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Abstract

Multipoles are the pieces we obtain by cutting some edges of a cubic graph in
one or more points. As a result of the cut, a multipole M has vertices attached
to a dangling edge with one free end, and isolated edges with two free ends. We
refer to such free ends as semiedges, and to isolated edges as free edges. Every
3-edge-coloring of a multipole induces a coloring or state of its semiedges, which
satisfies the Parity Lemma. Multipoles have been extensively used in the study of
snarks, that is, cubic graphs which are not 3-edge-colorable. Some results on the
states and structure of the so-called color complete and color closed multipoles are
presented. In particular, we give lower and upper linear bounds on the minimum
order of a color complete multipole, and compute its exact number of states. Given
two multipoles M1 and M2 with the same number of semiedges, we say that M1 is
reducible to M2 if the state set of M2 is a non-empty subset of the state set of M1

and M2 has less vertices than M1. The function v(m) is defined as the maximum
number of vertices of an irreducible multipole with m semiedges. The exact values
of v(m) are only known for m 6 5. We prove that tree and cycle multipoles are
irreducible and, as a byproduct, that v(m) has a linear lower bound.
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1 Introduction

A cubic graph can be subdivided by an edge cut into parts known as multipoles. As a
result of the cut, a multipole has half-edges with one free end which we call semiedges. An
isolated edge with both free ends can be viewed as a multipole, too. We call it a free edge,
and we refer to its free ends as semiedges, too. A multipole need not be connected. We
call m-pole a multipole with m semiedges. According to the Parity Lemma, if a multipole
can be 3-edge-colored then the number of semiedges of each color must have the same
parity as m. Therefore, the possible colorings of the semiedges are not arbitrary. We
refer to such colorings of the semiedges as states, where the ordering of the semiedges is
fixed but the 3 colors are interchangeable. Multipoles and their states are used to study
non-3-edge-colorable cubic graphs, called snarks. See, for instance, Isaacs [8], Gardner [6],
Goldberg [7], and Fiol [3]. A multipole with all states permitted by the Parity Lemma is
known as a color complete multipole, and a 3-edge-colorable multipole that has at least
one state in common with any other 3-edge-colorable multipole with the same number
of semiedges is known as a color closed multipole. Nedela and Škoviera [12] posed the
question whether color closed non color complete multipoles exist for m > 5. Karabáš,
Máčajová and Nedela [10] affirmatively answered this question, giving examples obtained
by computer search. We also give examples for m ∈ {5, 6} and explain a method to
obtain them. Moreover, we give other results on the states and structure of multipoles, in
particular of color complete multipoles. Namely, we give an exact formula for the number
of states of a color complete m-pole, we prove that color complete m-poles exist for every
non-trivial value of m, and we give lower and upper bounds on the minimum order of a
color complete m-pole as a function of m. This gives a partial solution to the problem
of finding a multipole with a given set of states or feasibility problem (see [10]). With
this same motivation in mind, we also give the minimum numbers of states of m-poles for
m 6 6, and we study the m-poles with the minimum possible number of vertices (0 if m
is even, and 1 if m is odd) which we call minimal m-poles. Given two multipoles M1 and
M2 with the same number of semiedges, we say that M1 is reducible to M2 if the state
set of M2 is a non-empty subset of the state set of M1 and M2 has less vertices than M1.
The function v(m), introduced by Fiol [3], is defined as the maximum number of vertices
of an irreducible m-pole. Only a few values of v(m) are known. We prove that tree and
cycle multipoles are irreducible and, as a byproduct, that v(m) has a linear lower bound.

2 Multipoles and Tait colorings

A multipole or m-pole M = (V,E, E) consists of a finite set of vertices V , a set of edges E
which are unordered pairs of vertices, and a set E whose m elements ε1, . . . , εm are called
semiedges. We use the notation V (M), E(M) and E(M) if we want to indicate that V ,
E and E are, respectively, the vertex, edge and semiedge sets of a certain multipole M .
Each semiedge is associated either with one vertex or with another semiedge making up
what is usually called an isolated or free edge. For instance, Fig. 1(a) shows a 7-pole with
two free edges. Notice that a multipole can be disconnected or even be ‘empty’, in the
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sense that it can have no vertices. The diagram of a generic m-pole will be as shown in
Fig. 1(b).

Figure 1: A 7-pole with two free edges (a) and a generic multipole (b).

In this paper we follow notation in [3, 4]. For instance, if the semiedge ε is associated
with vertex u, we say that ε is incident to u and, following Goldberg’s notation [7], we
write ε = (u). Also, by joining the semiedges (u) and (v) we get the edge (u, v). The degree
of a vertex u, denoted by deg(u), is the number of edges plus the number of semiedges
incident to it. In this paper, we only consider cubic multipoles, that is, those for which
deg(u) = 3 for all u ∈ V . Thus, the simplest 2- and 3-poles are a free edge and a vertex
with three incident semiedges. We denote them by e and v, respectively.

Given a multipole M , we denote by G[M ] the graph obtained from M by removing
all its semiedges. Using this definition, we say that a multipole N is contained in M , or
that N is a submultipole of M , when G[N ] is a subgraph of G[M ]. Note that if G[N ] is a
proper subgraph of G[M ] then N can be obtained from M by ‘cutting’ (in one or more
points) some of its edges. The distance ∂(ε, ζ) between two semiedges ε = (u) and ζ = (v)
is defined to be the distance in G[M ] between its incident vertices u and v.

When G[M ] is a tree or a forest we refer to M as a tree multipole or a forest multipole
respectively. Analogously, if G[M ] is a cycle we say that M is a cycle multipole. A simple
counting reasoning allows us to see that a tree m-pole has n = m − 2 vertices, whereas
a cycle m-pole has n = m vertices. In general, for every m-pole with n vertices, we have
that m ≡ n (mod 2) and the following result holds:

Lemma 2.1. Let M be an m-pole with n = |M | vertices and c components. Then,

n > m− 2c,

with equality if and only if M is a forest multipole.

Proof. For i = 1, . . . , c, let n(i) and m(i) denote, respectively, the numbers of vertices and
semiedges of the i-th component. Then the result follows from the fact that n(i) > m(i)−2
with equality if and only if the i-th component is a tree multipole.
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Let C = {1, 2, 3} be a set of ‘colors’. Then, a 3-edge-coloring or Tait coloring of an
m-pole (V,E, E) is a mapping φ : E ∪ E → C = {1, 2, 3} such that all the edges and/or
semiedges incident with a vertex receive distinct colors, and each isolated edge has both
semiedges with the same color. For example, Fig. 2 shows a Tait coloring of a 6-pole. Note
that the numbers of semiedges with the same color have the same parity. The following
basic lemma states that this is always the case.

Figure 2: A Tait coloring of a 6-pole.

The Parity Lemma. Let M be a Tait colored m-pole with mi semiedges having color
i = 1, 2, 3. Then,

m1 ≡ m2 ≡ m3 ≡ m (mod 2). (1)

This result has been used extensively in the construction of snarks (see, for instance,
Isaacs [8], Goldberg [7], Chetwynd and Wilson [2], Watkins [16], Kochol [11] and Steffen
[13]).

3 Color completeness

Given a multipole M with semiedges ε1, . . . , εm, its set of semiedge colorings or states is

Col(M) = {(φ(ε1), . . . , φ(εm)) : φ is a Tait coloring of M}/ ∼,

where two states S1 and S2 are in the same equivalence class (S1 ∼ S2) if they can be
transformed into each other by a permutation of the colors.

A multipole M is color complete if it has all the possible semiedge colorings allowed
by the Parity Lemma. We call these states admissible. If a given multipole M has a
state S, we say that S is realizable in M . Two multipoles M1 and M2 are color equivalent
if Col(M1) = Col(M2), that is, if each state of one multipole has an equivalent in the
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state set of the other. For instance, we consider the states (1, 1, 2, 2) and (3, 3, 1, 1) to be
equivalent, and the multipoles with state sets {(1, 2, 3, 1, 1), (1, 2, 3, 2, 2), (1, 2, 3, 3, 3)} and
{(2, 3, 1, 2, 2), (2, 3, 1, 3, 3), (2, 3, 1, 1, 1)} to be color equivalent. A state set is realized by
the multipole M if it is color equivalent to Col(M). Not surprisingly, the number of states
σ(m) = |Col(M)| of a color complete m-pole M coincides with the number of possible
colorings of the planar regions in the m-ring of an almost triangulation [5, p. 190]. This
is because of the equivalence, proved by Tait [14, 15], that the regions of a planar cubic
graph G are 4-colorable if and only if G is 3-edge-colorable. Here we use the properties
of 3-edge-colored multipoles to give a short derivation of the formula for such a number.

Proposition 3.1. Let M be a color complete m-pole. Then, its number of states is

σ(m) =
1

8
[3m−1 + 2 + (−1)m3].

Proof. We prove that σ(m) satisfies the following recurrence:

σ(m) = 2σ(m− 1) + 3σ(m− 2)− 1, (2)

with initial values σ(2) = σ(3) = 1. Note that, given the semiedges ε1 and ε2, the set
of states can be partitioned into two subsets: Those with φ(ε1) = φ(ε2) and those with
φ(ε1) 6= φ(ε2) for some Tait coloring φ. Here and henceforth, the letters a, b, c stand for
the colors 1,2,3 in any order, and ‘∗’ denotes any color. The following facts give the
recurrence:

(i) Every realizable state (a, ∗, (m−2). . . , ∗) of an (m − 1)-multipole gives rise to two rea-

lizable states, (b, c, ∗, (m−2). . . , ∗), and (c, b, ∗, (m−2). . . , ∗), of an m-pole.

(ii) Every state (a, ∗, (m−3). . . , ∗) of an (m−2)-multipole gives rise to three realizable states,

(a, a, a, ∗, (m−3). . . , ∗), (b, b, a, ∗, (m−3). . . , ∗), and (c, c, a, ∗, (m−3). . . , ∗), of an m-pole.

(iii) If m is odd, in (i) the realizable state (a, (m−1). . . , a) gives two equivalent states.

Similarly, if m is even, in (ii) the realizable state (a, (m−2). . . , a) gives two equivalent
states (in both cases, up to permutation of colors b and c).

Then, a particular solution of (2) is σ(m) = 1/4, whereas a general solution of the
corresponding homogeneous equation turns out to be σ(m) = α3m+β(−1)m where α, β ∈
R. Adding up and imposing the initial conditions we obtain the result.

Color complete multipoles can be constructed recursively by using the following result:

Proposition 3.2. Let M1 and M2 be two color complete multipoles, with m(1) + r and
m(2) + r semiedges respectively, where m(1),m(2) > 2, r > 2. For k = 1, . . . , r, choose
the semiedges (uk) from M1 and (vk) from M2 and join them to obtain the edges (uk, vk).
Then, the obtained multipole M , with m = m(1) +m(2) semiedges, is also color complete.
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Proof. Let S be a state of M , and for j = 1, 2 and i = 1, 2, 3, let mi, ri, and m
(j)
i

be, respectively, the number of semiedges of M , the number of edges (uk, vk) of M , and

the number of semiedges of Mj, having color i. Then, m(j) = m
(j)
1 + m

(j)
2 + m

(j)
3 and

r = r1 + r2 + r3 and, by the Parity Lemma, we must have:

m
(1)
i +m

(2)
i ≡ m(1) +m(2) (mod 2), (3)

m
(1)
i + ri ≡ m(1) + r (mod 2), (4)

m
(2)
i + ri ≡ m(2) + r (mod 2). (5)

Now, we claim that there exist states S1 of M1 and S2 of M2 inducing the state S of
M . In other words, given m

(1)
i and m

(2)
i satisfying (3), we want to find some values of ri,

i = 1, 2, 3, satisfying (4) and (5). This gives

ri ≡ m(1) + r −m(1)
i (mod 2),

ri ≡ m(2) + r −m(2)
i (mod 2),

which has a solution if and only if the two right hand terms have the same parity. That
is,

m(1) −m(1)
i ≡ m(2) −m(2)

i (mod 2).

But this is precisely the condition (3). To see why the condition on r is necessary, note first
that the case r = 0 is discarded by the observation that a color complete multipole must
be connected: otherwise, the Parity Lemma should hold for every connected component,
forbidding states that would be admissible as states of the entire multipole. Hence, if
r is even, then r > 2. Consider now the case r = 1. We are assuming that m(1) > 2.
If m(1) + r is odd, the state with m

(1)
1 ≡ m

(1)
2 ≡ m

(1)
3 ≡ α, where α ∈ {0, 1}, imposes

r1 ≡ r2 ≡ r3 ≡ 1− α. Therefore, if α = 0 then r1, r2, r3 > 1, and if α = 1 then ri > 2 for
some i ∈ {1, 2, 3}. The case with even m(1) + r is similar.

As a consequence, we have the following result on the minimum order n(m) of a color
complete m-pole:

Theorem 3.3. For a given m > 5, the minimum number of vertices of a color complete
m-pole satisfies the bounds:

(a) If m is odd, then m+ 2 6 n(m) 6 10m− 37.

(b) If m is even, then m+ 2 6 n(m) 6 10m− 40.

Proof. First we deal with the lower bounds. For m > 5, it is obvious that a complete
m-pole cannot have two semiedges incident to the same vertex. This would preclude a
common color for both semiedges, a possibility admitted by the Parity Lemma. We have
seen that a color complete multipole must be connected. Moreover, if a connected multi-
pole with no two semiedges at distance 0 hasm semiedges and onlym vertices, then it must
be a cycle with a semiedge on each vertex, but such an m-pole cannot be complete either
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because certain states admissible by the Parity Lemma are not possible in a cycle m-pole
with m > 5 (see Lemma 7.3). Also according to parity considerations, m ≡ n (mod 2),
so a multipole with m semiedges cannot have m + 1 vertices. Summarizing, if m > 5,
then a complete m-pole must have at least m+ 2 vertices.

Now we deal with the upper bounds. Color complete multipoles can be constructed
recursively as seen in Proposition 3.2, and specifically with r = 2. Explicit color complete
multipoles are known for m = 5, Fig. 3(a), and m = 6, Fig. 3(b), with 13 and 20
vertices respectively. This allows us to start the recursive construction of color complete
multipoles with higher values of m. Let Mm denote a color complete m-pole of minimum
order, and |V (Mm)| its number of vertices. Then, for m > 7,

|V (Mm)| = |V (M(m−2)+6−4)| 6 |V (Mm−2)|+ |V (M6)| = |V (Mm−2)|+ 20,

and this gives |V (Mm)| 6 10m− 37 for m odd, and |V (Mm)| 6 10m− 40 for m even, as
claimed.

Although we think that these bounds can be improved, we already see a linear beha-
vior. As a corollary of the recursive construction, we conclude that color complete m-poles
exist for any m > 2.

Figure 3: Color complete 5- and 6-poles.

4 Color closedness

Following the terminology of Nedela and Škoviera [12], we say that an m-pole M is color
closed if its state set has non empty intersection with the state set of any other Tait
colorable m-pole N . Also in [12] a concept of snark irreducibility is defined, and proved
equivalent to the fact that every nontrivial edge-cut, that is, one different from three edges
incident with a vertex, separates the snark into Tait colorable components. Obviously,
a color complete multipole is color closed, and if m > 4 then a color closed m-pole M
cannot be contained in an irreducible snark, because there is always at least one possible
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coloring of its m semiedges that is in Col(M)∩Col(N) for any other Tait colorable m-pole
N .

If µ(m) and σ(m) are respectively the minimum and maximum number of states of
an m-pole, then, by the pigeonhole principle, any m-pole with more than σ(m) − µ(m)
states must be color closed. If it has less than σ(m) states, then it is non-trivially color
closed.

Proposition 4.1. The minimum number of states of Tait colorable 4-, 5-, and 6-poles
are 2, 3, and 5 respectively.

Proof. We skip the easier cases of the 4- and 5-poles and explain in detail only the case
of 6-poles.

Assume a 6-pole has state S. We may assume without loss of generality that either
S = (a, a, a, a, a, a), S = (a, a, a, a, b, b), or S = (a, a, b, b, c, c). First we prove that a
6-pole with the state (a, a, a, a, a, a) has at least 5 states. Start a Kempe interchange of
a-b type at the first semiedge. We may assume that the resulting state is (b, b, a, a, a, a).
Alternatively, start a Kempe interchange of the same type at the third semiedge. Now we
know that the Kempe chain cannot finish at the first or second semiedge. We may assume
that the resulting state is (a, a, b, b, a, a). Another possibility is to start the same type
of Kempe interchange at the fifth semiedge. Now we know that it cannot finish at one
of the first four semiedges. Hence, we assume that the resulting state is (a, a, a, a, b, b).
Summarizing, we can obtain at least three new states from (a, a, a, a, a, a). Now take
anyone of the three new states and start an arbitrary Kempe interchange of type a-c.
This will give one new state, totalling five. The 6-pole consisting of 3 free edges realizes
this possibility. Therefore, µ(6) 6 5.

We must see that if a 6-pole does not have the state (a, a, a, a, a, a) then it cannot have
less than 5 states. First assume that the 6-pole has at least one state with two colors,
say S1 = (a, a, a, a, b, b). Starting a Kempe interchange of type a-b at the last semiedge
we obtain one of the states (b, a, a, a, b, a), (a, b, a, a, b, a), (a, a, b, a, b, a) or (a, a, a, b, b, a),
none of them equivalent to S. Assume it is S2 = (a, a, a, b, b, a). Using arbitrary Kempe
interchanges of type a-c we can obtain two new three-colored non-equivalent states, one
from S1 and one from S2. This gives a total of four states {S1, S2, S3, S4}. But taking
S1 and starting a Kempe interchange of type a-b at the first semiedge we obtain one of
the states (b, b, a, a, b, b), (b, a, b, a, b, b), (b, a, a, b, b, b), (b, a, a, a, a, b) or (b, a, a, a, b, a), the
first three being equivalent to (a, a, b, b, a, a), (a, b, a, b, a, a) and (a, b, b, a, a, a). None has
an equivalent state in {S1, S2, S3, S4}. Therefore, a fifth non-equivalent state S5 exists.

Now assume that the 6-pole has only three-colored states, and that one of these
states is S1 = (a, a, b, b, c, c). Using Kempe interchanges and reasoning as in the pre-
vious paragraph, we may assume that the 6-pole has the states S2 = (a, b, a, b, c, c),
S3 = (a, c, b, b, a, c) and S4 = (a, a, b, c, b, c). All of them have repeated consecutive colors.
But then a Kempe interchange of type a-c starting at the first semiedge of S4 gives either
the state (c, a, b, a, b, c) or (c, a, b, c, b, a). None of them has repeated consecutive colors,
and hence none of them has an equivalent state in {S1, S2, S3, S4}. Therefore, a fifth
non-equivalent state S5 exists. Summarizing, µ(6) = 5.
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The construction of color complete and color closed multipoles can be easily done
by aggregation. In particular, the addition of the X-shaped 4-pole of Fig. 4(a) to an
arbitrary m-pole by the junction of two pairs of semiedges is useful to increase its number
of possible states (note the use of the X-shaped 4-pole in Section 3, Fig. 3). In this way,
we have obtained the color closed multipoles of Figs. 4(b), 5(a), and 5(b), with 4, 5, and 6
semiedges respectively, and 3, 8, and 27 states respectively. The X-shaped 4-pole is also
color closed.

Figure 4: The X-shaped 4-pole and another color closed 4-pole.

In fact, color closed multipoles need not have a number of states close to the maximum,
because many state sets are not realizable (that is, they are not realized by any multipole).
In [10], color closed 6-poles with only 15 and 16 states are described, while the maximum
number of states for 6-poles is 31.

The minimal multipoles are the m-poles with the minimum possible number of vertices.
If m is even, the minimal m-pole is constituted by m/2 free edges e and it has no vertices.
If m is odd, the minimal m-pole is formed by the minimal 3-pole v, and (m − 3)/2 free
edges.

Figure 5: Color closed 5- and 6-poles.
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Theorem 4.2. Let ρ(m) be the number of states of a minimal multipole.

(a) If m is odd, then ρ(m) = 3
m−3

2 .

(b) If m is even, then ρ(m) = 1
2
(3

m
2
−1 + 1).

Proof. (a) The minimal 3-pole v has a unique coloring, and each one of the (m − 3)/2
free edges has 3 possible colors.

(b) We have the following recurrence relation: ρ(m + 2) = 3ρ(m) − 1. To show this,
consider (m+ 2)/2 free edges. If the first m/2 free edges have the same color, say a, then
two of the three possible color assignments for the last free edge, b and c, yield equivalent
states because the colors are interchangeable. Otherwise, all color assignments for the last
free edge yield non-equivalent states. Therefore, only two of the 3ρ(m) possible states are
equivalent to each other, and we must discard one of them. This gives the recurrence.
The initial value is ρ(2) = 1, corresponding to the unique state of a free edge. Using
induction on m, or the same technique as in Section 3, we obtain the stated result.

From Proposition 3.1, Proposition 4.1, and Theorem 4.2, we see that the first values
of µ(m), ρ(m), and σ(m) are:

µ(4) = ρ(4) = 2, σ(4) = 4,

µ(5) = ρ(5) = 3, σ(5) = 10,

µ(6) = ρ(6) = 5, σ(6) = 31.

From the results obtained, we conjecture that the minimum numbers of states are
always attained by the minimal multipoles.

5 Irreducibility

For a given 3-edge-colorable m-pole M , let Col(M) denote the set of states of M as defined
in Section 3. Then, M is said to be reducible when a 3-edge-colorable m-pole N exists such
that |V (N)| < |V (M)| and Col(N) ⊆ Col(M). Otherwise, we say that M is irreducible.
Obviously, all minimal multipoles are irreducible. If a multipole is not 3-edge-colorable,
it can be further decomposed into smaller multipoles until all of them are, with the aim of
studying the structure of snarks in terms of 3-edge-colorable multipoles and the possible
ways of joining them.

The following result was first proved in [3]:

Proposition 5.1. Let U be a snark. Then, for any integer m > 1 there exists a positive
integer-valued function v(m) such that any m-pole M contained in U with |M | > v(m) is
either not Tait colorable or reducible.

A reformulation of the same result was given later by Nedela and Škoviera [12, Th.
3.1]. In the same paper, the authors also gave credit to [3] for the introduction of the
function v(m), and rewrote it as κ(k).
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The known values of v(m) are v(2) = 0, v(3) = 1 (both are trivial results), v(4) = 2
(Goldberg [7]), and v(5) = 5 (Cameron, Chetwynd, and Watkins [1]). Form = 6, Karabáš,
Máčajová, and Nedela [10] proved that v(6) > 12.

The study of the function v(m) is relevant in the study of the structure of snarks.
More precisely, every value of v(m) has a corresponding result for the decomposition of
snarks. Moreover, according to a conjecture by Jaeger and Swart [9], every snark contains
a cycle-separating edge-cut of size at most six. As commented in [10], if this were the
case, then v(6) would be the most interesting unknown value of v(m).

The following basic lemma is simple but very useful in our study:

Lemma 5.2. Let M be an irreducible multipole. Then, every submultipole N ⊂M is also
irreducible.

Proof. We proceed by contradiction. If a submultipole N of M is reducible to, say, a
multipole N ′, then M is reducible to a multipole M ′ obtained replacing N by N ′. This
contradicts the fact that M is irreducible.

As an example of application, note that, as every m-pole with n > 1 vertices contains
an (m+ 1)-pole with n− 1 vertices (just delete a semiedge ε = (v) and its incident vertex
v to create two new semiedges ε′ and ε′′), we have that v(m+ 1) > v(m)− 1. Hence, from
the results in [10], we know that v(7) > 11.

Note that v(m) must have the same parity as m. We can be more precise with respect
to the behavior of v(m) if we use the following result.

Theorem 5.3. Let M be an irreducible multipole. Then, the disjoint union of M and
one free edge e is also irreducible.

Proof. We proceed by contradiction. Assume that the disjoint union of M and e is
reducible to a submultipole M ′. We denote the semiedges of e by ε0 and ε1, and their
corresponding semiedges in M ′ by ε′0 and ε′1. In the set of states of M∪e (respectively M ′),
all states must have φ(ε0) = φ(ε1) (respectively φ(ε′0) = φ(ε′1)). This implies that ε′0 and
ε′1 are not adjacent (that is, ∂(ε′0, ε

′
1) > 0) unless they constitute a free edge e′ also in the

submultipole M ′, but then M would be trivially reducible to M ′ minus e′ and we would
be done. Otherwise, we may join ε0 to ε1 in M ∪e and ε′0 to ε′1 in M ′. In the first case, we
obtain M and a trivial ‘closed edge’ which can be ignored. In the second case, we obtain
a multipole M ′′ whose number of vertices is |V (M ′′)| = |V (M ′)| < |V (M + e)| = |V (M)|
and whose set of states is a subset of the set of states of M . By definition, M would be
reducible to M ′′, contradicting our assumption.

As a consequence, we have that v(m) > v(m − 2). Therefore, the function v(m) is,
at least, partially monotone in the sense that its even (respectively odd) values behave
monotonically.
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6 Trees and forests

The number of states of a tree m-pole Tm, denoted by t(m) = |Col(Tm)|, is easy to
compute. Tree multipoles can be constructed recursively by the addition of vertices. A
3-pole with a single vertex has only one possible state. Then, t(3) = |Col(T3)| = 1.
Every new vertex increases m one unit and doubles the number of possible states. Then,
t(m) = 2t(m− 1). As a consequence, t(m) = 2m−3.

An m-pole M with c components is called separable if there exists some m-pole N ,
with at least c+ 1 components, |V (N)| = |V (M)|, and Col(N) ⊆ Col(M).

Now, we have the following result.

Theorem 6.1. Every tree multipole Tm is non-separable and irreducible.

Proof. The proof is by induction. The result is trivial for m = 2, 3 since T2 = e and
T3 = v. Then, assume that the results holds for some Tm with m > 3. For some semiedge
(u), consider the (m+ 1)-pole M obtained by joining one semiedge of v to u, so ‘turning’
(u) into two new semiedges ε1 = (v)1 and ε2 = (v)2. We first prove that M is irreducible.
Otherwise, there would exist an (m + 1)-pole M ′ with |V (M ′)| < |V (M)| = m − 1 (and
hence |V (M ′)| 6 m − 3) and Col(M ′) ⊆ Col(M). Thus, M ′ must have at least two
connected components, say, M ′

1 and M ′
2. Moreover, since ε1 and ε2 must have different

colors in any Tait coloring of M , the same is true for the corresponding semiedges ε′1 and ε′2
in M ′. Consequently, such semiedges cannot be in different components of M ′. Without
loss of generality, assume that ε′1, ε

′
2 ∈ E(M ′

1). Now by joining ε′1 and ε′2 to two semiedges
of v, and doing the same operation to ε1 and ε2, so creating a digon, we respectively
obtain the multipoles N ′ and N with the following properties:

• Col(N ′) ⊆ Col(N) = Col(Tm) (as the created digon 2-pole in N is color equivalent
to e).

• |V (N ′)| 6 m− 2 = |V (Tm)|.

Thus, if |V (N ′)| < m − 2, Tm would be reducible, and if |V (N ′)| = m − 2, Tm would be
separable. In any case, we get a contradiction.

To prove that M is also non-separable we again assume the contrary and iterate the
above procedure until M is proved to be color equivalent to some small tree multipole T ,
whereas M ′ is color equivalent to a multipole N constituted by some isolated edges. But
this again contradicts the fact that Col(M ′) ⊆ Col(M).

As every tree m-pole Tm has m− 2 vertices, the above theorem allows us to state that
v(m) > m− 2 for m > 2.

Using basically the same proof as above, we have the following:

Proposition 6.2. Every forest multipole is non-separable and irreducible.

The following result shows that the number of states of a forest m-pole depends only
on m and its number n of vertices. Let f(n,m) denote the number of states of a forest
m-pole M with n vertices.
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Lemma 6.3. If n 6 m− 4, the following recurrence relation holds:

f(n,m) = f(n,m− 2) + f(n+ 1,m− 1),

with initial values f(0, 2) = 1 and f(n, n+ 2) = 2n−1 for n > 0.

Proof. First notice that, if n = m− 2 > 0 then a forest m-pole with n vertices is in fact
a tree m-pole, with number of states 2m−3 or 2n−1. If n = 0 and m = 2, then we have
an isolated edge with only one state. This gives the starting values. If n 6 m − 4, a
forest m-pole with n vertices is not a tree and has at least two components. Then, given
two semiedges ε1 and ε2 (not in the same component), its set of states can be partitioned
into two subsets: Those with φ(ε1) = φ(ε2), and those with φ(ε1) 6= φ(ε2), for some Tait
coloring φ of M .

Case φ(ε1) = φ(ε2): The two semiedges can be joined and we obtain an m′-pole M ′

with m′ = m − 2 semiedges and n′ = n vertices. As a consequence of n 6 m − 4, the
relation n′ 6 m′ − 2 holds. Therefore, its number of states is f(n′,m′) = f(n,m− 2).

Case φ(ε1) 6= φ(ε2): The two semiedges can be joined to two semiedges ε′′1 and ε′′2 of a
minimal 3-pole v. Let ε′′3 denote the remaining semiedge of v. The result of the junction
is a new m′′-pole M ′′ with m′′ = m − 1 semiedges, now including ε′′3, and n′′ = n + 1
vertices. Again, the relation n′′ 6 m′′−2 holds as a consequence of n 6 m−4. Therefore,
the number of states of M ′′ is f(n′′,m′′) = f(n+ 1,m− 1).

Finally, adding up all states we obtain the recurrence relation.

By means of a straightforward calculation, it can be proved that, if 0 6 2k 6 m − 2
and n 6 m− 2(k + 1), then the following formula holds:

f(n,m) =
k∑

i=0

f(n+ i,m− 2k + i)

(
k

i

)
. (6)

As a consequence, f(n,m) can be easily calculated.

Theorem 6.4.

(a) The number of states of a forest m-pole with 0 vertices is:

f(0,m) = 1
2
(3

m−2
2 + 1).

(b) The number of states of a forest m-pole with n > 1 vertices is:

f(n,m) = 2n−13
m−n

2
−1.

the electronic journal of combinatorics 22(1) (2015), #P1.45 13



Proof. (a) Assuming n = 0 and m = 2k+2 in (6), and using the initial values, we have:

f(0,m) =f(0, 2k + 2) =
k∑

i=0

f(i, i+ 2)

(
k

i

)
= f(0, 2) +

k∑
i=1

f(i, i+ 2)

(
k

i

)

=1 +
k∑

i=1

2i−1
(
k

i

)
= 1 +

1

2

k∑
i=1

2i

(
k

i

)
=1 +

1

2
(3k − 1) =

1

2
(3k + 1) =

1

2
(3

m−2
2 + 1).

(b) Assuming n > 1 and m = n+ 2k + 2 in (6), and using the initial values, we have:

f(n,m) =f(n, n+ 2k + 2) =
k∑

i=0

f(n+ i, n+ i+ 2)

(
k

i

)

=
k∑

i=0

2n+i−1
(
k

i

)
= 2n−1

k∑
i=0

2i

(
k

i

)
= 2n−13k = 2n−13

m−n
2
−1.

Figure 6 shows the values of f(m,n) for 2 6 m 6 14 and 0 6 n 6 12, and also the
numbers of states of cycle m-poles, for which n = m.

The following result, consequence of Theorem 6.4, implies that the minimum number
of states of a forest m-pole M is attained when M is a minimal m-pole. Note that in
both cases we obtain ρ(m).

Proposition 6.5. For a fixed even value of m, the minimum of f(n,m) is 1
2
(3

m−2
2 + 1),

and for a fixed odd value of m, the minimum of f(n,m) is 3
m−3

2 .

The set of states of a tree m-pole with n vertices can be obtained algorithmically in the
following way. Pick an arbitrary vertex v with at least one incident semiedge ε. Assume,
without loss of generality, that ε has color a and the remaining two edges or semiedges
have color b and c. The semiedge ε can be ignored and the rest of the tree can be viewed
as a binary tree with v as the root. At each one of the n− 1 remaining vertices a binary
coloring decision can be made, and each one of the 2n−1 corresponding binary sequences
gives one possible state.

7 Cycles

In this section we prove the irreducibility of every cycle multipole for m > 5, and calculate
the number of states of an arbitrary cycle multipole with m > 1.

Proposition 7.1. The number c(m) of states of a cycle m-pole Cm with m > 1 is

c(m) = 1
3
(2m−1 + (−1)m).
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Figure 6: Numbers of states of forest m-poles with n vertices. The rows n = 0 and n = 1
correspond to minimal m-poles, and the diagonal n = m− 2 corresponds to tree m-poles.
The numbers of states of cycle m-poles, corresponding to the diagonal n = m, are also
represented.

Proof. The coloring of the semiedges is determined by the coloring of the edges of the
cycle. Then, the number c(m) verifies the following recurrence:

c(m) = c(m− 1) + 2c(m− 2).

To show this, consider one arbitrary edge of the cycle, and the two edges adjacent to it.
If these two edges have different color, the color of the middle edge is forced. If they have
the same color, there are two possibilities for the color of the middle edge. In the first
case, we delete the middle edge and make its two adjacent edges adjacent to each other:
the resulting cycle has m − 1 edges and c(m − 1) 3-edge-colorings. In the second case,
we delete the middle edge and identify its two adjacent edges as if they were one: the
resulting cycle has m−2 edges and c(m−2) 3-edge-colorings, but in this case the deleted
edge had two possible colors. This gives the recurrence for c(m). Its initial values are
c(1) = 0 and c(2) = 1. Using induction on m, or the same technique as in Section 3, we
can prove the result.
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The set of states of a cycle m-pole can be obtained algorithmically in the following
way. Cut an arbitrary edge (u, v) of the cycle to obtain a tree (m+ 2)-pole, retaining the
condition that the resulting semiedges (u)1 and (v)1 must have the same color. Assume,
without loss of generality, that they have color a. As a result of the cut, u and v are at
opposite ends of the tree. Ignore for the moment v, its nearest vertex and their incident
semiedges. The result is a tree m-pole whose set of states can be determined as in the
previous section, picking u as the root and ignoring (u)1 to obtain a binary tree. Now
it is straightforward to extend the states of the partial tree m-pole to the states of the
whole tree (m + 2)-pole, with the condition that (v)1 has color a to match the color of
(u)1. This is an alternative way to obtain the enumeration result on the states of cycle
multipoles.

Now we show that, as the tree multipoles, cycle multipoles are also irreducible. To
this end, we need some previous lemmas.

Lemma 7.2. Let ε1, ε2, ε3 be three (ordered) semiedges of a m-tree multipole Tm with
m > 3. Then, the state (. . . , ε1, ε2, ε3, . . .) = (. . . , a, b, a, . . .) is realizable unless one of the
following conditions holds:

(i) ∂(ε1, ε3) = 0.

(ii) ∂(ε1, ε2) = ∂(ε2, ε3) = 1.

Proof. Let εi = (vi), i = 1, 2, 3. First note that, as ε1 and ε2 are distinct, a coloring of the
form (. . . , ε1, ε2, ε3, . . .) = (. . . , a, b, ∗, . . .) is always possible. Then, the only cases where
color ∗ cannot be a are (i) (trivially since then v1 = v3) and (ii) since, then, edge v1v2
must have color c and, hence, edge v2v3 must have color a which is forbidden.

Lemma 7.3. Let εi, εi+1, . . . , εi+r−1, be r successive semiedges of a m-cycle multipole
Cm with r > m (subindexes understood modulo m). Then, the following states are not
realizable:

(i) For r = 3, (. . . , εi, εi+1, εi+2, . . .) = (. . . , a, b, a, . . .).

(ii) For r = 4, (. . . , εi, εi+1, εi+2, εi+3, . . .) = (. . . , a, b, b, c, . . .).

Proof. Let εi+j = (vi+j), j = 0, . . . , 3. Case (i) is proved as in Lemma 7.2. Case (ii) follows
also easily by considering the two different possible colors, a and c, of edge vi+1vi+2 and
concluding that both lead to a contradiction.

Theorem 7.4. Every cycle multipole Cm with m > 5 is irreducible.

Proof. The proof is by contradiction. Assume that Cm is reducible to an m-pole T . As
|T | 6 m − 2, T is either a tree multipole or it has at least two components. Since
Col(T ) ⊆ Col(Cm), there must be a cyclic ordering (ε0, . . . , εm−1, ε0, . . .) of the semiedges
of T , corresponding to the successive semiedges of Cm, such that every state of T is also
realizable in Cm. However, we will prove that, no matter how we choose such an ordering,
this is not the case. We consider three possibilities:
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(a) T is a tree.

(a1) Assume all the semiedges of T come into pairs (that is, every pair of them
is incident with a given vertex). Without loss of generality, suppose that εi
and εi+1 are incident to ui for i = 0, 2, . . . , (m − 2)/2. Then, by Lemma 7.2,
in the cyclic ordering and in order to avoid the states (. . . , a, b, a, . . .) we are
forced to take (. . . , ε1, εj, ε2, εj+1, . . .) with j > 3. But every choice for the
semiedge εk next to εj+1 allows the state (. . . , a, b, a, . . .) for the semiedges
(. . . , ε2, εj+1, εk, . . .), which is not realizable in Cm by Lemma 7.3.

(a2) Otherwise, T must have some semiedge ζ at nonzero distance from every other
semiedge, and also some pair (εi, εi+1) of incident semiedges. Thus, at some
point of the cyclic ordering, we must have (. . . , ζ, εj, εk, . . .) where j ∈ {i, i+1}.
Then, again, all possible choices of εk allow the state (. . . , a, b, a, . . .).

(b) T has two components X, Y : Let X and Y have semiedges εi and ζj, respectively.
Notice that either X or Y has at least three semiedges. Then, at some point of the
cyclic ordering, we must go from, say, ε1 ∈ E(X) to ζ2 ∈ E(Y ). Up to symmetries,
there are three possibilities for the next semiedges to ε1 and ζ2 (see Fig. 7 where
‘cyclic adjacency’ between semiedges is represented by dotted lines). With no loss
on clarity, we may omit the trailing periods in the notation of states:

Figure 7: Possible successions of semiedges.

(b1) Case (. . . , ε0, ε1, ζ2, ε3, . . .): Here, for any Tait coloring φ of T , and in order
to avoid the state (a, b, a) for the semiedge triples (ε0, ε1, ζ2) and (ε1, ζ2, ε3),
it must be φ(ε0) = φ(ε1) and φ(ε1) 6= φ(ε3). Thus, the state of the successive
semiedges must be (a, a, ∗, b). Now consider the a-b Kempe chain in X, starting
from ε3 and interchange its colors to get the new Tait coloring φ′. If it ends to
a semiedge different from ε0, ε1 we get the new state (a, a, ∗, a). Otherwise, if
it ends to ε0 or ε1 we get (b, a, ∗, a) or (a, b, ∗, a) respectively. In all cases we
can adequately chose the color ∗ to get the state (a, b, a) for three successive
semiedges.
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(b2) Case (. . . , ζ0, ε1, ζ2, ε3, . . .): To avoid the state (a, b, a) for the two semiedge
triples it must be φ(ζ0) 6= φ(ζ2) and φ(ε1) 6= φ(ε3). Thus, the state of the
successive semiedges can be chosen to be (a, a, b, b). Let us consider the different
possibilities for the semiedge following ε3. If this is ε4 ∈ E(X), the semiedges
(ε1, ζ2, ε3, ε4) follow the pattern as in (i), which has already been dealt with.
Alternatively, if such a semiedge is ζ4 ∈ E(Y ), it cannot have color c because
of Lemma 7.3(ii). Thus, suppose that ζ4 has a color different from c, say a,
and consider the a-b Kempe chain in Y starting from ζ4 and interchange its
colors. Then, reasoning as above, we obtain the realizable state (a, b, a) for
three successive semiedges.

(b3) Case (. . . , ε0, ε1, ζ2, ζ3, . . .): Now, to avoid the state (a, b, a) for the two semiedge
triples it must be φ(ε0) = φ(ε1) and φ(ζ2) = φ(ζ3), so that we can chose the
state of the successive semiedges to be (a, a, b, b). Thus, the semiedge following
ζ3 cannot have color c because of Lemma 7.3(ii). For the situation of such
a semiedge, we consider again two possibilities: If ζ4 ∈ Y and it has color
a, the interchanging of color in the a-c Kempe chain leads again to the state
(a, a, b, b, c). Otherwise, if ζ4 has color b, the b-c Kempe chain leads again to
either such a state or to the color c for some of the semiedges ζ2 or ζ3. But,
again, both alternatives led to a realizable state (c, b, c) (changing the color of
ε1 from a to c, if necessary). Finally, if ε4 ∈ X and it has colors a or b, we
reason as above with the respective a-c or b-c Kempe chains to reach the states
of type (a, a, b, b, c) or (a, b, a).

(c) T has at least three components X, Y, Z: Denote the semiedges of X and Y as
above and let Z have semiedges ηk. Note that in the cyclic ordering, and to avoid
the state (a, b, a), we cannot have 3 successive semiedges in different components
X, Y, Z. Then, the only possibility to be considered, being different from those in
(b), is (ε0, ζ1, ζ2, η3). Then it must be φ(ζ1) = φ(ζ2) and the corresponding state can
be chosen to be (a, b, b, c). But this is one of the non-desired states of Lemma 7.3.

Summarizing, T has always a state not realizable in Cm. But this is in contradiction with
our assumption. Thus, we conclude that Cm is irreducible.

As every cycle m-pole Cm has m vertices, the above proposition allows us to state that
if m > 5 then v(m) > m.

8 Conclusions

We calculated the exact number of states of tree, cycle, minimal and color complete
multipoles with m semiedges, and proved that color complete multipoles exist for every
non trivial value of m. The minimum order of a color complete multipole has lower and
upper linear bounds in terms of m. Moreover, we proved that results on the behavior of
the function v(m), which is only partially known but relevant in the study of the structure

the electronic journal of combinatorics 22(1) (2015), #P1.45 18



of snarks, can be obtained by the analysis of reducibility of multipoles, in particular tree
and cycle multipoles.
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