particles to cj and subsequently relaxing it, we can obtain ci. A configuration is
transient if it is not recurrent. The set of recurrent configurations is therefore, closed
under being reachable.

Definition 11. A configuration c is recurrent iff ∀c′ we have c′ → c.
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Since recurrence persists under particle addition, we have the following property.

Property 12. If c1 6 c2, then recurrence of c1 implies that of c2.

Denote the configuration in which every node v has degree(v) particles by cmax.
Clearly, given any stable configuration c, one can reach cmax simply by adding the re-
quired number of particles at each site.

We analyze the process of adding one grain at a time to the sandpile and study
its evolution. As in the standard theory of Markov chains, recurrence characterizes the
long term (steady state) behavior of sandpiles. Our investigation is concerned with the
maximum number of particles that can be added while staying transient. Following Babai
and Toumpakari [4], we define the notion of the transience class as follows.

Definition 13. The transience class of S denoted by tcl(S), is defined as the maximum
number of particles that can be added to S before reaching a recurrent configuration.

Remark : In [10], the authors talk about an alternate equivalent characterization of tran-
sience class which defines the transience class alternatively as the maximum number of
particles that can be added before all the nodes have toppled at least once. Even though
we will not be using this definition explicitly, the notion is inherent in the way we bound
transience classes. We will be computing the maximum number of particles that can be
added at any point before at least one particle reaches every node. For sandpile with
bounded node degrees, using the Property (9), this translates to the alternate character-
ization of transience classes we just mentioned (albeit with a constant multiplicative loss
factor, the degree).

3 Basic Properties

Consider any (possibly infinite) graph G(V,E). Distances in this graph will henceforth
correspond to the shortest path metric. For any vertex v, B(v, r) denotes the ball of
radius r around v, i.e. the set of all vertices in G which are at a (shortest path) distance
of at most r from v. For any set of vertices U ⊆ V , define two notions of boundary

- vertex-boundary, δVU is the set of vertices, in U , having neighbors in the set V −U .

- edge-boundary, δEU is the set of edges connecting vertices in U to those in V − U .

For example if the set U is the ball B(v, r), the set δVB(v, r) is the set of vertices
which are exactly at distance r from v and the set δEB(v, r) is the set of edges between
the vertices in δVB(v, r) and those in δVB(v, r + 1). Consider any connected set of
vertices Vh and the induced subgraph Gh = (Vh, Eh). The sandpile corresponding to this
subgraph is obtained by adding the edge set δEVh to Eh and identifying all the vertices
in V − Vh which have neighborhood in Vh with the sink node s. We denote this sandpile
by S = (Vh ∪ {s}, Eh ∪ δEVh).
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An example of the grid sandpile: Consider the infinite grid graph with its canonical
embedding in the plane. For every pair of integers (i, j) there exists a vertex (with this
pair as its label). Each vertex (i, j) is adjacent to (i+1, j), (i, j+1), (i−1, j) and (i, j−1),
which are the four lattice points flanking (i, j). Let Vm,n be the set of vertices with labels
{(i, j) : 0 6 i 6 m, 0 6 j 6 n}. Evidently this set is connected. The boundary vertex
set is the set of vertices lying on the horizontal line segments {(i, 0) : 0 6 i 6 m} and
{(i, n) : 0 6 i 6 m}, and on the vertical ones {(0, j) : 0 6 j 6 n} and {(m, j) : 0 6 j 6 n}.
The edge-boundary set is the set of edges between vertices in the boundary set and
the vertices not in the (m + 1) × (n + 1) block (Vh). Figure 1 exhibits the graph, the
aforementioned boundary sets and the resulting sandpile. In the left figure, the white
nodes belong to the set V − Vm,n. The grey nodes form the vertex boundary of Vm,n, and
along with the black nodes constitute the set Vm,n. The heavy edges constitute the edge
boundary. The figure on the right is the sandpile Sm,n. The heavy edges are connections
to the special sink node.

(0,0) (0,0)

(0,n) (0,n)(m,n)

(m,0)

(m,n)

(m,0)

Figure 1: A grid graph, the subset set Vm,n and the corresponding sandpile

We will denote both the sandpile and the underlying graph by the same symbol S. To
keep notation and definitions clean, we fix the following convention. The ball B(v, r) with
respect to the shortest path metric is defined already. In the context of sandpile, however,
when we say a ball B(v, r) in some vertex subset Vh, or the induced sandpile S, we assume
it is small enough to not contain the sink node. Also, whenever a sandpile is mentioned
without explicit description of an ambient graph, we assume that a super-graph indeed
exists and the sandpile has been obtained in the manner described above. Let S ≡ {Si}
be an indexed family of sandpile graphs. We will now define some basic properties of
these (possibly infinite) families which we will need later in discussion on bounding the
transience class. In the sequel, the volume of a ball B(v, r) denotes the number of edges
inside it and will be written as Vol(B(v, r)).
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Definition 14. Polynomial Volume Growth Property (Vα) : A graph family S has poly-
nomial volume growth property (Vα) with growth exponent α if there exist constants δ
and ∆ such that for any graph Si ∈ S and every node v ∈ V (Si), if we consider the
B(v, r) around v, its volume satisfies the following bounds:

δ rα 6 Vol(B(v, r)) 6 ∆ rα . (1)

This property ensures that there is a bound on the rate at which the measure grows.
This becomes crucial if one wants to make any arguments along the lines of diffusions in
Euclidean spaces. An easy consequence is the degree bound on the graph family S. All
vertices in every member graph have degrees bound between δ and ∆.

Definition 15. Degree boundedness (∆) : A graph family S satisfies (∆) if for every
graph Si ∈ S, the degree of every node is bounded from above by ∆. Moreover, a
sandpile satisfies (∆) if every normal (non-sink) node has degree bounded by ∆.

If adding x particles at some node u causes some node v to receive a particle at any
point in time, we say that v is flooded. Similarly, we say that the set V ′ ⊂ V got flooded
if all the nodes it consisted of, received at least one particle. There are two symmetry
properties that will be important to us.

Definition 16. High Local-Conductance Property (hLC(Cσ)) : A sandpile family S
satisfies hLC(Cσ) if there exists a constant Cσ, independent of the index i of the sandpile
Si ∈ S, such that for any site v ∈ V (Si) and any ball B(v, r) in Si, placing Cσ ·Vol(B(v, r))
particles at v floods the ball B(v, r).

This property limits the amount of dissipation through the boundary of the sandpile,
as long as we restrict ourselves to flooding balls that lie completely inside the set of
ordinary vertices. We will be needing the definition of harmonic functions for describing
the next property. Given a connected graph G and a function π : V (G) → R, we say that
π is harmonic over the vertex set Vh if,

1

degree(v)

∑

u∼v

π(u) = π(v), v ∈ Vh.

The vertices in V − Vh, adjacent to any vertex in Vh, are called the “poles” of π. The
set Vh is also called the interior of π and the set of poles referred to as the boundary.
Being harmonic over Vh means that the value of π at any vertex in Vh is the average of
its value in the immediate neighborhood. In case of multigraphs, we take the appropriate
weighted means, where the weights are the number of common edges. For a slightly
expanded discussion on some essential properties of harmonic functions, see appendix A.
For a proper introduction to harmonic functions on graphs, we refer the reader to the
beautiful paper by Benjamini and Lovasz [6]. See Telcs [46] for a thorough review.

Definition 17. Mean Value Property (MV(Ch)) : A sandpile family S satisfies MV(Ch)
if there exists a constant Ch, independent of the index i of the sandpile Si ∈ S, such that
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for any graph Si = (Vh ∪ {s}, Eh ∪ δEVh) if we consider any function π : V (Si) → [0, 1]
defined over V (Si) which is harmonic over a ball B(v, r) ⊂ Vh, the following inequality
holds,

∑

u∈B(v,r)

π(u) > Ch π(v) Vol(B(v, r)). (2)

The continuous version of the mean value property stated above occupies central
position in classical analysis. See [12] for further discussion on the importance of this
assumption. We now define the local superposition property.

Definition 18. Local Superposition Property (LS(Cl)) : A sandpile family S satisfies
LS(Cl) if there exists a constant Cl, independent of the index i of the sandpile Si ∈ S,
such that given a ball B(v,R) ⊂ Si, if placing H particles at v topples a site w in B(v,R),
then placing h particles at every site in the smaller ball B(v, r) also topples w, where,

h =
Cl H

Vol(B(v, r))
. (3)

Remark: This property essentially means that if placing H particles at a site v causes a
toppling at site w, then the same effect can be produced at w by adding a constant factor
times H particles distributed evenly among the sites in the ball B(v, r). Such impulse
distribution properties are easy to prove in the setting of classical complex analysis. The
goal of proving a much more general superposition property, where the impulse is dis-
tributed not over a ball but a general set of nodes which are distance wise (in potential
theoretic sense) well distributed with respect to the point of observation, seems unlikely
to work out. There are simple counterexamples where such general distributivity does
not work. However, it is also not known if the constraint of taking nodes inside a ball is
essential.

Theorem 19. Given a sandpile family S which satisfies MV(Ch) and (∆), it also satisfies
LS(Cl). Moreover, the constants Cl, Ch and ∆ satisfy the following relation.

Cl =
∆+ 1

Ch

.

We defer the proof of this theorem to section 5.

Definition 20. Overlapping Potentials Property (OP(f(·))) : Given a sandpile family S.
Consider a member Si and let h be the smallest number of particles which when placed
at every site in a ball B(v, r) ⊆ Si, makes every site in the ball B(v,R) ⊆ Si topple at
least once. If h is bounded by a function f of R/r, independent of the sandpile index i,
S satisfies the overlapping potentials property, OP(f(·)).
Lemma 21. Given a sandpile family S which satisfies hLC(Cσ), MV(Ch) and (Vα), it
also satisfies OP(f(·)). Moreover, the function f has the following form.

f(R, r) =
Cσ

Ch

∆(∆ + 1)

δ

(
R

r

)α

. (4)
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Proof. Given a sandpile family S which satisfies hLC(Cσ), MV(Ch), and Vα. Using theo-
rem 19, it also satisfies LS(Cl). Consider a sandpile Si ∈ S. Consider any vertex v ∈ V (Si)
with the balls B(v, r) and B(v,R) around it with R > r. Let x be the minimum number
of particles one needs to place at v to topple every site in B(v,R) at least once. Since S
satisfies hLC(Cσ), we have

x 6 Cσ ∆Rα.

The property (Vα) implies the following lower bound on the volume of the ball B(v, r).

Vol(B(v, r)) > δ rα.

Now, consider any site p in δB(v,R). Using LS(Cl), if x particles placed at v induce a
toppling at p, then Clx/Vol(B(v, r)) particles at each of the sites in B(v, r) necessarily
induce a toppling at p. So, the minimum number of particles needed to be placed at each
node of B(v, r), to topple every site in B(v,R) at least once, satisfy the following bound,

h 6 Cl Cσ
∆

δ

(
R

r

)α

.

Again, using theorem 19, Cl = (∆+1)/Ch. This gives us the final form of the polynomial.

h 6
Cσ

Ch

∆(∆ + 1)

δ

(
R

r

)α

.

Therefore, h is indeed bounded by a polynomial in the ratio R/r.

Notation: With each site v in a sandpile S, we associate the number η(v) = dist(v, δV (S))
i.e. the distance between site v and the vertex boundary of S. It is also the radius of the
largest ball centered at v which is inside S.

Lemma 22. (Epicenter Propagation : Single Step) Given a sandpile family S
which satisfies OP(f(·)). Let v be a node in Si ∈ S, with B(v, η(v)) as the largest ball
around it. Let u be any site in δVB(v, ⌊η(v)/2)⌋ (i.e. at distance ⌊η(v)/2⌋ from v). Then,
there exists a constant K, independent of the sandpile index i, such that if a configuration
c floods the ball B(v, η(v)), then configuration K.c floods B(u, η(u)).

Furthermore, if the sandpile family S satisfies hLC(Cσ), MV(Ch) and (Vα), then the
constant K satisfies the following bound.

K 6
Cσ

Ch

∆(∆ + 1)

δ
3α. (5)

Proof. In the following proof, we will be assuming that all the quantities are integers.
The argument without this simplification needs no new ideas and can be essentially re-
constructed from the given proof.

Let the configuration c be such that it floods the ball B(v, η(v)). Since B(u, η(v)/2) ⊂
B(v, η(v)), c also floods B(u, η(v)/2). Let K be the number of particles needed at every
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v

(a) (b)

f(v)

f(v)/2

u

f(u)

v

f(v)

f(v)/2

u

f(u)

Figure 2: Epicenter Propagation : Single step (a) Expansion (b) Contraction

site in the ball B(u, η(v)/2), to flood the normal ball B(u, η(u)). Using the overlapping
potentials property (OP),K is bounded by a polynomial in 2η(u)/η(v). The equation (4)
illustrates this polynomial. Putting in the appropriate value of radii, we get the following
polynomial.

K 6
Cσ

Ch

∆(∆ + 1)

δ

(
η(u)

η(v)/2

)α

.

In the sandpile Si ∈ S, consider any shortest path connecting v to u, where u ∈
δVB(v, η(v)/2). The value of η can vary by at most one with every step. Therefore,
η(v)/2 6 η(u) 6 3η(v)/2. In particular, the ratio of radii is bounded.

η(u)

η(v)/2
6 3.

Substituting the above bound on radius ratio, we obtain the expression in equation (5).
Using Property 9, K.c places K particles on each site of B(u, η(v)/2), which in turn
necessarily floods B(u, η(u)). The expression in equation (5) is clearly independent of the
sandpile index i. This completes the proof.

Note that there are two distinct case here, η(u) 6 η(v) and η(u) > η(v). Even though
one argument suffices to obtain bounds for both the cases, they are qualitatively different.
See Figure (2). The case in which the distance from the sink node is increasing along
the path is termed the expansion step and the other case is called the contraction step.
There is also a third variant, the drift step. The need for such distinction will become
clear when we prove the general multi-step version of this lemma in the next section.
Remark: The above lemma allows one to shift the focal point of diffusion by some
distance at the cost of an additional multiplicative constant. This generalizes the traveling
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diamond lemma of Babai and Gorodezky [3]. This lemma forms the backbone of the main
result. While proving the polynomial bounds on the transience class, we will be using this
lemma to keep shifting the epicenter from some starting node to a target node. We will
next bound the total number of applications of this lemma by O(log n). This will imply
an O(poly(n)) bound on the number of particles required to shift the epicenter between
any pair of sites.

4 Bounding the transience class

In the proof of the Lemma (22), we use the fact that along any shortest path joining a
vertex v to a vertex in B(v, r) (lying inside the sandpile), the distance from sink cannot
increase or decrease too fast. For our purpose, this precondition of u belonging to B(v, r)
is too restrictive. We will impose a more general constraint on the graph structure using
the non-empty interior (NI) property for paths in graphs. Before that, we will need some
basic definitions. If P is path from u to v, and w ∈ P is some vertex on that path, then
distP (w, u) is the distance of w from u along the path P . So, if P = {u0.u1, . . . , uk} then
distP (u0, ui) = i.

Definition 23. The function f : V → R varies linearly over path P (from v1 to v2) if
for any site v at a distance distP (v1, v) along P from v1, we have the following two-sided
bounds on f(v).

al + f(v1) + b distP (v1, v) 6 f(v) 6 au + f(v1) + b distP (v1, v)

Here, au, al and b are constants with absolute values bounded by 1.

Note: Consider the η function defined earlier1. For this function, the value of b lies in
the closed interval [−1, 1] as the distance from sink cannot increase (or decrease) by more
then one, when one step is taken along the path.

Consider a sandpile family S and a member graph Si. Call a path P from v1 to v2
(1, l)−central if η(vi) values vary linearly over P , or if its length is bounded by l log(|Si|).
We call it (k, l)−central if it can be split into at most k central paths, where k and l are
constants independent of graph index (and size).

Definition 24. Non-empty Interior Property (NI) : A sandpile family S has non-empty
interior property, NI(k, l), if for every member sandpile graph Si ∈ S and if for every pair
of vertices v, w ∈ V (Si), there exists a path between them which is (k, l)−central. Here,
k and l are constants independent of the sandpile index i.

Definition 25. Polynomial Transience Class Property (pTcl) : We say that the transience
class of a sandpile family S is polynomially bounded if, for any member sandpile Si ∈ S,
adding at most polynomial (in sandpile volume |Si|) particles at any site induces a toppling
at every other site.

1
η(u) is the distance of node u from the sink node minus one, i.e., it equals the radius of the largest

ball centered at u which doesn’t intersect with the sink node
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The following lemma proves the polynomial bound on transience class of certain sand-
pile families. It is a generalization of the expansion and contraction phases while flooding
a grid, as mentioned in Babai and Gorodezky [3].

Theorem 26. (Epicenter Propagation Theorem) Given a sandpile family S which
satisfies hLC(Cσ), OP(f(·)) and NI((k, l)). Then S satisfies pTcl.

Moreover, if S also satisfies MV(Ch) and Vα, then for any member sandpile Si ∈ S,
the transience class satisfies the following bounds

tcl(Si) 6 Cσ∆n
k+(2l+1)k logĝ

(

Cσ
Ch

∆(∆+1)
δ

3α
)

(6)

Here, n = |Si|.

Proof. First consider the case k = 1. The general case will follow immediately by taking
the kth power of particles required in the special case. Consider the sandpile Si ∈ S, and
a pair of vertices p and q with a (1, l)−central path P from p to q. Denote the vertices
on the path P as v0 = p, v1, . . . , vn = q. The value of f changes linearly from η(p) = a
to η(q) ≈ a + bn. There are three essentially different cases which can arise, b > 0 and
b < 0, when η varies linearly, and path length is logarithmic in graph size, when η varies
sub-linearly. We consider them individually.

1. Case (b > 0) Expansion Phase : Refer to Figure (3). Initialize by adding some
constant number of particles so that the normal ball B(v3, 3) is flooded. Let this
constant be K0. We will now repeat the following process iteratively till q receives
a particle.

Assume that we are currently at vertex vi and the normal ball B(vi, η(vi)) is flooded.
Consider the vertex vj with j = i+η(vi)/2 and the normal balls Bs = B(vj, η(vi)/2)
and Bt = B(vj, η(vj)). Bs was flooded in the last iteration. We use this to flood the
concentric ball Bt. Using Lemma (22), if configuration c flooded B(vi, η(vi)), then
K.c floods B(vj, η(vj)) for constant K. In every iteration, the radius of the target
ball Bt increases by at least a factor of η(vj)/η(vi).

η(vj)

η(vi)
=

a+ b j

a+ b i
.

Since, j = i+ η(vi)/2 we get,

η(vj)

η(vi)
=

a+ b i+ η(vi)/2

a+ b i
.

Separating out into two summands, we get,

η(vj)

η(vi)
=

a+ b i

a+ b i
+

η(vi)/2

η(vi)

= 1 + b/2.
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Let us define g = 1 + b/2. The path length is bounded from above by n = |V (Si)|.
Therefore, the total number iterations is at most logg(n). Each step contributes a
bounded multiplicative factor to the total count of particles needed. This implies
that the total number of particles needed, say N , is bounded by the following
expression.

N 6 K0 K
logg(n) = K0 n

logg(K) (7)

Graph Boundary

p
q

Figure 3: Epicenter Propagation : Expansion Phase - the radii of balls are expanding and
the potential focus is moving towards the central region in the graph

2. Case (b < 0) Contraction Phase : This case is analogous to the Expansion phase.
See Figure (4). We initialize by flooding the ball B(p, η(p)). Using the property
hLC(Cσ), the number of particles required, sayK ′

0, is bounded by Cσ.Vol(B(p, η(p))).
But the volume of this ball is trivially bounded by the volume of the sandpile Si,
which in turn is trivially bounded by product of the maximum degree, ∆, times the
total number of vertices, n.

K ′

0 6 Cσ∆n

We will now repeat the following process iteratively. Assume that we are currently
at vertex vi and the normal ball B(vi, η(vi)) is flooded. Consider the vertex vj with
j = i + η(vi)/2 and the normal balls Bs = B(vj, η(vi)/2) and Bt = B(vj, η(vj)). In
the last iteration, Bs was flooded along with the ambient B(vi, η(vi)). Using Bs,
we will to flood the concentric ball Bt. Again, using Lemma (22), if configuration
c flooded B(vi, η(vi)), then K.c floods B(vj, η(vj)) for some constant K. In every
iteration, the radius of the target ball Bt decreases by a factor of η(vj)/η(vi).

Following through the same computation as in the case of expansion phase, we
obtain that the contraction ratio is 1 + b/2. Note that, since b < 0, this ratio is less

the electronic journal of combinatorics 22(1) (2015), #P1.44 16



than 1. There is a constant factor contraction in the radius of the balls flooded in
each iteration. Let us denote the reciprocal of this ratio by g′ = (1 + b/2)−1. The
implication of this remains the same though, that the total number of iterations are
logarithmic in n. To be precise, the number of iterations is at most logg′(n). Since
each step contributes a multiplicative factor to the total particle requirement, the
total number of particles needed, say N , is bounded by the following expression.

N 6 K ′

0K
logg′ (n) = K ′

0 n
logg′ (K) (8)

Graph Boundary

p
q

Figure 4: Epicenter Propagation : Contraction Phase - the radii of balls are decreasing
and the potential focus is moving towards the boundary region

3. Case (|P | = O(log(n)))Lateral Drift Phase: Let the path P be such that η varies
sub-linearly over it. Also, let the minimum value of η over P be ηmin. Consider the
ball B(p, ηmin). We flood this using at most K ′

0 6 Cσ∆n particles (follows from the
(hLC(Cσ)) property, just like the previous case).

If configuration c floods B(p, ηmin), then K c floods B(vηmin/2, ηmin), using Lemma
(22). At a multiplicative cost of K, we cover a distance of ηmin/2 on the path P .
Let l be a constant, independent of the sandpile index, such that |P | 6 l. log n. We
take at most 2l log n/ηmin steps in this fashion. See Figure (5). The total number
of particle required to finally flood the site q, say N , is bounded by the following
expression:

N 6 K ′

0K
2l

ηmin
log(n)

= K ′

0 n
2l

ηmin
log(K)

(9)

Noting that ηmin > 1, K0 6 K ′

0 = Cσ∆n, and denoting ĝ = min{g, g′}, we have the
following common bound on N which respects the bounds in equations (8), (9), and (7).

N 6 Cσ∆n1+(2l+1) logĝ(K)

After considering these cases of central paths, the argument of k-central paths follows
directly. We split the path in the central components. Each of these components con-
tributes a polynomial factor, mentioned above, in the total particles count. Since k is a

the electronic journal of combinatorics 22(1) (2015), #P1.44 17



Graph Boundary

p q

Figure 5: Epicenter Propagation : Lateral Drift Phase - the radii of balls under consider-
ation stay same but the potential focus drifts inside the graph

constant for the family of sandpile under consideration, we obtain that the total particle
count is the following polynomial.

N 6 Cσ∆nk+(2l+1)k logĝ(K)

Now assuming that the conditions MV (Ch), and Vα are also satisfied, and using bounds
on the value of K as mentioned in the Lemma (22), the bounds on N can be written as,

N 6 Cσ∆n
k+(2l+1)k logĝ

(

Cσ
Ch

∆(∆+1)
δ

3α
)

This completes the derivation of the theorem.

The theorem demonstrates polynomial bounds on the transience class of certain sand-
pile families. Furthermore, it shows that the bounds are of the form

N 6 knp(α)

where k is a constant and p(α) is a linear function of α, for the particular family. This
form of bound can be contrasted with the Harnack’s inequality, where the bounds on
growth rates of harmonic functions look similar, with the dimension appearing in the ex-
ponent. Note that both the volume growth parameter α and the dimension of a Euclidean
space, determine the measure contained in any region. Hence, the similarity confirms the
intuition behind thinking of α as the dimension for certain kinds of graphs.

5 Impulse Superposition in sandpile : Proof of theorem 19

We will now show that the local superposition property LS(Cl) follows from mean value
property MV(Ch) and degree boundedness (∆) of the graph. Let H be the maximum
number of particles which can be added at site v without causing a toppling at site w.
The following theorem from [10] bounds the value of H for degree-bounded sandpile.

Theorem 27. ([10]) For any sandpile with bounded vertex degrees, the minimum number
of particles that need to be added at any vertex v to observe a toppling at any vertex w,
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H, satisfies the following two-sided bounds,

1

(∆ + 1)πw(v)

∑

u

πw(u) 6 H 6
(∆− 1)

πw(v)

∑

u

πw(u). (10)

Similarly, let h be maximum number of particles which when placed at each site of the
ball B(v, r) do not topple w. Let z(u) denote the number of times the node u topples in
the process. Once the sandpile is stable, we observe that the number of particles on any
particular node u is between 0 and degree(u)− 1. This number is equal to the difference
between total inflow and outflow. The inflow is due to neighbors’ toppling and direct
particle additions at u, and the outflow is due the toppling of node u itself. Writing out
the equations in integer variables for each of these nodes and taking the rational relaxation
(treating the integer variables as rationals) gives us the following LP, which bounds the
value of h from above.

max h

∀u ∈ B(v, r) : 0 6
∑

u′∼u

z(u′)− degree(u) z(u) + h 6 degree(u)− 1

∀u /∈ B(v, r) : 0 6
∑

u′∼u

z(u′)− degree(u) z(u) 6 degree(u)− 1

z(w) 6 0, z > 0, h > 0

There are two sets of flow conservation equations here, one for the nodes inside B(v, r)
where particles have been added directly, and the second for the remaining nodes in
S − B(v, r). From the weak duality for LPs, it follows that to obtain an upper bound of
α on the optimum value of the above system, it suffices to find a feasible solution of the
dual LP of value α. The following minimization program is the dual of the above.

min
∑

u

(degree(u)− 1)Y (u)

∑

u′∼w

Y (u′) + Y ′ − degree(w)Y (w) > 0

∀u 6= w :
∑

u′∼u

Y (u′)− degree(u)Y (u) > 0

∑

u∈B(v,r)

Y (u) > 1

Y > 0, Y ′
> 0

Now, consider the following set of equations:
∑

u′∼w

Y (u′) + Y ′ − degree(w)Y (w) = 0

∀u 6= w :
∑

u′∼u

Y (u′)− degree(u)Y (u) = 0

∑

u∈B(v,r)

Y (u) = 1
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A non-negative set of values satisfying the above set is feasible for the dual LP. We find
these by considering the resistive circuit Ŝ, obtained by replacing each edge in S by a unit
resistance. We assign ground potential to the sink, and inject current at node w such that
it gets unit potential. The potential that develops on any node u is sπw(u). Evidently,
all these potential values belong to the unit interval [0, 1]. The sum of potential values
at nodes in B(v, r),

∑
u∈B(v,r) πw(u), can be used to scale the input current at w thereby

scaling all the potentials as well, such that the sum of potentials over the set of nodes
u ∈ B(v, r) becomes unit. It follows that the values Y (u) = πw(u)/

∑
u∈B(v,r) πw(u) and

Y ′ equaling the value of the current injected form a feasible solution of the dual LP. This
gives the following bound on h in terms of the objective value at this point.

h 6
1∑

u∈B(v,r) πw(u)

∑

u

(degree(u)− 1) πw(u). (11)

We are given that the sandpile graph satisfies the mean value MV(Ch) property (definition
(17)). We restate the mean value inequality below.

∑

u∈B(v,r)

πw(u) > Ch πw(v) Vol(B(v, r)) (12)

for some constant Ch independent of the sandpile index. Using equations 11 and 12, we
get the following bounds on h (up to constant factors):

h 6
1

Ch Vol(B(v, r))

1

πw(v)

∑

u

(d(u)− 1) πw(u). (13)

Now, using the lower bounds in equation 10, which tightly approximates the value of
H, and equation 13, which bounds the value of h, we can bound h in terms of H. The
following relation is obtained:

h 6
∆+ 1

Ch

H

Vol(B(v, r))
(14)

The equation demonstrates the local superposition property LS(Cl). In particular, it
shows that the constant Cl of LS(Cl) is related to the constants Ch, of MV(Ch), and ∆,
of (∆), in the following form:

Cl =
∆+ 1

Ch

.

This completes the proof of theorem 19.

6 The special case of grid sandpiles

Figure (1) shows an example of an m× n grid based sandpile. We consider the family of
sandpiles consisting of the symmetric case (m = n).
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(n,n)

(1,1)

(1,n)

(n,1)

c

v

p

Figure 6: An n× n grid sandpile : GRIDn

Consider an n × n grid graph. Attach an extra sink node s to all the nodes lying on
the boundary of this grid such that there is a double edge with every corner node and
single edge for others. We denote the sandpile and graph by GRIDn. Figure (6) shows
an example.

As in the example of grid sandpile, we assume that our sandpile is coming from the
induced subgraph over a suitable set of vertices in the infinite lattice. The reason behind
this choice is that we will be talking about the family of all grid sandpiles. While a
particular finite grid can be a subgraph of many infinite graphs, the infinite grid is the
canonical choice of a common ancestor of all finite grid graphs. We will show in this
section that the infinite grid, Z2, along with the finite subgraph GRIDn satisfy all the
properties required to imply polynomial bounds on the transience class of grids.
Degree bound (∆): The infinite grid Z

2 is regular with degree 4. Every induced
subgraph obeys this degree bound.
Polynomial volume growth property(Vα): For any vertex p and radius r, volume
of the ball B(p, r) grows as a quadratic in r. That is to say Z

2 satisfies Vα with α = 2.
This simple fact can be proved using elementary counting arguments. Figure (6) shows a
typical ball around vertex p.
Non-empty interior property(NI(2, 0)): Given any finite grid, GRIDn, it suffices to
show that there exists a path from center to every other node on which the distance to
sink varies linearly. For simplicity, assume that n is odd and take any point v on the
boundary. Denote the center node by c. Consider the canonical embedding of this grid
in the plane. Join c to v by a line segment. Take the projection of this line segment
towards x−axis and construct the path using the set of highest lattice points lying below
the segment. This path has the requisite property and the growth parameter is just the
slope of the line joining c and v. Figure (6) shows one such path. For an arbitrary pair
of points u, v, the path is a juxtaposition of the paths from u to c, and from c to v. So at
most two (1, 0)-central components suffice. The argument for the more general case of v
lying inside the grid is identical. The case of even n can be handled using essentially the
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same ideas.
Notation: We have been denoting the ball of radius r (shortest path metric) around a
node v by B(v, r). We will be extending this notation such that B(v, r, R) will be taken
to mean the annular region B(v,R)− B(v, r).
Mean Value property (MV): For a proof of the mean value property (MV), we will
be needing Lemma 6 from [28]. We reproduce it, with a slightly changed notation, below
for reference.

Lemma 28. (Exact Mean Value property on an approximate ball, [28]) For each real
number r > 0, there is a function wr : Z

d → [0, 1] such that,

• wr(x) = 1 for all x ∈ B(v, r − c), for a constant c depending only on d.

• wr(x) = 0 for all x 6∈ B(v, r).

• For any function π that is discrete harmonic on B(v, r),

∑

x∈Zd

wr(x)(π(x)− π(v)) = 0.

This lemma allows us to get up to a constant distance of the boundary of the ball
under consideration. We present a rough outline of the derivation of (MV) using this
lemma. The reader is referred to appendix B for an elementary discussion on various
volume inequalities in lattice graphs. Equations derived there will be used in the sequel.

Proof. (Outline) We will be denoting B(v, r) by the shortened form Br, and B(v, r, R)
by Br,R. Using lemma (28) we have the following,

∑

x∈Br

w(x)π(x) =
∑

x∈Br

w(x)π(v)

Decomposing the summation on both sides into a smaller ball and annular region, we
obtain the following.

∑

x∈Br−c

w(x)π(x) +
∑

x∈Br−c,r

w(x)π(x) =
∑

x∈Br−c

w(x)π(v) +
∑

x∈Br−c,r

w(x)π(v)

Using the property that ∀x ∈ Br−c, w(x) = 1, and denoting the number of nodes in Br−c

by #V (Br−c), we obtain the following.

∑

x∈Br−c

π(x) +
∑

x∈Br−c,r

w(x)π(x) = π(v)(#V (Br−c) +
∑

x∈Br−c,r

w(x)) (15)

In equation (15), using the fact that w(x) 6 1 for the second term on left hand side, and
dropping the second term on the right hand side, we obtain

∑

x∈Br

π(x) > #V (Br−c)π(v)
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Using equation (23), we obtain the following:

∑

x∈Br

π(x) >
1

2k
#V (Br)π(v) ∀r > 2c

Noting that Vol(Br) = 4#V (Br), since every node has degree 4, we obtain the following
form of the mean value inequality:

∑

x∈Br

π(x) >
1

2k+2
Vol(Br)π(v) ∀r > 2c

Note: This property allows us to use balls with radii greater then 2c (where c is a function
of lattice dimension alone). However this creates no essential problem. Using elementary
combinatorial arguments, it is easy to show that if adding N particles at some node v
causes the sand particles to reach within a distance d from the sink node, then adding
kN particles at v makes a particle reach the sink node, where k is a function of d and the
dimension of lattice.
High local-conductance (hLC): Babai and Gorodezky [3] prove both (hLC) and (LS)
property of grids, using elementary combinatorial arguments. We reproduce the discus-
sion below without any essential changes. Note that the mean-value property is used in
the Theorem 19, where it along with the property ∆, implies the Local Superposition
(LS) property. This is used in the proof of the Lemma 21 to prove the Overlapping Po-
tentials (OP) property. Therefore showing (LS) directly obviates the need to prove (MV)
altogether.

Definition 29. D4 symmetry : A function f : Z2 → N is said to have D4 symmetry with
respect to a vertex v if it is symmetric with respect to all the four axes of symmetry
passing through v.

In case the function is defined on a finite n × n grid, the above definition is applied
by assigning zero to all the points on which the function is not defined. This creates a
function with a finite support. In this case, the point v is bound to be the geometric
center of this finite support.

Definition 30. Axis Monotonicity : A function f : Z2 → N is called axis monotone about
some vertex v if f(p) 6 f(q) for any pair of lattice points p and q such that the segment
q− p is aligned perpendicular to some axis of symmetry passing through v and q is closer
to this axis then p.

See Figure (7) for a illustration of directions of the axis-monotonicity and D4 symme-
try.

Lemma 31. [3] If the starting (possibly unstable) configuration has D4 symmetry and is
axis-monotone, then so is the function f : Z2 → N, where f(v) is the number of times the
site v topples.
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Figure 7: Axis Monotonicity of a function

In the present context, the function of interest will be the number of particles present
at a particular node. We observe that any function which isD4 symmetric, axis-monotone,
and has finite support, is sandwiched inside an l1 ball (diamond) and l∞ ball (square) of
same radius. The number of sites contained in both these balls is quadratic in the radius.
To be precise, denoting an l∞ ball of radius n around v by B∞(v, n), the volume of this
ball is the maximum of particles it can hold in any stable configuration. This is given by

|B∞(v, n)| = 3(2n+ 1)2.

Similarly, the maximum weight of any stable configuration on B∞(v, n) is bounded by the
following:

| B1(v, n) |= 6n2 + 6n+ 3

The balls, therefore can hold at most Θ(n2) particles. When one starts adding particles
at node v, clearly adding | B1(v, n) |= Θ(n2) particles is enough to flood an l1 ball of
radius n around v. The property (hLC) follows immediately.

Figure 8: A example of a function support which is D4-symmetric and axis monotone
(about the center of the grid). The function support is shown in broken lines and bold
lines depict the l∞ and l1 balls

The property (LS) requires more work. Here we start with placing some h parti-
cles at each node in B1(v, r). This configuration is axis-monotone and D4-symmetric.
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Consequently, the stable configuration resulting from this is also axis-monotone and D4-
symmetric. Let h be smallest such number such that the resulting configuration contains
the ball B1(v,R). The total number of particles this configuration can have is Θ(R2).
The particles we started of with are hΘ(r2). Hence, h is Θ((R/r)2). The property (LS)
follows.

7 Future work

In the present work, we generalize the approach taken by Babai and Gorodezky [3]. The
analysis raises lot of interesting questions, answers to which will aid our understanding
of random walks and sandpiles. We refer the reader to a slightly expanded version of
this paper [12] which has additional expository sections describing, in limited details, the
parallels with classical complex analysis and the intuitive connections between measures
induced by random walks on graphs, and Brownian motion in Euclidean spaces and as
implications of these, informally argue that the graph properties we have derived are
analogous to essential properties of Euclidean spaces which allow efficient diffusions.

In the context of the transience class problem, the central question is that pertaining to
a complete characterization of graph properties which are equivalent to polynomial bounds
on tcl. The present result shows that under some very general and reasonable assumptions,
the polynomial bounds can be established. There are some obvious extensions possible
from our theorems. For example if one considers graphs made from attaching two graphs
each individually satisfying the required preconditions but having different volume growth
parameters. One can bound the Harnack’s constant for both components separately and
bound the one for the whole graph using the simple triangle inequality. But apart from
these trivial modifications, we do not yet know of any class of sandpile which are not
covered by our result. Supported by the analogy with the continuous case, we believe
the assumptions we make are essential and cannot be substantially relaxed. A related
sub-question is finding non-lattice type graphs satisfying the properties we mention.

The second question supplements the first one. Consider any Euclidean space and
triangulate it using simplices or cubic complexes, basically any regular tessellation will do.
We are interested in the graph of this triangulation complex. Indeed, the grid sandpile are
obtained in exactly this manner from the two dimensional Euclidean space. In this graph,
consider a subgraph corresponding to any open set. All edges leading to points outside the
set are connected to the sink node. In this setting, one can see that polynomial bounds
in sandpile settings roughly correspond to non-trivial bounds on the Harnack’s constant
in the continuous space. Any lower dimensional set in R

n has unbounded Harnack’s
constant. For some simple cases, it can be shown that the sandpile corresponding to
these sets also have transience classes which cannot be polynomially bounded. Babai and
Gorodezky [3] first mention this for the line sandpile. The case of general degenerate
sets is similar. The only crucial component is the fact that from every node, there is
an edge to sink node. One can see an interesting confluence of the notion of bad models
here. In the setting of probability spaces with the Lebasgue-like measure, full dimensional
sets are used for modeling events with non-zero probability, while the lower-dimensional
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ones are considered beneath consideration and encapsulate unlikely events. On similar
lines, Babai and Toumpakari [4], and Babai and Gorodezky [3] make case for the notion
of polynomially bound transience classes as the essential qualification for a sandpile to
be a good model. Dhar [20] mentions several physical phenomena which sandpiles are
intended to model. In all these settings, the sandpile graphs arise as tessellation graphs
of the underlying continuous space. It is only natural to expect that if the underlying set
itself is a bad model, the sandpile on top of it is going to a bad model. This leads us to
a question impinging on the notion of dimensions for graphs. For the family of lattice
graphs based sandpiles, does every bad sandpile correspond to a degenerate set?

To conclude, we bring together ideas from three different areas of mathematics. Our
bounds demonstrate that the research in each of these areas has ramifications in the other
two. This magnifies the importance of resolving any question in any of these areas. We
hope that this paper motivates further investigation on sandpile-like discrete diffusions,
in analogy with random walks and complex analysis.
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A Basic Potential Theory

For a proper introduction to harmonic functions on graphs, we refer the reader to the
beautiful paper by Benjamini and Lovasz [6]. See Telcs [46] for a thorough view. We start
with some important definitions and fundamental properties. Given a connected graph
G and a function π : V (G) → R, we say that π is harmonic over the vertex set Vh if

1

degree(v)

∑

u∼v

π(u) = π(v) v ∈ Vh.

The vertices in V − Vh, adjacent to any vertex in Vh, are called the “poles” of π. The
set Vh is also called the interior of π and the set of poles referred to as the boundary.
Being harmonic over Vh means that the value of π at any vertex in Vh is the average of its
value in the immediate neighborhood. In case of multi graphs, we take the appropriate
weighted means, where the weights are the number of common edges. This leads us to
the first basic property,

Property 32. Any non-constant harmonic function can assume its extreme values only
at the set of poles.

It follows that every non-constant harmonic function has at least two poles, its maxima
and minima. Such functions are completely determined by their values on these vertices.
Formally speaking,

Property 33. Uniqueness: If two functions harmonic on Vh agree on the boundary, they
agree everywhere in the interior.

Property 33 is important as it allows one considerable freedom in constructing har-
monic completions of functions defined over the boundary set. This problem is the discrete
analogue of the classical boundary value problems in complex analysis. If one fixes the in-
terior set Vh and allows arbitrary boundary values, the complete set of harmonic functions
is obtained. This set is closed under linear combinations and contains all the constant
functions.

Property 34. The set of functions harmonic over any set Vh form a vector space.

Two important scenarios in which these functions arise naturally are electric networks
and random walks.

Electric Networks: Consider a resistive electric network (i.e. a circuit made up entirely
of resistors). Let sπt(v) be the potential that appears at node v when unit potential is
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applied across t and s. Using the equation of charge conservation (Kirchoff’s node law),
one can show that these potentials are harmonic on all nodes except s and t.

Random Walks on Graphs- dipole version: Consider a graph G and two special vertices
s and t. The potential associated with v, with s and t as poles, sπt(v) is defined as the
probability of reaching t before s starting from v. One can check that the function π so
defined is indeed harmonic on the set V − {s, t}, with the maximum value of 1 at the
node t and the minimum value 0 at s. The generalization to the multi-pole situation is
simple, but it is interesting for a different reason.

Random Walks on Graphs- multipole version: Again we consider graph G, but this
time we have a set of interior nodes Vh and the corresponding set of poles, P = {si}.
Denote by πj(v), the probability of a random walk, starting at v, hitting sj before any
other vertex in S. Assign any desired set of values π(si) to each of these poles. The value
π(v) is defined as the sum

∑
j π(sj)πj(v). As before, it is a simple exercise to check the

function π is harmonic over Vh. The formula basically suggests taking an expectation over
the boundary values, using the measure induced by the random walk.

The main implication here is that one can intuitively think of the electric network the-
ory as an analysis of random walks of electrons on the underlying graphs. Consequently,
results from network theory can be used to prove interesting facts in other related ar-
eas. As an example, consider the problem of constructing the harmonic completion of a
function with given boundary values. All one needs to do is to take the corresponding
circuit and apply potentials equal to the boundary values on the boundary points. The
potentials that will appear on other nodes can be computed using basic linear algebra (the
only non-trivial step involves inverting the combinatorial Laplacian of G) thus allowing
construction of harmonic completions efficiently.

The reciprocity theorem can be restated in terms of just potential sources and poten-
tial measurements using the notion of effective resistances between pairs of nodes. The
effective resistance between a pair of nodes u and v, Reff (u, v) is defined as the potential
difference which develops between u and v if a unit current source is applied across u
and v. In any resistive network, the following reciprocity property holds. See [10] for an
elementary proof.

Lemma 35. Potential Reciprocity Lemma : If taking s and t as poles with π(s) = 0 and
π(t) = 1 induces a potential of sπt(v) at node v and interchanging the roles of v and t
induces sπv(t) at t then,

Reff (s, t)sπt(v) = Reff (s, v)sπv(t). (16)

In particular, when the effective resistances across s and t are the same as s and v,
we have sπt(v) =s πv(t). In the following discussion, we will omit the left subscript (s)
from sπt whenever it is clear from context. We say that a walk P is an instance of sπt if
it starts at some vertex v, avoids s and ends at t. The following lemma may already be
known to experts. A proof appears in [10].

Lemma 36. A triangle inequality for potentials:

πi(j) πj(k) 6 πi(k). (17)
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B Volume properties of lattice graphs

Consider a lattice in Z
k and the resulting graph, where each lattice point is in the neigh-

borhood of the 2k points flanking it. In this graph, consider a ball Br, and the annulus
Br−c,r. [5] notes the volume of an L1 ball as,

|Br| =
(2r)k

k!
(18)

The simpler cases with dimensions 2, and 3 are easy to directly visualise. The higher
dimension version follows simply from induction. Number of nodes in Br is approximable
as follows.

#V (Br) =
(2r)k

k!
+ o(rk) (19)

In the above expression, the second term on right hand side is a lower order correction
factor which compensates for the discrepancy due to points on the surface of the convex
ball under consideration. The constants in this lower order term may be functions of
dimension. Using equation (18), the volume of annular regions can be approximated as
follows.

|Br−c,r| =
(2r)k

k!
− (2(r − c))k

k!

=
(2r)k

k!
(1− c/r)k (20)

Using equations (18),(20), the proportion of complete sphere’s volume contained in the
annular region can be seen as

|Br−c,r|
|Br|

= (1− c/r)k (21)

For all values of r > c, we have the trivial inequality,

|Br−c,r| 6 |Br|

Imposing the constraint r > 2c, we obtain the reverse version,

|Br| 6 2k|Br−c,r|

The number of lattice points in these regions follow identical ratio bounds with lower
order correction factors which asymptotically go to zero. We therefore have the following
asymptotic vertex count bounds.

#V (Br−c,r) 6 #V (Br) 6 2k#V (Br−c,r) ∀r > 2c (22)
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We will be needing the ratio of the volumes of two balls. Consider the balls Br−c, and Br

(using L1 metric).

|Br−c|
|Br|

= (1− c/r)k

For values of r satisfying the constraint r > 2c, this basically translates to the following
bound.

|Br| 6 2k|Br−c|

Again, barring lower order correction factors, the following asymptotic result holds.

#V (Br) 6 2k#V (Br−c) ∀r > 2c (23)
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