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Abstract

Finite strict gammoids, introduced in the early 1970’s, are matroids defined via
finite digraphs equipped with some set of sinks: a set of vertices is independent if it
admits a linkage to these sinks. In particular, an independent set is maximal (i.e.
a base) precisely if it is linkable onto the sinks.

In the infinite setting, this characterization of the maximal independent sets
need not hold. We identify a type of substructure as the unique obstruction. This
allows us to prove that the sets linkable onto the sinks form the bases of a (possibly
non-finitary) matroid if and only if this substructure does not occur.

Keywords: Infinite matroids; strict gammoids; transversal matroid; linkage; infi-
nite digraphs; rays

0 Introduction

Infinite matroid theory has seen vigorous development (e.g. [1], [5] and [7]) since Bruhn
et al. [6] in 2010 gave five equivalent sets of axioms for infinite matroids in response to a
problem proposed by Rado [19] (see also Higgs [13] and Oxley [15]). Our contribution to
the development focusses on the class of gammoids. In this first paper, the main object
of investigation is the bases of infinite strict gammoids. (The second one considers other
aspects including duality and minors [2].)

The concept of gammoids originated from the transversal matroids of Edmonds and
Fulkerson [11]. A transversal matroid can be defined by taking as its independent sets
the subsets of a fixed vertex class of a bipartite graph matchable to the other vertex class.
Perfect [17] introduced the class of gammoids by replacing matchings in bipartite graphs
with disjoint directed paths in digraphs. Later, Mason [14] started the study of a subclass
of gammoids known as strict gammoids.
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To be precise, let a dimaze (short for directed maze) be a digraph with a fixed subset
of the vertices of out-degree 0, called exits. A dimaze contains another dimaze, if, in
addition to digraph containment, the exits of the former include those of the latter. In
the context of digraphs, any path or ray (i.e. infinite path) is forward oriented. A set of
vertices of (the digraph of) the dimaze is independent if it is linkable to the exits by a
collection of disjoint directed paths. The set of all linkable sets is the linkability system
of the dimaze. When the linkability system is the set of independent sets of a matroid
on the vertex set of the dimaze, we say that the dimaze defines a matroid. Any matroid
arising in this way is called a strict gammoid.

Mason [14] proved that every finite dimaze defines a strict gammoid. When a dimaze
is infinite, Perfect [17] gave sufficient conditions for when some subset of the linkability
system gives rise to a matroid. Any such matroid is finitary, in the sense that a set is
independent as soon as all its finite subsets are. Since finitary matroids were the only
ones known at that time, infinite dimazes whose linkability systems are non-finitary1 were
not considered to define matroids.

With infinite matroids canonically axiomatized in a way that allows for non-finitary
ones, a natural question is whether every infinite dimaze now defines a matroid. In
general, the answer is still negative, as the linkability system may fail to satisfy one of the
infinite matroid axioms (IM), which asks for the existence of certain maximal independent
sets. Observe that in any finite dimaze, a set is linkable onto the exits if and only if it
is maximally independent. However, in an infinite dimaze, sets which are linkable onto
the exits need not be maximally independent. It turns out that if they all are, we have a
matroid.

So the question arises: In which dimazes is every set that is linkable onto the exits
maximally independent? Investigation of this question leads us to the following example
of a dimaze. An alternating ray is a digraph obtained from an undirected ray, i.e. a 1-way
infinite path, by directing the edges in such a way that the first vertex and infinitely
many others have out-degree 0. An alternating comb is a dimaze constructed by linking
all the vertices of out-degree 0 of an alternating ray onto a set of exits by (possibly trivial)
disjoint directed paths which meet the ray exactly at their initial vertices (see for example
Figure 3a). It will be easy to see that, in an alternating comb, the set of vertices of out-
degree 2 is linkable either onto the exits or to a proper subset thereof; hence, the set is
not maximally independent and yet linkable onto the exits.

By proving that alternating combs form the unique obstruction to the characterization
of maximal independent sets as sets linkable onto the exits, we are able to establish the
following.

Theorem. Given a dimaze, the vertex sets linkable onto the exits form the bases of a
matroid if and only if the dimaze contains no alternating comb. The independent sets of
this matroid are precisely the linkable sets of vertices.

The non-trivial direction implies that a dimaze that fails to define a matroid contains

1For example, in the dimaze on an infinite star directed from the centre towards the exits at the leaves,
every finite set of vertices is independent, but the whole vertex set is not.
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an alternating comb. While a dimaze containing an alternating comb may still define a
matroid, the set of bases is a proper subset of the sets linkable onto the exits and can be
difficult to describe.

We collect definitions and give examples of infinite dimazes which do not define a
matroid in Section 1. In Section 2, we prove that the independence augmentation axiom
as well as a variant (Lemma 2.8) hold in general. (These are applied in [8] to characterize
nearly finitary linkability systems.) After rephrasing a proof of the linkage theorem of
Pym [18], we prove the main result (Theorem 2.5). In Section 3, we consider the question
whether every strict gammoid can be defined by a dimaze without any alternating comb.
We answer this negatively via the intermediate step of showing that any tree, when viewed
as a bipartite graph, defines a transversal matroid, a statement which is of independent
interest.

1 Preliminaries

In this section, we present relevant definitions. For notions not found here, we refer to [6]
and [16] for matroid theory, and [9] for graph theory.

Given a set E and a family of subsets I ⊆ 2E, let Imax denote the maximal elements
of I with respect to set inclusion. For a set I ⊆ E and x ∈ E, we also write I + x and
I − x for I ∪ {x} and I \ {x} respectively.

Definition 1.1. [6] A matroid M is a pair (E, I) where E is a set and I ⊆ 2E which
satisfies the following:

(I1) ∅ ∈ I.

(I2) If I ⊆ I ′ and I ′ ∈ I, then I ∈ I.

(I3) For all I ∈ I \ Imax and I ′ ∈ Imax, there is an x ∈ I ′ \ I such that I + x ∈ I.

(IM) Whenever I ∈ I and I ⊆ X ⊆ E, the set {I ′ ∈ I : I ⊆ I ′ ⊆ X} has a maximal
element.

The set E is the ground set and the elements in I are the independent sets of M .
Equivalently, matroids can be defined with base axioms. A collection of subsets B of E
is the set of bases of a matroid if and only if the following three axioms hold:

(B1) B 6= ∅.

(B2) Whenever B1, B2 ∈ B and x ∈ B1 \ B2, there is an element y of B2 \ B1 such that
(B1 − x) + y ∈ B.

(BM) The set I of all subsets of elements in B satisfies (IM).
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The ground sets we consider will be sets of vertices of digraphs or bipartite graphs.
We usually identify a matroid with its set of independent sets.

Connectivity in finite matroids stems from graph connectivity and is a well established
part of the theory. In the infinite setting, Bruhn and Wollan [7] gave the following rank-
free definition of connectivity that is compatible with the finite one. For an integer k > 0,
a k-separation of a matroid is a partition of E into X and Y such that both |X|, |Y | > k
and for any bases BX , BY of M \ Y and M \X respectively, the number of elements to
be deleted from BX ∪ BY to get a base of M is less than k. A matroid is k-connected if
there are no l-separations for any l < k. We will show that there are highly connected
strict gammoids that are in a sense far from being finitary.

Next, suppose we are given a digraph D, and a subset B0 of the vertices of out-
degree 0.2 The pair (D,B0) is called a dimaze and B0 the set of exits. A dimaze (D,B0)
contains a dimaze (D′, B′0), if D′ is a subdigraph of D and B′0 ⊆ B0. A linkage P is a
set of disjoint directed paths such that the terminal vertex of each path is in B0. Let
Ini(P) and Ter(P) be respectively the set of initial vertices and that of terminal vertices
of paths in P . A set I ⊆ V (D) is linkable or independent if there is a linkage P from
I, i.e. Ini(P) = I. Suppose further that Ter(P) = B0, then I is linkable onto B0. The
collection of linkable sets is called the linkability system. Note that, by adding trivial
paths if required:

Any linkable set in (D,B0) can be extended to one linkable onto B0. (1)

Definition 1.2. Let (D,B0) be a dimaze. The pair of V (D) and the set of linkable subsets
is denoted by ML(D,B0). A strict gammoid is a matroid isomorphic to ML(D,B0) for
some (D,B0). A gammoid is a matroid restriction of a strict gammoid. Given a gammoid
M , (D,B0) is called a presentation of M if M = ML(D,B0)�X for some X ⊆ V (D). We
say that the dimaze (D,B0) defines a matroid if ML(D,B0) is a matroid.3

Given vertex subsets A and B of a digraph D, an A–B separator S is a set of vertices
such that there are no paths from A to B avoiding S. A separator is on a linkage P if it
consists of exactly one vertex on each path in P . The celebrated Aharoni-Berger-Menger
theorem [3] states that there exist a linkage from a subset of A to B and an A–B separator
on this linkage.

Mason [14] (see also [17]) showed that ML(D,B0) is a matroid for any finite dimaze
(D,B0). However, this is not the case for infinite dimazes. For example, let D be a
complete bipartite graph between an uncountable set X and a countably infinite set B0

with all the edges directed towards B0. Then I ⊆ X is independent if and only if I
is countable. So there is no maximal independent set in X, hence ML(D,B0) does not
satisfy the axiom (IM).

2The assumption on B0 incurs no loss of generality, as we may delete the out-going edges from B0

without changing the linkability system. Moreover, this assumption excludes unwanted trivial cases in
subsequent constructions by forcing vertices having out-going edges to lie outside B0.

3 In particular, B0 is always a base when ML(D,B0) is a matroid.
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Example 1.3. Here is a counterexample whose digraph is locally finite. Let D be the
digraph obtained by directing upwards or leftwards the edges of the subgraph of the grid
Z × Z induced by {(x, y) : y > 0 and y > x > 0} and let B0 := {(0, y) : y > 0}, see
Figure 1. Then I := {(x, x) : x > 0} is linkable onto a set J ⊆ B0 if and only if J is
infinite. Therefore, I ∪ (B0 \ J) is independent if and only if J is infinite. Hence, I does
not extend to a maximal independent set in X := I ∪B0.

B0

I

... . .
....

Figure 1: A locally finite dimaze which does not define a matroid

If D′ is a subdigraph of D and B′0 ⊆ B0, then (D,B0) contains (D′, B′0) as a subdimaze.
A dimaze (D′, B′0) is a subdivision of (D,B0) if it can be obtained from (D,B0) as follows.
We first add an extra vertex b0 and the edges {(b, b0) : b ∈ B0} to D. Then the edges of this
resulting digraph are subdivided to define a digraph D′′. Set B′0 as the in-neighbourhood
of b0 in D′′ and D′ as D′′ − b0. Note that this defaults to the usual notion of subdivision
if B0 = ∅.

The following dimazes play an important role in our investigation. An undirected ray
is a graph with an infinite vertex set {xi : i > 1} and the edge set {xixi+1 : i > 1}. We
orient the edges of an undirected ray in different ways to construct three dimazes:

1. RA by orienting (xi+1, xi) and (xi+1, xi+2) for each odd i > 1 and the set of exits is
empty;

2. RI by orienting (xi+1, xi) for each i > 1 and x1 is the only exit;

3. RO by orienting (xi, xi+1) for each i > 1 and the set of exits is empty.

A subdivision of RA, RI and RO is called alternating ray, incoming ray and (outgoing)
ray, respectively.

Let Y = {yi : i > 1} be a set disjoint from X. We extend the above types of rays to
combs by adding edges (and their terminal vertices) to the corresponding digraphs and
declaring the resulting sinks to be the exits:

1. CA by adding no edges to RA;

2. CI by adding the edges (xi, yi) to RI for each i > 2;
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3. CO by adding the edges (xi, yi) to RO for each i > 2.

Any subdivision of CA, CI and CO is called alternating comb, incoming comb and
outgoing comb, respectively. The subdivided ray in any comb is called the spine and the
paths to the exits are the spikes.

A dimaze (D,B0) is calledH-free for a setH of dimazes if it does not have a subdimaze
isomorphic to a subdivision of an element in H. A (strict) gammoid is called H-free if it
admits an H-free presentation. In general, an H-free gammoid may admit a presentation
that is not H-free (see Figure 3 for H = {CA}).

For notations about paths, we follow [9, p. 7]; and for a path P , we also write P
for V (P ).

2 Dimazes and matroid axioms

The aim of this section is to give a sufficient condition for a dimaze (D,B0) to define a
matroid. As (I1) and (I2) hold for ML(D,B0), we need only consider (I3) and (IM).

2.1 Linkability system and proof of (I3)

We prove that (I3) holds in any ML(D,B0) using a classical result due to Grünwald
[12], which can be formulated as follows (see also [9, Lemmas 3.3.2 and 3.3.3]). Let
(D,B0) be a dimaze and P a linkage. A (finite) P-alternating walk is a sequence W =
w0e0w1e1 . . . en−1vn of vertices wi and distinct edges ei of D, such that every ei ∈ W is
incident with wi and wi+1, and the following properties hold for each 0 6 i < n:

(W1) ei = (wi+1, wi) if and only if ei ∈ E(P);

(W2) if wi = wj for any j 6= i, then wi ∈ V (P);

(W3) if wi ∈ V (P), then {ei−1, ei} ∩ E(P) 6= ∅ (with e−1 := e0).

Lemma 2.1. Let (D,B0) be a dimaze, P a linkage, and Ini(P) ⊆ X ⊆ V .

(i) If there is a P-alternating walk from X \ Ini(P) to B0 \ Ter(P), then there is a
linkage P ′ with Ini(P) ( Ini(P ′) ⊆ X and Ter(P) ( Ter(P ′) ⊆ B0.

(ii) If there is not any P-alternating walk from X \ Ini(P) to B0 \Ter(P), then there is
an X–B0 separator on P.

Proposition 2.2. Let (D,B0) be a dimaze. Then ML(D,B0) satisfies (I3).

Proof. Let I, B ∈ML(D,B0) such that B is maximal but I is not. Then we have a linkage
Q from B and another P from I. We may assume P misses some v0 ∈ B0.

If there is a P-alternating walk from (B ∪ I) \ Ini(P) to B0 \ Ter(P), then we can
extend I in B \ I by Lemma 2.1(i).
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On the other hand, if no such walk exists, we draw a contradiction to the maximality
of B. In this case, by Lemma 2.1(ii), there is a (B ∪ I)–B0 separator S on P . For every
v ∈ B, let Qv be the path in Q starting from v. Let sv be the first vertex of S that Qv

meets and Pv the path in P containing sv. Let us prove that Q′ := {QvsvPv : v ∈ B} is
a linkage.

Suppose v and v′ are distinct vertices in B such that QvsvPv and Qv′sv′Pv′ meet each
other. As P and Q are linkages, without loss of generality, we may assume Qvsv meets
sv′Pv′ at some s /∈ S. Then QvsPv′ is a path from B to B0 avoiding the separator. This
contradiction shows that Q′ is indeed a linkage from B to B0. As Q′ does not cover v0,
B + v0 is independent which contradicts the maximality of B.

2.2 Linkage theorem and (IM)

For any dimaze (D,B0), now that we know ML(D,B0) satisfies (I3), it remains to inves-
tigate (IM). If D is finite, then the following holds:

A set is maximally independent if and only if it is linkable onto the exits. (†)

When D is infinite, (†) need not hold; for instance, the dimaze in Example 1.3, which does
not even define a matroid. Using the Aharoni-Berger-Menger theorem [3] and the linkage
theorem [18] (see also [10]), we prove that when (†) holds, ML(D,B0) is a matroid.

Now the natural question is: in which dimazes is every set, that is linkable onto the
exits, a maximal independent set? Consider the alternating comb given in Figure 3a.
Using the notation there, the set X := {xi : i > 1} can be linked onto B0 by the linkage
{(xi, yi−1) : i > 1} or to B0 − x0 by the linkage {(xi, yi) : i > 1}. Hence, X is a non-
maximal independent set that is linkable onto B0. More generally, if a dimaze (D,B0)
contains an alternating comb C, then the vertices of out-degree 2 on C together with
B0 − C is a non-maximal set linkable onto B0. So an answer to the above question must
exclude dimazes containing an alternating comb. We will prove that dimazes without any
alternating comb are precisely the answer.

One might think that the following proof strategy should work: If the characterization
of maximal independent sets does not hold, then there are two linkages, a blue one from
a set and a red one from a proper superset, both covering the exits. To construct an
alternating comb, one starts with finding an alternating ray. For that, a first attempt is
to “alternate” between the red and blue linkages, i.e. to repeat the following: go forward
along the red linkage, change to the blue one at some common vertex, and then go
backwards on the blue linkage, and change again to the red one. It is not the case that
this construction always gives rise to an alternating ray (because vertices might be visited
twice). But supposing that we do get an alternating ray, a natural way to extend it to
an alternating comb is to use the terminal segments of one fixed linkage. However, this
alternating ray can have two distinct vertices of in-degree 2 which lie on the same path
of the fixed linkage.

Appropriate choices to alternate between the linkages will be provided by the proof of
the linkage theorem of Pym [18]. So we outline the proof, rephrased for our purpose.
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Linkage Theorem. Let D be a digraph and two linkages be given: the “red” one, P =
{Px : x ∈ XP}, from XP onto YP and the “blue” one, Q = {Qy : y ∈ YQ}, from XQ
onto YQ. Then there is a set X∞ satisfying XP ⊆ X∞ ⊆ XP ∪XQ which is linkable onto
a set Y ∞ satisfying YQ ⊆ Y ∞ ⊆ YQ ∪ YP .

Proof outline. We construct a sequence of linkages converging to a linkage with the desired
properties. For each integer i > 0, we will specify a vertex on each path in P . For each
x ∈ XP , let f 0

x := x. Let Q0 := Q. For each i > 0 and each x ∈ XP , let f ix be the last
vertex v on f i−1

x Px such that (f i−1
x Pxv̊) ∩ V (Qi−1) = ∅. For y ∈ YQ, let tiy be the first

vertex v ∈ Qy such that the terminal segment v̊Qy does not contain any f ix. Let

Ai := {Qy ∈ Q : tiy 6= f ix ∀x ∈ XP},
Bi := {Pxf ixQy : x ∈ XP , y ∈ YQ and f ix = tiy},
Ci := {Px ∈ P : f ix ∈ YP and f ix 6= tiy ∀y ∈ YQ},

and Qi := Ai ∪ Bi ∪ Ci. It can be shown that Qi is a linkage. Moreover, for any x ∈ XP ,
{f ix}i>0 eventually settles at a vertex f∞x as i → ∞; similarly for any y ∈ YQ, {tiy}i>1

settles at some t∞y . Then Q∞, defined as the union of the following three sets,

A∞ := {Qy ∈ Q : t∞y 6= f∞x ∀x ∈ XP},
B∞ := {Pxf∞x Qy : x ∈ XP , y ∈ YQ and f∞x = t∞y },
C∞ := {Px ∈ P : f∞x ∈ YP and f∞x 6= t∞y ∀y ∈ YQ},

is a linkage satisfying the requirements.

We can now prove the following.

Lemma 2.3. Given a dimaze (D,B0), suppose that every independent set linkable onto
the exits is maximal, then the dimaze defines a matroid.

Proof. Since (I1) and (I2) are obviously true for ML(D,B0), and that (I3) holds by Propo-
sition 2.2, to prove the theorem, it remains to check that (IM) holds.

Let I be independent and a set X ⊆ V such that I ⊆ X be given. Suppose there is a
“red” linkage from I to B0. Apply the Aharoni-Berger-Menger theorem on X and B0 to
get a “blue” linkage Q from B ⊆ X to B0 and an X–B0 separator S on the blue linkage.
Consider the subdigraph of D induced by those vertices separated from B0 by S. Let H
be obtained from this digraph by deleting the edges with initial vertex in S. Since every
linkage from H to B0 goes through S, a subset of V (H) is linkable in (D,B0) if and only
if it is linkable in (H,S). Use the linkage theorem to find a linkage Q∞ from X∞ with
I ⊆ X∞ ⊆ I ∪B ⊆ X onto S.

Let Y ⊇ X∞ be any independent set in ML(H,S). By applying the linkage theorem
on a linkage from Y to S and Q∞ in (H,S), we may assume that Y is linkable onto S by
a linkage Q′. Concatenating Q′ with segments of paths in Q starting from S and adding
trivial paths from B0 \ V (Q) gives us a linkage from Y ∪ (B0 \ V (Q)) onto B0. By the
hypothesis, Y ∪ (B0 \ V (Q)) is a maximal independent set in ML(D,B0).
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Applying the above statement on X∞ shows that X∞∪(B0 \V (Q)) is also maximal in
ML(D,B0). It follows that Y cannot be a proper superset of X∞. Hence, X∞ is maximal
in ML(H,S), and so also in ML(D,B0) ∩ 2X . This completes the proof that ML(D,B0)
is a matroid.

Next we show that containing an alternating comb is the only reason that the charac-
terization (†) fails.

Lemma 2.4. Let (D,B0) be a CA-free dimaze. Then a set B ⊆ V is maximal in
ML(D,B0) if and only if it is linkable onto B0.

Proof. The forward direction follows trivially from (1).
For the backward direction, let I be a non-maximal subset that is linkable onto B0, by

a “blue” linkage Q. Since I is not maximal, there is x0 /∈ I such that I + x0 is linkable to
B0 as well, by a “red” linkage P . Construct an alternating comb inductively as follows:

Running the proof of the linkage theorem on P and Q, we get a linkage Q∞ from
I + x0 onto B0 consisting of only B∞, as YP ⊆ YQ and XQ ⊆ XP . So each path in Q∞
consists of a red initial and a blue terminal segment.

Start the construction with x0. For k > 1, if xk−1 is defined, let Qk be the blue path
containing pk−1 := f∞xk−1

. We will prove that pk−1 /∈ I so that we can define qk to be
the last vertex on Qkp̊k−1 that is on a path in Q∞. Since the blue segments of Q∞ are
disjoint, qk lies on a red path Pxk . We continue the construction with xk.

Claim 1. pk−1 /∈ I and hence, the blue segment qkQkpk−1 is non-trivial. The red segment
qkPxkpk is also non-trivial.

Proof. We prove the claim by induction. Clearly, p0 /∈ I, so the claim holds for k = 1. For
k > 2, assume that pk−2 /∈ I. We argue that qk−1 6= pk−1. Suppose they are equal for a
contradiction. Then the path Pxk−1

qk−1Qk−1 is in B∞. Since qk−1Qk−1pk−2 is non-trivial,
pk−2 and pk−1 are distinct vertices of the form f∞x on Pxk−1

qk−1Qk−1. This contradicts that
Pxk−1

qk−1Qk−1 is in B∞. Hence, we have pk−1 6= qk−1. This shows that the red segment
qk−1Pxk−1

pk−1 is non-trivial, and so pk−1 /∈ I.

We now show that p1Q1 ∪
⋃∞
k=2 qjQjpj−1 ∪ qkPxkpkQk+1 is an alternating comb.

Claim 2. xj 6= xk for any distinct j and k.

Proof. For l > 0, let il be the least integer such that f ilxl = f∞xl . We show that ik−1 < ik.
By the definition of qk and ik−1, qkQk is a segment of a path in Qi for any i < ik−1, so f ixk is

on the segment Pxkqk, and Pxkf
ik−1
xk ⊆ Pxkqk. Since qkPxkpk is non-trivial, Pxkqk ( Pxkf

∞
xk

.

We conclude that f
ik−1
xk 6= f∞xk . By the definition of ik, we have ik > ik−1. Hence, xj 6= xk

for any j 6= k.

Since qkPxkpkQk+1 is a segment of the path on xk in the linkage Q∞, it is disjoint
from q̊jQj p̊j−1 by the definition of qj. Moreover, by Claim 2, all the segments of the
form qkPxkpkQk+1 are disjoint, and so are those of the form qjQjpj−1. Hence, we have an
alternating comb. This contradiction completes the proof.
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We have all the ingredients to prove the main result.

Theorem 2.5. Given a dimaze, the vertex sets linkable onto the exits form the bases of
a matroid if and only if the dimaze contains no alternating comb. The independent sets
of this matroid are precisely the linkable sets of vertices.

Proof. For the first statement, the backward direction follows from Lemma 2.3 and
Lemma 2.4. To see the forward direction, suppose there is an alternating comb C. Let
B1 be the union of the vertices of out-degree 2 on C with B0 − C. Then B1 is linkable
onto B0, and so is B1 + v for any v ∈ B0 ∩C. But B1 and B1 + v violate the base axiom
(B2). The second statement follows from the first and (1).

Corollary 2.6. Any dimaze which does not define a matroid contains an alternating
comb.

We remark that even after forbidding alternating combs (or any ray at all), there are
dimazes defining interesting strict gammoids. The existence of wild matroids, i.e. ma-
troids containing a circuit which has an infinite intersection with a cocircuit, was first
demonstrated in [5]. It turns out that strict gammoids are a rich source of wild matroids.

Lemma 2.7. Suppose that ML(D,B0) is a strict gammoid such that there is a circuit
containing infinitely many vertices linkable to a fixed exit b in B0. Then ML(D,B0) is a
wild matroid.

Proof. The fundamental cocircuit of b with respect to B0, consisting of all the vertices
linkable to b, intersects the given circuit at infinitely many vertices.

A concrete example is that V (D) = {vi, bi : i > 1} with B0 = {bi : i > 1} and E(D) =
{(vi, bi), (v1, bi), (vi, b1) : i > 1}. Then (D,B0) is a CA-free dimaze, and {vi, b1 : i > 1} is
an infinite circuit satisfying the lemma.

2.3 Nearly finitary linkability system

Although forbidding alternating combs ensures that we get a strict gammoid, not every
strict gammoid arises this way. It turns out that when a dimaze gives rise to a nearly
finitary ([4]) linkability system, the dimaze defines a matroid regardless of whether it
contains an alternating comb or not. We will show this using the proof of the linkage
theorem.

Lemma 2.8. Let (D,B0) be a dimaze. Then ML(D,B0) satisfies the following:

(∗) For all independent sets I and J with J \ I 6= ∅, for every v ∈ I \ J there exists
u ∈ J \ I such that J + v − u is independent.

Proof. We may assume that I \ J = {v}. Let Q = (Qy)y∈YQ be a “blue” linkage from J
onto some YQ ⊆ B0 and P a “red” one from I. The linkage theorem yields a linkage Q∞,
which we will show to witness the independence of a desired set. We use the notations
introduced in its proof. For each y ∈ YQ, let t0y be the initial vertex of Qy.
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For i > 0 it is not hard to derive the following facts from the definitions of Qi, f ix
and tiy:

x ∈ I ∩ Ini(Qi−1) =⇒ f ix = f i−1
x ; (2)

t0y ∈ Ini(Ai) ⇐⇒ ∀x ∈ I, f ix /∈ Qy; (3)

x ∈ I \ Ini(Qi) ⇐⇒ ∃y ∈ YQ, x′ ∈ I s.t. f ix ∈ Qyf̊ ix′ . (4)

Claim. For i > 0, either Qi = Q∞ or there is some xi such that:

Ui: (J + v) \ Ini(Qi) = {xi} and I − xi ⊆ Ini(Bi);

Di: ∀y ∈ YQ, if t0y ∈ I then ∃!x ∈ I − xi s.t. f ix ∈ Qy; no such x otherwise.

Proof. With x0 := v, the claim clearly holds for i = 0. Given i > 0, to prove the claim,
we may assume that Qi−1 6= Q∞ and Ui−1 and Di−1 hold.

By definition of f ixi−1 , either

f ixi−1 ∈ ti−1
yi
Qyi for some unique yi ∈ YQ or f ixi−1 ∈ YP \ YQ.

Note that by (2) only xi−1 can be a vertex such that f ixi−1 6= f i−1
xi−1 . Hence, tiy = ti−1

y for all
y ∈ YQ except possibly yi which satisfies tiyi = f ixi−1 . So by (4), we have xi−1 ∈ Ini(Qi).

Case (i): Suppose that there exists x ∈ I−xi−1 such that f ixi−1 and f ix are on the same
path Qyi . By Di−1, t0yi ∈ I and x is unique. Then Di holds for xi := x. In particular, by

(3), J \ I ⊆ Ini(Ai).
We now prove Ui. As xi ∈ Ini(Bi−1), ti−1

yi
= f i−1

xi
, so f ixi−1 ∈ f̊ ixiQyi , which implies that

xi /∈ Ini(Qi) by (4). Given x ∈ I − {xi−1, xi}, then x ∈ Ini(Bi−1) by Ui−1. So there exists
y 6= yi, such that f ix = f i−1

x = ti−1
y = tiy. It follows that x ∈ Ini(Bi), and I − xi ⊆ Ini(Bi).

Therefore, (J + v) \ Ini(Qi) = {xi}.
Case (ii): Suppose that there does not exist any x ∈ I − xi−1 such that f ix is on the

path Qyi containing f ixi−1 , if such a path exists. In this case, t0yi ∈ J \ I. By Di−1, (2) and

(4), we have I − xi−1 ⊆ Ini(Bi). Hence, I ⊆ Ini(Qi), and Q∞ = Qi.

If for some integer i > 0, case (ii) holds, then by (3), only u := t0yi ∈ J \ I can fail to
be in Ini(A∞). Otherwise, case (i) holds for each integer i > 0, so that J \ I is a subset
of Ini(Ai) and hence a subset of Ini(Q∞). In either situation, since I = XP ⊆ Ini(Q∞),
we conclude that there is some u ∈ J \ I such that J + v − u is independent.

Let (E, I) be a set system. The finitarisation Ifin of I consists of sets which have
all their finite subsets in I. (E, I) is called nearly finitary if for any maximal element
B ∈ Ifin there is an I ∈ I such that |B \ I| <∞.

Theorem 2.9. Let (D,B0) be a dimaze. If ML(D,B0) is nearly finitary, then it is a
matroid.

Proof. Since ML(D,B0) satisfies (I1), (I2) and (∗), by [4, Lemma 4.15], it also satisfies
(IM). Hence, by Proposition 2.2, it is a matroid.
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The theorem shows that dimazes which contain an alternating comb may also define
matroids.

Example 2.10. We construct a dimaze (D,B0) which defines a nearly finitary linkability
system, by identifying the corresponding exits of n > 1 copies of CO (see Figure 2). Note
that (D,B0) contains an alternating comb; and ML(D,B0) is not finitary (a vertex not
in B0 together with all reachable vertices in B0 form an infinite circuit4).

. . . B0

Figure 2: A dimaze that defines a nearly finitary linkability system

We check that ML(D,B0) is nearly finitary. Suppose B is a maximal element in
ML(D,B0)fin. Let I be the set obtained from B by deleting the last vertex, if exists, of B
on each ray in D − B0; and T := B \ I. Fix an enumeration i1, i2, . . . for I such that D
contains a ray starting in ik+1 that avoids Ik := {i1, . . . , ik} for each k > 0 with ik+1 /∈ B0.
For any integer k > 1, let Tk consist of exactly one vertex on each ray in D−B0 (that hits
Ik): the first one in B after the last vertex of Ik. Note that there are only finitely many
linkages from Ik to B0 avoiding Tk. In fact, there is at least one: the restriction to Ik of
a linkage of the finite subset Ik ∪ Tk of B. Applying the infinity lemma ([9, Proposition
8.2.1]), with the kth set consisting of the finite non-empty collection of linkages from Ik
to B0 avoiding Tk, we obtain a linkage from I to B0. Hence, I ∈ ML(D,B0). As B is
arbitrary and |T | 6 n, we conclude that ML(D,B0) is nearly finitary.

On the other hand, Theorem 2.9 does not imply Theorem 2.5: there are non-nearly
finitary CA-free strict gammoids. In fact they can be highly connected and have non-
nearly finitary duals.

Lemma 2.11. Given a matroid M and a base B, if E \ B contains infinitely many
elements which are not in any finite circuit, then M is not nearly finitary.

Proof. Extend B to a base Bfin of Mfin. As |Bfin \B| =∞, so is |Bfin \B′| for any other
base B′ of M inside Bfin. So M is not nearly finitary.

Example 2.12. For any integer k > 2, there is a k-connected strict gammoid M =
ML(D,B0) such that the underlying graph of D is rayless, and neither M nor its dual is
nearly finitary.

Consider a rooted tree T of depth 3 where each internal vertex has infinitely many
children, and each edge is directed towards L0 ∪ L2 where Li is the set of vertices at

4Any circuit in a finitary matroid is finite.
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distance i from the root for 0 6 i 6 3. Let D be a digraph with V = V (T ) ∪ X ∪ Y ,
where each of X and Y is an extra set of k vertices; and E(D) = E(T ) ∪ {(x, b), (v, y) :
x ∈ X, b ∈ B0, v ∈ V \B0, y ∈ Y }, where B0 = L0 ∪ L2 ∪ Y . Since (D,B0) is CA-free, by
Theorem 2.5, M = ML(D,B0) is a matroid.

As no vertex in L1 lies in a finite circuit, applying Lemma 2.11 with the base B0 shows
that M is not nearly finitary. Similarly, as no vertex in L2 lies in a finite cocircuit, the
same lemma with V \B0 shows that M∗ is not nearly finitary.

For any l < k, it is not difficult to see that in any bipartition of V into sets P,Q of
size at least l, there is a linkage from P1 ⊆ P \ B0 to Q ∩ B0 and from Q1 ⊆ Q \ B0 to
P ∩B0 of size at least l. It follows that P1 ∪ (P ∩B0) ∪Q1 ∪ (Q ∩B0) contains at least l
vertices more than B0. Hence, (P,Q) is not an l-separation. So M is k-connected.

So far we have seen that if a dimaze (D,B0) is CA-free or that ML(D,B0) is nearly
finitary, then ML(D,B0) is a matroid. However, there are examples of strict gammoids
that lie in neither of the two classes. All our examples of dimazes that do not define
a matroid share another feature other than possessing an alternating comb: there is an
independent set I that cannot be extended to a maximal in I ∪ B0. In view of this, we
propose the following.

Conjecture 2.13. Suppose that for all I ∈ ML(D,B0) and B ⊆ B0, there is a maximal
independent set in I ∪B extending I. Then (IM) holds for ML(D,B0).

3 Dimazes with alternating combs

We have seen in Section 2 that forbidding alternating combs in a dimaze guarantees
that it defines a strict gammoid. However, the alternating comb in Figure 3 defines a
matroid. On the other hand, this strict gammoid is isomorphic to the one defined by the
incoming comb via the isomorphism given in the figure. So one might hope that every
strict gammoid is CA-free. In general, this is not the case and the aim of this section is
to construct a counterexample.

B0

...

x1

x2

y0

y1

y2

B0

...

y0

x1

x2

y1

y2

(a) (b)

Figure 3: An alternating comb and an incoming comb defining isomorphic strict gammoids
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3.1 Finite circuits, cocircuits and alternating combs

We first give a necessary condition of any strict gammoid defined by a CA-free dimaze.

Lemma 3.1. If a dimaze (D,B0) is CA-free, then ML(D,B0) contains a finite circuit or
a finite cocircuit.

Proof. Suppose the lemma does not hold. Then every finite subset of V is independent
and coindependent, and B0 is infinite. We construct a sequence (Rk : k > 1) of finite
subdigraphs of D that gives rise to an alternating comb for a contradiction.

Let v1 /∈ B0 and R1 a path from v1 to B0. For k > 1, we claim that there is a
path Pk from vk to B0 such that Pk ∩ V (Rk) = {vk}, a vertex wk on v̊kPk, and a vertex
vk+1 /∈ V (Rk) ∪ Pk with (vk+1, wk) ∈ E(D). Let Rk+1 := Rk ∪ Pk ∪ (vk+1, wk).

Indeed, since any finite set containing vk is independent, there is a path from vk
avoiding any given finite set disjoint from vk. Hence, there is a set F of |V (Rk)| + 1
disjoint paths (except at vk) from vk to B0 avoiding the finite set V (Rk) − vk. Since
V (F)∪Rk is coindependent, its complement contains a base B, witnessed by a linkage P .
Since |V (F) ∩ B0| > |V (Rk)| and Ter(P) = B0, there is a path P ∈ P that is disjoint
from Rk and ends in V (F) ∩ B0. As the terminal vertex of P is in V (F), but its initial
vertex is not, there is an edge (vk+1, wk) of P such that wk is on some path Pk ∈ F , but
vk+1 is not (on Pk). Then the vertices vk+1, wk and the path Pk satisfy the requirements
of the claim. By induction, the claim holds for all k > 1.

Let R :=
⋃
k>1Rk. Then (R, V (R) ∩ B0) is an alternating comb in (D,B0). This

contradiction completes the proof.

A matroid is infinitely connected if it does not have any k-separation for any integer
k. The only infinitely connected finite matroids are uniform matroids of rank about half
of the size of the ground set (see [16, Chapter 8]) and they are strict gammoids. It seems
natural to look for an infinitely connected infinite matroid among strict gammoids, but
the previous lemma gives us a partial negative result because the bipartition of any finite
circuit of size k against the rest is a k-separation. It remains open whether there is an
infinitely connected infinite gammoids.

Corollary 3.2. If an infinite dimaze (D,B0) is CA-free, then ML(D,B0) is not infinitely
connected.

3.2 Trees and transversal matroids

To give a strict gammoid not definable by a dimaze without alternating comb, we need only
construct a strict gammoid without any finite circuit or cocircuit. A particular example is
furnished by turning a transversal matroid defined on a tree to a strict gammoid. We prove
a more general result that any tree gives rise to a transversal matroid. The definitions
are recalled here.

Given a bipartite graph G, fix an ordered bipartition (V,W ) of V (G); this induces an
ordered bipartition of any subgraph of G. A subset of V is independent if it is matchable
to W . Let MT (G) be the pair of V and the collection of independent sets. It is clear
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that (I1), (I2) hold for MT (G). When G is finite, (I3) also holds [11]. The proof of this
fact which uses alternating paths can be extended to show that (I3) also holds when G is
infinite.

Let m be a matching. An edge in m is called an m–edge. An m–alternating path is
a path or a ray that starts from a vertex in V such that the edges alternate between the
m–edges and the non-m–edges, as long as possible. An m–m′ alternating path is defined
analogously with m′, also a matching, replacing the role of the non-m–edges.

Lemma 3.3. For any bipartite graph G, MT (G) satisfies (I3).

Proof. Let I, B ∈ MT (G) such that B is maximal but I is not. As I is not maximal,
there is a matching m of I + x for some x ∈ V \ I. Let m′ be a matching of B to W .
Start an m–m′ alternating path P from x. By maximality of B, the alternating path is
not infinite and cannot end in W \ V (m′). So we can always extend it until it ends at
some y ∈ B \ I. Then m∆E(P ) is a matching of I + y, which completes the proof.

If MT (G) is a matroid, it is called a transversal matroid. For X ⊆ V , the restriction
of MT (G) to X is also a transversal matroid, and can be defined by the independent sets
of the subgraph of G induced by X ∪N(X).

Suppose now G is a tree rooted at a vertex in W . By upwards (downwards), we
mean towards (away from) the root. For any vertex set Y , let N↑(Y ) be the upward
neighbourhood of Y , and N↓(Y ) the set of downward neighbours. An edge is called
upward if it has the form {v,N↑(v)} where v ∈ V , otherwise it is downward.

We will prove that MT (G) is a matroid. To build a maximal independent set whose
existence is required by (IM), we inductively construct a sequence of matchings (mα : α >
0), indexed by ordinals.

Given mβ−1, to define mβ, we consider the vertices not matched by mβ−1 that do not
have unmatched children for the first time at step β − 1. We ensure that any such vertex
v that is also in I is matched in step β, by exchanging v with a currently matched vertex
rv that is not in I.

When every vertex that has not been considered has an unmatched child, we stop the
algorithm. We then prove that the union of the matched vertices and those unconsidered
vertices is a maximal independent superset of I.

Theorem 3.4. For any tree G with an ordered bipartition (V,W ), MT (G) is a transversal
matroid.

Proof. To prove that MT (G) is a matroid, it suffices to prove that (IM) holds. Let an
independent set I ⊆ X ⊆ V be given. Without loss of generality, we may assume that
X = V .

We start by introducing some notations. Root G at some vertex in W . Given an
ordinal α and a matching mα, let Iα := V (mα) ∩ V and Wα := V (mα) ∩W . Given a
sequence of matchings (mα′ : α′ 6 α), let

Cα := {v ∈ V \ Iα : N↓(v) ⊆ Wα but N↓(v) 6⊆ Wα′ ∀α′ < α}.
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Note that Cα ∩ Cα′ = ∅ for α′ 6= α. For each w ∈ W \ Wα, choose one vertex vw in
N↓(w) ∩ Cα if it is not empty. Let

Sα := {vw : w ∈ W \Wα and N↓(w) ∩ Cα 6= ∅}.

Denote the following statement by A(α):

There is a pairwise disjoint collection Pα := {Pv : v ∈ I ∩ Cα \ Sα} of
mα–alternating paths such that each Pv starts from v ∈ I ∩ Cα \ Sα with a
downward edge and ends at the first vertex rv in Iα \ I.

Start the inductive construction with m0, which is the set of upward edges that is
contained in every matching of I. It is not hard to see that C0∩ I = ∅, so that A(0) holds
trivially.

Let β > 0. Given the constructed sequence of matchings (mα : α < β), suppose that
A(α) holds for each α < β. Construct a matching mβ as follows.

If β is a successor ordinal, let

mβ := E(Sβ−1, N↑(Sβ−1)) ∪ (mβ−1∆E(Pβ−1)).

By A(β− 1), the paths in Pβ−1 are disjoint. So mβ−1∆E(Pβ−1) is a matching. Using the
definition of Sβ−1, we see that mβ is indeed a matching. Observe also that

Iβ−1 ∩ I ⊆ Iβ ∩ I; (5)

W β−1 ⊆ W β−1 ∪N↑(Sβ−1) = W β. (6)

If β is a limit ordinal, define mβ by

e ∈ mβ ⇐⇒ ∃β′ < β such that e ∈ mα ∀α with β′ 6 α < β. (7)

As mα is a matching for every ordinal α < β, we see that mβ is a matching in this case,
too.

Suppose that a vertex u ∈ (V ∩ I)∪W is matched to different vertices by mα and mα′

for some α, α′ 6 β. Then there exists some ordinal α′′ + 1 between α and α′ such that u
is matched by an upward mα′′–edge and by a downward mα′′+1–edge. Hence, the change
of the matching edges is unique. This implies that for any α, α′ with α 6 α′ 6 β, by (5)
and (6), we have

Iα ∩ I ⊆ Iα
′ ∩ I; (8)

Wα ⊆ Wα′ . (9)

Moreover, for an upward mβ–edge vw with v ∈ V , we have

v ∈ I0 or ∃α < β such that v ∈ Cα and w /∈ Wα. (10)

We now prove that A(β) holds. Given v0 = v ∈ I ∩Cβ \Sβ, we construct a decreasing
sequence of ordinals starting from β0 := β. For an integer k > 0, suppose that vk ∈
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I ∩ Cβk with βk 6 β is given. By (8), I0 ⊆ Iβk , so vk /∈ I0 and hence there exists
wk ∈ N↓(vk) \W 0.5 Since N↓(vk) ⊆ W βk ⊆ W β, wk is matched by mβ to some vertex
vk+1. In fact, as wk /∈ W 0, vk+1 /∈ I0. Let βk+1 be the ordinal with vk+1 ∈ Cβk+1 . Since
vk+1wk is an upward edge and N↓(vk) ⊆ W βk , we have by (10) that wk ∈ W βk \W βk+1 .
By (9), βk > βk+1.

As there is no infinite decreasing sequence of ordinals, we have an mβ–alternating path
Pv = v0w0v1w1 · · · that stops at the first vertex rv ∈ V \ I.

The disjointness of the Pv’s follows from that every vertex has a unique upward neigh-
bour and, as we just saw, that v̊Pv cannot contain any vertex v′ ∈ Cβ. So A(β) holds.

We can now go on with the construction.

Let γ 6 |V | be the least ordinal such that Cγ = ∅.6 Let C :=
⋃
α<γ C

β and U :=

V \ (I0 ∪ C); so V is partitioned into I0, C and U . As Cγ = ∅, every vertex in U can
be matched downwards to a vertex that is not in W γ. These edges together with mγ

form a matching mB of B := U ∪ Iγ, which we claim to be a witness for (IM). By (8),
I0 ∪ (C ∩ I) ⊆ Iγ, hence, I ⊆ B.

Suppose B is not maximally independent for a contradiction. Then there is an mB–
alternating path P = v0w0v1w1 · · · such that v0 ∈ V \ B that is either infinite or ends
with some wn ∈ W \ V (mB). We show that neither occurs.

Claim 1. P is finite.

Proof. Suppose P is infinite. Since v0 /∈ B, P has a subray R = wiP such that wivi+1

is an upward mB–edge. So wjvj+1 ∈ mB for any j > i. As vertices in U are matched
downwards, R ∩ U = ∅. As mB∆E(R) is a matching of B ⊇ I in which every vertex in
R ∩ V is matched downwards, R ∩ I0 = ∅ too. So for any j > i, there exists a unique βj
such that vj ∈ Cβj .

Choose k > i such that βk is minimal. But with a similar argument used to prove
A(β), we have βk > βk+1. Hence P cannot be infinite.

Claim 2. P does not end in W \ V (mB).

Proof. Suppose that P ends with wn ∈ W \ V (mB). Certainly, vn can be matched
downwards (either to wn−1 or wn) in a matching of B ⊇ I. Hence, vn /∈ I0. It is easy to
check that for v ∈ Cα, N(v) ⊆ Wα+1. Hence, as wn ∈ W \W γ, vn /∈ C. Hence, vn ∈ U .
It follows that for each 0 < i 6 n, vi is matched downwards and so does not lie in I0. As
v0 /∈ B, v0 ∈ C. It follows that w0 ∈ W γ and v1 ∈ C. Repeating the argument, we see
that vn ∈ C, which is a contradiction.

We conclude that B is maximal. So (IM) holds and MT (G) is a matroid.

Corollary 3.5. Let (D,B0) be a dimaze such that the underlying graph of D is a tree and
B0 is a vertex class of a bipartition of D with edges directed towards B0. Then ML(D,B0)
is a matroid.

5For a vertex v /∈ I, N↓(v) \W 0 may be empty.
6In order to see γ 6 |V |, fix a well-ordering of V and map each β to the least element in Cβ .
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Proof. By the theorem, we need only present ML(D,B0) as a transversal matroid defined
on a tree. Define a bipartite graph G with the vertex classes (V \B0)∪ {b′ : b ∈ B0} and
B0 and the edge set {vw : (v, w) ∈ E(D)} ∪ {bb′ : b ∈ B0}. Since ML(D,B0) ∼= MT (G)
and G is a tree, ML(D,B0) is a matroid.

Consider the infinitely branching rooted tree, i.e. a rooted tree such that each vertex
has infinitely many children. Let B0 consist of the vertices on alternate levels, start-
ing from the root. Define T by directing all edges towards B0. Corollary 3.5 shows
that ML(T , B0) is a matroid. Clearly, this matroid does not contain any finite circuit.
Moreover, as any finite set C∗ misses a base obtained by adding finitely many vertices
to B0 \ C∗, any cocircuit must be infinite. We remark that this matroid is not dual to
any legal transversal matroid, which is introduced in [2] to describe the duals of strict
gammoids given by Theorem 2.5. With Lemma 3.1, we conclude the following.

Corollary 3.6. Every dimaze that defines a strict gammoid isomorphic to ML(T , B0)
contains an alternating comb.

We would like to thank Nathan Bowler and Johannes Carmesin for many helpful
discussions.
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