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Abstract

We prove asymptotic normality of the distributions defined by q-supernomials,
which implies asymptotic normality of the distributions given by the central string
functions and the basic specialization of fusion modules of the current algebra of sl2.
The limit is taken over linearly scaled fusion powers of a fixed collection of irreducible
representations. This includes as special instances all Demazure modules of the
affine Kac-Moody algebra associated to sl2. Along with an available complementary
result on the asymptotic normality of the basic specialization of graded tensors
of the type A standard representation, our result is a central limit theorem for a
serious class of graded tensors. It therefore serves as an indication towards universal
behavior: The central string functions and the basic specialization of fusion and,
in particular, Demazure modules behave asymptotically normal, as the number of
fusions scale linearly in an asymptotic parameter, N say.

Keywords: q-supernomial; current algebra; affine Kac-Moody algebra; fusion prod-
uct; Demazure module; basic specialization; asymptotic normality; central limit
theorem; occupancy statistic; mixing distribution

1 Introduction

The q-supernomial coefficients encode certain integer partitions as polynomials in a vari-
able q of the form

∑
j1+···+jm=a

q
∑m
i=1 ji(ji+

∑i−1
`=1 L`)

m∏
`=1

[
L` + j`+1

j`

]
q

.
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The L1, . . . , Lm and a are nonnegative integers and
[
a
b

]
q

denotes the well known q-binomial

coefficient that enumerates inversions in words. They were introduced by Schilling and
Warnaar, who studied their symmetries, recurrences and q-series limits and gave a combi-
natorial interpretation as the enumeration of so-called (L1, . . . , Lm)-admissible generalized
Durfee dissection partitions with exactly a parts [26].

A natural motivation for the investigation of asymptotic statistical properties of the
discrete distributions defined by the coefficients of those polynomials is to understand
the qualitative behavior of this special kind of integer partitions for large values of the
parameters L1, . . . , Lm ∈ Z+.

However, our initial motivation for the study of q-supernomials is their appearance
as Hilbert series of fusion modules of the current algebra slr ⊗C[t] that were introduced
by Feigin and Loktev [11], that is tensor products of irreducible representations endowed
with a grading that is encoded by the variable q. The coefficients of those Hilbert series
(also called string functions) encode dimensions of certain isotropic components called
weight spaces. While the exact determination of those coefficients by coefficient extrac-
tion is certainly possible in any fixed instance of a q-supernomial, the explicit description
of those coefficients remains intractable and one usually is satisfied with concrete expres-
sions for their generating function, the q-supernomial. For large values of the parameters
L1, . . . , Lm one may expect that the asymptotic behavior of the distributions defined by
the q-supernomials is governed by probabilistic limit theorems, so that precise assertions
about “typical” behavior are possible. In this work we show that limit theorems towards
asymptotically normal behavior do indeed hold, and deduce the following result for the
(central) string functions of fusion modules of the current algebra sl2 ⊗ C[t] and their
so-called basic specialization (a sum of string functions).

Consider a sequence of fusion modules (C2)∗L
N
1 ∗· · ·∗(Cm+1)∗L

N
m of the current algebra

sl2⊗C[t]. Assume that the exponents grow on a linear scale, i.e. (LN1 , . . . , L
N
m)/N → a 6= 0

as N → ∞. Then, the central string functions and basic specialization of those modules
behave asymptotically normal with mean and variance growing quadratically and cubically
in N , respectively, with explicitly calculable leading terms.

We give the precise statements describing the leading terms of this asymptotic expan-
sion of the Hilbert series in Theorem 3.1 and Theorem 3.2. Concerning the asymptotic
growth of dominating weight spaces in fusion modules we conjecture that corresponding
local limit theorems hold, and that similar results can be shown for the fusion of type
A symmetric power representations. Furthermore, we specialize our findings to the case
of Demazure modules that have been studied through different methods earlier in the
literature.

The material is broadly divided into two parts: the first part is devoted to the
probabilistic-combinatorial problem of deriving limit theorems for the q-supernomial dis-
tributions, and the second part explains the representation theoretic interpretation of the
limit theorems derived in the first part.
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2 Distributions defined by q-supernomials

Let L := (L1, . . . , Lm) ∈ Zm
+ , a ∈ Z+, jm+1 = 0. Consider the q-supernomial

T̃ (L, a)(q) =
∑

j1+···+jm=a

q
∑m
i=1 ji(ji+

∑i−1
`=1 L`)

m∏
`=1

[
L` + j`+1

j`

]
q

, (1)

that enumerates a-restricted L-admissible partitions [26]1, and the cumulative generating
function of the unrestricted number of L-admissible partitions

T̃ (L)(q) :=

L1+···+Lm∑
a=0

T̃ (L, a)(q). (2)

We show that the unrestricted number and in certain (typical) cases the a-restricted num-
ber of L-admissible partitions are asymptotically normally distributed with asymptotic
parameter being a convergent sequence 1

N
LN , as N →∞.

2.1 Statistical notions

Standard sources are [1, 2, 12, 13]. All our random variables X will be discrete and finite.
Recall that the expected value of such a random variable is the weighted average E(X) =∑

x P(X = x)x. The covariance of two random variables X and Y is Cov(X, Y ) = E((X−
E(X))(Y −E(Y ))). They are said to be uncorrelated if Cov(X, Y ) = 0. The variance of X
is Var(X) = Cov(X,X). Its probability generating function is E(qX) =

∑
x P(X = x)qx,

and the associated probability distribution µX =
∑

x P(X = x)δx. Here, δx denotes the
Dirac distribution (point mass) at x. A sequence XN converges P-almost surely (P−a.s.
for short) to X if P(limN→∞XN = X) = 1. Convergence and equality in distribution will

be denoted by
d−→ and

d
=, respectively. N (µ,Σ) will denote the normal distribution with

mean µ and covariance matrix Σ. Note that N (µ, 0) = δµ. The conditional probability
P(Y = y|X = x) = P(X = x)−1P(X = x, Y = y) is the probability of Y taking the
value y given the occurence of the value x for X. A mixture of distributions µXi is a
convex combination thereof, i.e.

∑
iwiµXi for some weights wi > 0 with

∑
iwi = 1. The

probability generating function of a mixture is
∑

iwiE(qXi).

2.2 Preliminaries

The distributions with probability generating function

Fa,b(q) :=

[
a+ b

a

]
q

/(a+ b

a

)
(3)

were first investigated by Mann and Whitney [24], who showed:

1The notation T̃ (L, a)(q) is taken from there for consistency.
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Theorem 2.1. Let Inva,b be a random variable with distribution Fa,b. Then Inva,b has
expectation E(Inva,b) = 1

2
ab, variance Var(Inva,b) = 1

12
ab(a+ b+ 1), and as a, b→∞ one

has
Inva,b−E(Inva,b)√

Var(Inva,b)

d−→ N (0, 1).

A corresponding local limit theorem was proved by Takacs [30].

Remark 2.2. It is well known that the q-binomial
[
a+b
a

]
q

is the generating function

for inversions in words of a zeroes and b ones. Consider a word (unordered sequence)
w = (w1, . . . , wn) of elements from an ordered set. A 4-tuple (i, j, wi, wj) with i < j and
wi > wj is then called an inversion.

Let us also recall the following classical result about the asymptotic normality of
multinomial distributions (see e.g. [6]).

Theorem 2.3. Let the sequence BN have the multinomial distribution with parameters
N and p = (p0, p1, . . . , pm). Then, we have mean E(BN) = Np, covariance matrix
Cov(BN) = NΣ, and

BN −Np

N1/2

d−→ N (0,Σ),

where Σ = diag(p)− ptp (not of full rank).

2.2.1 Elementary definitions

We call a vector j = (j1, . . . , jm) ∈ Zm
+ compatible to L ∈ Zm

+ if ji 6 Li + ji+1 for
i = 1, . . .m, and a probability distribution L-compatible if the set of L-compatible values
has probability one. For L-compatible j we let Inv(L, j) denote a random variable with
probability generating function

F (L, j)(q) :=
m∏
i=1

FLi+ji+1,ji(q), (4)

where here and in the sequel jm+1 = 0. We let

Q(L, j) =
m∑
i=1

ji

(
ji +

i−1∑
`=1

L`

)
. (5)

We view the normalized generating function T̃ (L)(q)/T̃ (L)(1) (and T̃ (L, a)(q)/T̃ (L, a)(1))
as a mixture of probability generating functions

T̃ (L)(q)/T̃ (L)(1) =
∑
j

qQ(L,j)F (L, j)(q) P(J = j), (6)
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weighted by P(J = j) = P(J1 = j1, . . . , Jm = jm) =
∏m

i=1

(
Li+ji+1

ji

)
/T̃ (L)(1). The implicit

dependency on the admission vector L will be from now on suppressed in the notation for
convenience. We furthermore define (the conditional distribution of) a random variable
Y by P(Y = i |J = j) = P(Inv(L, j) = i), so that we can rephrase

T̃ (L)(q)/T̃ (L)(1) = E(qQ(L,J)+Y ). (7)

Consequently, our interest lies in the distribution of the random variable

T = Q(L,J) + Y, (8)

whose asymptotics we will treat by splitting T into an “occupancy part” Q(L,J)+E(Y |J),
dependent only on J, and a remaining “rest-inversion part” R = Y −E(Y |J) “orthogonal”
to J, and investigating the two parts individually. We note that by Theorem 2.1 we have

E(Y |J) =
1

2

(
(Lm − Jm)Jm +

m−1∑
i=1

(Li + Ji+1 − Ji)Ji

)
=: e(L,J) (9)

so that E(Y |J) is a quadratic function in J. Let us call the distribution of J the mixing
distribution (for the total number of L-admissible partitions). To explain the behavior of
mixing distributions and to introduce a convenient way to refer to them, let us describe
a simple random experiment. We focus our attention on the unrestricted case first.

2.2.2 The probabilistic setup for the unrestricted case

Consider m many mutually independent random sources S1,S2, . . . ,Sm emitting words
W (1), . . . ,W (m). Each word W (i) = (X1(i), X2(i), . . . , XLi(i)) is a sequence of Li many
mutually independent letters Xk(i), where each Xk(i) is uniformly distributed from the
alphabet {0, . . . , i}. For 0 6 i 6 k let Bi(k) :=

∑Lk
j=1 1{i}(Xj(k)) denote the ran-

dom variable the number of appearances of letter i in word W (k). Then, the random
vector B(k) := (B0(k), . . . , Bk(k)) is the occupancy (statistic) of word W (k), S(k) :=∑Li

i=1 Xi(k) =
∑k

j=0 jBj(k) is the sum of word W (k), BL := (B(1), . . . ,B(m)) is the
total occupancy of W (1), . . . ,W (m), and SL :=

∑m
i=1 S(i) is called the total sum of words

W (1), . . . ,W (m). Clearly, under the assumptions above, SL is the sum of independent
uniformly distributed random variables and we have

E(SL) =
1

2

m∑
i=1

iLi, (10)

Var(SL) =
1

12

m∑
i=1

(i+ 2)iLi. (11)

The probability distribution of J arises in this experiment as follows.
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Proposition 2.4. Let BL = (B(1), . . . ,B(m)) be as above. That is, the random vectors
B(i) = (B0(i), . . . , Bi(i)) are independent, where each B(i) has a (uniform) multinomial
distribution with parameters Li and p0 = . . . = pi = 1

i+1
. Define

Ji :=
m∑
k=i

Ak−i+1(k), where Ak(i) :=
i∑

j=k

Bj(i).

Then, the joint distribution of (J1, . . . , Jm) is

P(J1 = j1, . . . , Jm = jm) =
m∏
i=1

(
Li + ji+1

ji

)
/(i+ 1)Li .

where j = (j1, . . . , jm) ∈ Nm
0 (and with the usual convention about binomial coefficients

that
(
a
b

)
= 0 unless 0 6 b 6 a). These numbers define a L-compatible probability distribu-

tion.

Proof. By formal generating functions it is clear that the joint generating function of
(J1, . . . , Jm) as defined above is

E(tJ1
1 . . . tJmm ) =

m∏
i=1

( i∑
j=0

i∏
k=i−j+1

tk
)Li/(i+ 1)Li .

Now extract coefficients to see that this corresponds to the distribution defined above.
The L-compatibility is obvious.

Remark 2.5. The proof shows that T̃ (L)(1) =
∏m

i=1(i+ 1)Li , which can be seen directly
from the combinatorial definition of q-supernomials. Furthermore, since Ak−i+1(k) =
Bk−i+1(k) + Bk−i+2(k) + · · · + Bk(k) counts the number of appearances of the highest
i letters in word W (k), the Ji may be described as the overall count of the i highest
non-zero letters in all words.

Proposition 2.4 shows that the mixing distribution for the total number of L-admissible
partitions may be realized as a simple linear transformation of BL. We call BL the un-
derlying occupancy distribution. This representation can be used for explicit calculations,
and reduces the asymptotic treatment of J in the unrestricted case to the well known
asymptotics of multinomial distributions as described in Theorem 2.3.

2.2.3 The probabilistic setup for the a-restricted case

The same experiment as in §2.2.2 describes the a-restricted case when we consider only
the outcomes with total sum SL = a. That is, for the a-restricted case the underlying
occupancy distribution is BL |SL = a, i.e. the distribution of BL conditioned by SL = a.
In order to have a succinct wording for the “most important” restricted cases we make
the following definition (Cf. (10)).
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Definition 2.6. We call the a-restricted cases with a = E(SL) (resp. a = E(SL) ± 1
2
)

central.

This terminology is justified due to the symmetry of the distribution of SL around E(SL),
and their central importance due to the strong law of large numbers,

1

N
E(SLN )

P−a.s.
−−−−→ 1

2

m∑
k=1

kak, as 1
N

LN → (a1, . . . , am).

2.3 General asymptotic considerations

Throughout this section let LN be a sequence of admission vectors, and JN a sequence of
LN -compatible mixing distributions. We consider the sequence of inversion statistics

Y N , defined by P(Y N = i |JN = j) = P(Inv(LN , j) = i),

and recall the associated definitions from §2.2.1,

TN = Q(LN ,JN) + Y N ,

RN = Y N − E(Y N |JN),

e(LN ,JN) = E(Y N |JN).

Let us note the asymptotic behavior of the conditional distribution of RN .

Lemma 2.7. If 1
N

LN → a 6= 0, and jN is a sequence of LN -compatible vectors such that
1
N

jN → b 6= 0, then

Inv(LN , jN)− E(Inv(LN , jN)

N3/2

d−→ N (0, v(a,b))

where v(a,b) = 1
12

∑m
i=1(ai + bi+1 − bi)bi(ai + bi+1) (where bm+1 = 0).

Proof. By definition, the random variable

Inv(LN , jN)− E(Inv(LN , jN))

is distributed like the sum
∑m

i=1X
N
i of m independent random variables

XN
i

d
= Inv(LNi + jNi+1 − jNi , jNi )− 1

2

(
LNi + jNi+1 − jNi ) jNi

)
.

Let aNi = LNi + jNi+1 − jNi and bNi = jNi . By assumption the limits ai = lim 1
N
aNi and

bi = lim 1
N
bNi exist. If ai = 0 or bi = 0, then 1

N3/2X
N
i

d−→ 0
d
= N (0, 0). If ai > 0 and bi > 0

we find that 1
N3 Var(Inv(aNi , b

N
i )→ 1

12
aibi(ai + bi) := w(ai, bi), and Theorem 2.1 gives

XN
i

N3/2

d−→ N (0, w(ai, bi)).

Thus under the conditions above 1
N3/2

∑m
i=1X

N
i

d−→ N (0,
∑m

i=1w(ai, bi)) = N (0, v(a,b)).
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Remark 2.8. The case aibi = 0 for all i (that is v(a,b) = 0) is less interesting but not
excluded. In this case we interpret N (0, 0) := δ0 as the Dirac-measure (point mass) at 0.

Next we observe that under mild conditions the limiting distributions of the (normal-
ized) random variables RN and JN are asymptotically independent.

Theorem 2.9. Let R(a,b) denote a random variable with distribution N (0, v(a,b)). If
1
N

LN → a 6= 0, and if there exists b ∈ Rm
+ and a positive semidefinite matrix Σ ∈ Rm×m

of positive rank such that
JN −Nb

N1/2

d−→ N (0,Σ).

Then, as N −→∞, ( RN

N3/2
,
JN −N b

N1/2

)
d−→
(
R(a,b),N (0,Σ)

)
,

where the constituents on the right-hand side are independent.

Proof. Let A ⊂ R be a Borel set and f : Rm → R be bounded and continuous. We have

E 1A

( RN

N3/2

)
f
(JN −Nb

N1/2

)
= E P

( RN

N3/2
∈ A

∣∣ JN
)
f
(JN −Nb

N1/2

)
= E P

(Inv(LN ,JN)− e(LN ,JN)

N3/2
∈ A

)
f
(JN −Nb

N1/2

)
.

By Skorokhod’s representation theorem (see [2, 29]) we may assume that JN−Nb
N1/2

d−→ X,

P − a.s., where X
d
= N (0,Σ). Then clearly 1

N
JN → b, P − a.s., and by the preceding

lemma

P
(Inv(LN ,JN)− e(LN ,JN)

N3/2
∈ A

)
−→ N (0, v(a,b))

(
A
)
,P− a.s.

Therefore,

E 1A

( RN

N3/2

)
f
(JN −Nb

N3/2

)
−→ N (0, v(a,b))

(
A
)

E
(
f(X)

)
.

Finally we need a result that enables us to treat the occurring quadratic functions of
JN . For quadratic functions of asymptotically normal random vectors XN one has the
following elementary result.

Proposition 2.10. Assume there exists b ∈ Rm and a positive semidefinite matrix Σ ∈
Rm×m of positive rank such that

E(XN)

N
−→ b and

XN −Nb

N1/2

d−→ N (0,Σ).
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Let M ∈ Rm×m, v ∈ Rm, and consider the quadratic function q(x,v) = xMxt + vxt. If
we assume that vN is a sequence with 1

N
vN → a and let w = b(M +M t) + a, then

q
(
XN ,vN

)
− q
(
E(XN),vN

)
N3/2

d−→ N (0,wΣwt).

If additionally 1
N

Cov(XN) −→ Σ, then

E(q(XN ,vN))

N2
−→ q(b, a),

and
E
(
q(XN ,vN)− q(E(XN),vN)

)
N

−→
∑
i,j

Mi,jΣi,j.

If furthermore E
(
XN
i − E(XN

i )
)4
/N3 −→ 0 for all i, then

Var(q(XN ,vN))

N3
−→ wΣwt.

Combining Proposition 2.10 with Theorem 2.9 gives a complete picture of the asymp-
totic distributions of the random variables considered above.

Corollary 2.11. In the situation of Theorem 2.9 assume that additionally 1
N

E(JN)→ b.
Let b0 = bm+1 = 0, JNm+1 = 0, CN = 1

2

∑m
i=1

(
LNi + E(JNi+1) − E(JNi )

)
E(JNi ), and

DN =
∑m

i=1 E(JNi )
(
E(JNi )+

∑i−1
k=1 L

N
k

)
, and let c = c(a,b) be the vector with coordinates

ci = ai + bi+1 + bi−1 − 2bi and f = f(a,b) be the vector with coordinates fi = ai + bi+1 +
bi−1 + 2bi + 2

∑i−1
`=1 a`. Then,

e(LN ,JN)− CN

N3/2

d−→ N (0, 1
4
cΣct), (12)

Y N − CN

N3/2

d−→ N (0, 1
4
cΣct + v(a,b)), (13)

TN − (CN +DN)

N3/2

d−→ N (0, 1
4
fΣf t + v(a,b)). (14)

Proof. The first assertion follows directly from Proposition 2.10. For the second assertion
observe that by Theorem 2.9 the limiting distribution is the convolution of the normal
distributions R(a, b) and the limiting distribution in (12).

Finally, the variance of the rest-inversion part RN is as follows.

Lemma 2.12. In the situation of Theorem 2.9 assume that additionally 1
N

E(JN) → b,
and that 1

N
JN is bounded. Then,

Var(RN)

N3
−→ v(a,b).
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Proof. We have E
(
(RN)2|JN

)
= Var(Inv(LN ,JN)). Therefore

E
(
(RN)2|JN

)
= 1

12

m∑
i=1

(LNi + JNi+1 − JNi )JNi (LNi + JNi+1),

and by our assumptions E
(
(RN)2|JN

)
/N3 converges boundedly to v(a,b). Hence we have

E
(
(RN)2

)
/N3 = E

((
(RN)2|JN

))
/N3 −→ v(a,b).

2.4 Unrestricted number of parts

We first consider the total number T̃ (L)(q) of L-admissible partitions. In this case clearly
Ak−i+1(k) (as defined in Proposition 2.4) has a binomial distribution with parameters n =
Lk and p = i

k+1
, and hence each Ji can be represented as a sum of independent binomial

variables. Furthermore, the covariance of Ak−i+1(k) and Ak−j+1(k) can be computed as

Cov(Ak−i+1(k), Ak−j+1(k)) =
Lk
k + 1

(
min(i, j)− ij

k + 1

)
.

We therefore have

Lemma 2.13. Consider (J1, . . . , Jm) as defined in Proposition 2.4. Then,

E(Ji) = i
m∑
k=i

Lk
k + 1

, (15)

Var(Ji) = i
m∑
k=i

Lk
k + 1

− i2
m∑
k=i

Lk
(k + 1)2

, (16)

Cov(Ji, Jj) = min(i, j)
m∑

k=max(i,j)

Lk
k + 1

− ij
m∑

k=max(i,j)

Lk
(k + 1)2

. (17)

Moreover, straightforward computations lead to the exact expectation value of the
random variable defined in (7).

Lemma 2.14. Consider the random variables defined in (7), and let si =
∑m

k=i
Lk
k+1

,

ti =
∑i−1

k=1 Lk. Then, for E(T ) = E(Y ) + E(Q(L,J)) we have

E(Y ) =
1

2

m∑
i=1

is2
i −

1

4

m∑
i=1

i

i+ 1
Li,

E(Q(L,J)) =
m∑
i=1

i2s2
i +

m∑
i=1

isiti +
m∑
i=1

i(i+ 2)

6(i+ 1)
Li.

Theorem 2.15. Let 1
N

LN → a 6= 0. Then, 1
N

E(JNi )→ i
∑m

k=i
ak
k+1

for each i and

JN − E(JN)

N1/2

d−→ N (0,Σ),
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where

Σi,j = min(i, j)
m∑

k=max(i,j)

ak
k + 1

− ij
m∑

k=max(i,j)

ak
(k + 1)2

.

Proof. The first assertion is clear. For the second assertion let BLN denote the underlying
total occupancy statistic. In §2.2 it was shown that the components B(i)N are indendent
multinomial distributions with parameters LNi and u(i), where u(i)0 = . . . = u(i)i =

1
i+1

, and covariances LNi Σ(i), Σ(i) = diag(u(i)) − ut(i)u(i). By Theorem 2.3, and since
1
N
LNi → ai, we have

BLN − E(BLN )

N1/2

d−→
(
N (0, a1Σ(1)), . . . ,N (0, amΣ(m))

)
where the components on the right-hand side are independent. Since JN is a linear image
of BN

L it is clear that JN is asymptotically normal. The assertion about the covariance
matrix is obvious.

It is clear from Corollary 2.11 that under the conditions of Theorem 2.15 the number of
admissible partitions is asymptotically normal, with expectation of order N2 and variance
of order N3. The final condition of Proposition 2.10 is fulfilled since the coordinates of
the B(i) are binomially distributed and therefore have central fourth moments of order
L2
i . The boundedness condition of Lemma 2.12 is fulfilled since JNi 6

∑m
k=1 L

N
k .

2.5 The central restricted case

We consider the ”central region“ as discussed in §2.2.3 and let sN = bE(SLN )c =
b1

2

∑m
i=1 iLic. It is clear from the above that the underlying occupancy distribution BLN

is the conditional distribution

BLN =
(
Y(1)N , . . . ,Y(m)N

)
|
m∑
k=1

k∑
i=0

Yi(k)N = sN ,

where Y(1)N , . . . ,Y(m)N are independent random vectors, each Y(k)N is multinomial
with parameters LNk and p0 = . . . = pk = 1

k+1
. This conditioning has the following effect

on the asymptotic distribution.

Theorem 2.16. Let m > 1, sN = bE(SLN )c and u = (u(1),u(2), . . . ,u(m)) with u(k) =
( 1
k+1

, . . . , 1
k+1

). Assume that 1
N

LN −→ a 6= 0 and let σ2(a) = 1
12

∑m
k=1 k(k + 2)ak. Then,

BN −Nu√
N

d−→ N (0,Σ),

where

Σi,j(k, `) = akδk,`

( 1

k + 1
δi,j −

1

(k + 1)2

)
(18)

− aka`
(k − 2i)(`− 2j)

4(k + 1)(`+ 1)σ2(a)
.
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Proof. We give the proof for the one component case LN = (LN1 , . . . , L
N
m−1, L

N
m) =

(0, . . . , 0, N), the generalization is straightforward. Let BN := B(m)N , and X1, . . . , XN

be i.i.d. random variables uniform on {0, . . . ,m}. Let SN :=
∑N

i=1Xi, µ = m/2,
σ2 = 1

12
m(m+ 2). The probability generating function of BN is

E(
m∏
i=0

t
BNi
i ) = [xsN ](t0 + t1x+ . . .+ tmx

m)N/
(

(m+ 1)nP(SN = sN)
)
.

Hence the joint distribution is given by

P(BN
0 = k0, . . . , B

N
m = km) =

(
N

k0, . . . , km

)
/
(
(m+ 1)NP(SN = sN)

)
with the constraints that

∑m
i=0 ki = N and

∑n
i=1 iki = sN . Since there are two linearly

independent linear constraints on the values of BN we expect a (m − 1)-dimensional
limiting distribution. Let x0, . . . , xm be real numbers with

∑m
i=0 xi = 0 and

∑m
i=0 ixi = 0,

and let ki = N
i+1

+
√
Nxi. By Stirling’s approximation for the factorials for the numerator

and the local limit theorem for lattice distributions for the denominator we see

(
√
N)m−1P(BN = k) −→ 1√

(2π)m−1

√
(m+ 1)m+1σ2e−

m+1
2

(x2
0+...+x2

m).

A check that the expression on the right-hand side (considered as a function of x2, . . . , xm,
say) is the marginal density of (N (0,Σ))2,...,m with Σ as in 18 concludes the proof.

For the convergence of moments we have

Proposition 2.17. Under the conditions of Theorem 2.16

E(B(k)N)

N
−→ aku(k) and

Cov(Bi(k)N , Bj(`)
N)

N

d−→ Σi,j(k, `)

Furthermore, E
(
Bi(k)N − E(Bi(k)N)

)4
/N3 −→ 0.

Proof. Again we restrict the exposition to the one component case and use the same
notation as in the proof of Theorem 2.16. From the generating function given there we
get

E(BN
i ) =

N

m+ 1

P(SN−1 = sN − i)
P(SN = sN)

, (19)

E(BN
i )2 = E(BN

i ) +
N(N − 1)

(m+ 1)2

P(SN−2 = sN − 2i)

P(SN = sN)
, (20)

E(BN
i B

N
j ) =

N(N − 1)

(m+ 1)2

P(SN−2 = sN − i− j)
P(SN = sN)

. (21)

By the local central limit theorem for lattice distributions [14, Corollary VIII.3] we have

P(SN = k) =
1√

2πN
e−

(k−Nµ)2

2Nσ2

(
1 +O(N−1/2)

)
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if | (k−Nµ)2

2Nσ2 | < C. Applying this to the numerator and denominator shows that the quo-

tients qr(N) := P(SN−r=sN−ri)
P(SN=sN )

are asymptotically of the form qr(N) = 1− cr
2σ2N

+O(N−3/2)

where cr = r2(m/2 − i)2. Now, the asympotic assertion about the expectation follows
immediately from the local limit theorem, applied to numerator and denominator in 19.
The asymptotic assertion about the variance/covariance follows from the formulæ above
using the asymptotic form of q1(N), q2(N). Concerning the asserted convergence of the
central fourth moment, note that the r − th factorial moment of BN

i is

E
(
BN
i (BN

i − 1) · · · (BN
i − r + 1)

)
=
N(N − 1) · · · (N − r + 1)

(m+ 1)r
P(SN−r = sN − ri)

P(SN = sN)

After expressing the central fourth moment as a linear combination of factorial moments,
plugging in the asymptotic expressions for the qr(N), and noting that c4+6c2−4c3−4c1 =
0, one obtains

E
(
BN
i − E(BN

i )4
)

= N3(c4 + 6c2 − 4c3 − 4c1) +O(N5/2) = O(N5/2).

Remark 2.18. Let 1
N

LN → a 6= 0. A comparison to the unrestricted case, discussed
in §2.4, shows that asymptotically the underlying total occupancy distributions are quite
similar. They concentrate around the same expectations. In the unrestricted case the

components of the limiting distribution 1√
N

(BLN − u)
d−→ Z are independent normal

vectors with
Cov(Z(k)) = ak(diag(u(k))− u(k)tu(k)).

The components stay normal in the central restricted case, but the restriction causes an
additional negative correlation

Cov(Z(k)i, Z(`)j) = −aka`(2k − i)(2`− j)
4(k + 1)(l + 1)σ2(a)

between the components. This in turn forces the elements of the asymptotic covariance
Σ of JN to be smaller than in the unrestricted case, we compute

Σi,j,restricted = Σi,j,unrestricted − ij
2σ2(a)

c(i)c(j)

with c(i) =
∑m

k=i
k+1−i
k+1

ak.

Since JN is a linear image of BN its distribution is also asymptotically normal and
it is clear from Theorem 2.16 and Corollary 2.11 that TN is asymptotically normal and
the preceding results show that the expectation resp. variance of TN are of N2 resp.
N3, but the variance in the restricted case will (on the N3 scale) be smaller than in the
unrestricted case.

Remark 2.19. The cases 1
N
SLN → a′ 6= a:= 1

2

∑m
k=1 kak can be treated by standard large

deviation techniques. Again we may safely expect to find normality of the asymptotic
distributions.
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3 Interpretation in terms of fusion and Demazure modules

In the sequel we will consider characters of fusion modules of the current algebra defined
by Feigin an Loktev in [11], and Demazure modules of the corresponding affine algebra. As
mentioned in the introduction those characters can be interpreted as Hilbert series whose
coefficients encode dimensions of so-called weight spaces. We will be mostly concerned
with the current algebra sl2 ⊗C[t] and the closely related affine Kac-Moody algebra ŝl2.
For further reading we refer the reader to [8, 9, 10, 15, 19], and for general facts about
current and affine Kac-Moody algebras and their representation theory to [7, 18].

3.1 Fusion modules

za

qi
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8
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11
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17
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21
22
23
24
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27
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4 5 6 7 83210

1
1
3
3
4
3
2
1
1

1
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3
3
2
1
1

1
2
3
3
3
2
1
1

1
1
2
2
2
1
1

1
1
2
2
2
1
1

1
1
1
1

1
1
1
1

1

1

Figure 1: Plot of the character of the fusion module F(0, 4) = (C3)∗4, that is
χ(F(0, 4))(z, q) =

∑
a∈Z z

a ·
∑

j1+j2=a q
j21+j22

[
4
j2

]
q

[
j2
j1

]
q
.

Let us consider fusion modules for the current algebra sl2 ⊗C[t] [9, 10]:

F(L1, . . . , Lm) = (C2)∗L1 ∗ · · · ∗ (Cm+1)∗Lm . (22)
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Feigin and Feigin prove in [9, Theorem 5.1] that, in terms of the q-supernomial T̃ (L, a)(q)
from (1), its graded character is given as

χ(F(L1, . . . , Lm))(z, q) =
∑
a∈Z

za · T̃ (L, a)(q). (23)

Here q refers to the grading as introduced by Feigin and Loktev [11]. The specialization
at q = 1 of the graded character χ(F(L1, . . . , Lm))(z, q) equals the character of the tensor
product (C2)⊗L1⊗· · ·⊗ (Cm+1)⊗Lm of irreducible representations of sl2, i.e. the variable z
associates with the grading by the simple root α1 of sl2. Since those characters multiply,
i.e. χ(V ⊗ W ) = χ(V ) · χ(W ), the associated probability distributions convolute and
asymptotic considerations reduce to the central limit theorem for sums of i.i.d. random
variables. Therefore, the specializations at q = 1 are well understood from a statistical
point of view and have been analyzed in great detail, e.g. [31]. Much less studied is the
so-called basic specialization2 of those characters, i.e. their evaluation at z = 1. Now, we
have

Theorem 3.1. Consider a sequence (C2)∗L
N
1 ∗ · · · ∗ (Cm+1)∗L

N
m of fusion modules of the

current algebra sl2⊗C[t]. If 1
N

(LN1 , . . . , L
N
m)→ a 6= 0, then the sequence of basic specializa-

tions, that is
∑

a∈Z T̃ ((LN1 , . . . , L
N
m), a)(q), behaves asymptotically normal with individual

means

µ(LN1 ,...,L
N
m) =

m∑
i=1

[( i
2

+ i2
)( m∑

k=i

LNk
k + 1

)2

(24)

+ i
( m∑
k=i

LNk
k + 1

)( i−1∑
k=1

LNk

)
+
(4i(i+ 2)− 6i

24(i+ 1)

)
LNi

]
,

and variance, as N →∞,

1

N3
σ2

(LN1 ,...,L
N
m) →

1
4
fΣf t + v(a,b). (25)

Here, the vectors a, b, f , the function v, and the matrix Σ are given by

a = (a1, . . . , am) = lim
N→∞

1

N
(LN1 , . . . , L

N
m),

bi = i
m∑
`=i

a`
`+ 1

,

fi = ai + bi+1 + bi−1 + 2bi + 2
i−1∑
`=1

a`,

2We borrow this terminology from Kac [18, §1.5, 10.8, 12.2] who analyzed this kind of specialization for
characters of integrable highest weight modules V (Λ), and obtained Macdonald’s identities for Dedekind’s
η-function [18, §12.2].
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v(a,b) =
1

12

m∑
i=1

(ai + bi+1 − bi)bi(ai + bi+1) (where bm+1 = 0),

Σi,j = min(i, j)
m∑

k=max(i,j)

ak
k + 1

− ij
m∑

k=max(i,j)

ak
(k + 1)2

.

Proof. Recall from (7) that the basic specialization is the generating function for the
distribution of the random variable TN = Q(LN ,JN) + Y N from (8). As such the mean
µ(LN1 ,...,L

N
m) is equal to E(TN) as described in Lemma 2.14. The assertions about the asymp-

totic normality and the variance are recollections from Theorem 2.9 and Corollary 2.11
which apply in the present situation due to Theorem 2.15.

The central string functions in fusion modules behave quite similar to the basic spe-
cialization. The following is just a recollection of the results in §2.5, and in particular the
observations noted in Remark 2.18.

Theorem 3.2. Consider a sequence (C2)∗L
N
1 ∗ · · · ∗ (Cm+1)∗L

N
m of fusion modules of the

current algebra sl2⊗C[t]. If 1
N

(LN1 , . . . , L
N
m)→ a 6= 0, then the sequence of central string

functions, that is T̃ ((LN1 , . . . , L
N
m), sN)(q) with sN = b1

2

∑m
i=1 iL

N
i c, behaves asymptotically

normal with asymptotic mean

1

N2
µ(LN1 ,...,L

N
m),sN

→ (26)

m∑
i=1

[( i
2

+ i2
)( m∑

k=i

ak
k + 1

)2

+ i
( m∑
k=i

ak
k + 1

)( i−1∑
k=1

ak

)]
,

and asymptotic variance

1

N3
σ2

(LN1 ,...,L
N
m),sN

→ 1
4
fΣf t + v(a,b). (27)

Here, the vectors a, b, f and the function v are as in Theorem 3.1. The matrix Σ is given
as

Σi,j = − ij

2σ2(a)
c(i)c(j) + min(i, j)

m∑
k=max(i,j)

ak
k + 1

− ij
m∑

k=max(i,j)

ak
(k + 1)2

where σ2(a) = 1
12

∑m
k=1 k(k + 2)ak, and c(i) =

∑m
k=i

k+1−i
k+1

ak.

The following corresponding local central limit theorems should hold.

Conjecture 3.3. In the notation of Theorem 3.1 let XFN denote a random variable with
probability generating function the normalized basic specialization of the fusion module
FN = F(LN1 , . . . , L

N
m). Denote its mean µN = µ(LN1 ,...,L

N
m) and variance σ2

N = σ2
(LN1 ,...,L

N
m)

.

Then, uniformly in k as N →∞,
√

2πσN ·P(XFN = k) = e−(k−µN )/2σ2
N + o(1). (28)

Here, σ2
N can be replaced by the explicit expression N3(1

4
fΣf t + v(a,b)) from (25). In

particular, the dimension of the sl2 submodule in FN of degree k grows as (28).
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Conjecture 3.4. In the notation of Theorem 3.2 let SN be a random variable with prob-
ability generating function the normalized central string function

E(qSN ) = q−
1
2
lN1 l

N
mT̃ (LN , sN),

where lN1 =
∑
LNi and lNm =

∑
iLNi . Let

µ = lim
N→∞

1
N2

(
µ(LN1 ,...,L

N
m),sN

− 1
2
lN1 l

N
m

)
,

σ2 = lim
N→∞

1
N3

(
σ2

(LN1 ,...,L
N
m),sN

)
.

Then, uniformly in k as N →∞,

√
2πσ ·P(SN = k) = e−(k−µ)/2σ2

+ o(1) (29)

In particular, the dimension of the weight space with coordinates 1
2
lNmα1 and −kδ grows

as (29).

Complemented by a result on the asymptotic normality of the basic specialization of
graded tensors of the type A standard representation (see [4]) we have a central limit
theorem for a serious class of graded tensors. We will conclude with a general conjecture
on the fusion modules of symmetric power representations for the current algebra slr⊗C[t]
in §4.

3.2 Demazure modules

It is well-known that Demazure modules Vw(Λ) associated to ŝl2 carry a sl2⊗C[t]-module
structure and as such are special instances of fusion modules (see e.g. [8, §1.5.1] or [15,
§3.5]). To be precise, there are isomorphisms of sl2 ⊗C[t]-modules

Vw(mΛ0 + nΛ1) ∼=


F(0, 1

m+1
,0, l(w)− 1

m+n+1

) , w = w′s0,

F(0, 1
n+1

,0, l(w)− 1
m+n+1

) , w = w′s1.
(30)

Here, we write l(w) for the length of a reduced decomposition of w ∈ W aff in the affine

Weyl group of ŝl2. Note that the elements of W aff can be expressed as the following
products of the simple reflections s0 (corresponding to the imaginary root) and s1 (corre-
sponding to the simple root α1):

(s1s0)Ns1, N > 0 and (s0s1)N , (s1s0)N , s0(s1s0)N−1, N > 0.

The characters of Demazure modules can be identified as special instances of fusion mod-
ules through a series of translations (multiplication by za), reflections (evaluation at the
reciprocal 1/q), and rotations (evaluation at mixed monomials zqi), respectively.
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Proposition 3.5. Consider the Demazure module Vw = Vw(mΛ0 + nΛ1) of ŝl2 of fixed
highest weight Λ = mΛ0 + nΛ1 and recall the character formula for fusion modules of
the current algebra sl2 ⊗C[t] (23). The character χ(Vw)(z, q), written in the coordinates
z = e−α1 and q = e−δ (α1 is the simple root of sl2, δ denotes the imaginary root), is given
by

For the trivial element w = 1 one has χ(V1)(z, q) = eΛ. (31)

For w = (s1s0)Ns1, N > 0 one has (32)

e−Λχ(Vw)(z, q) =

z−(n+m)N−n/2qN
2m+N(N+1)nχ(F(0,Lw)(zq−2N−1, q)

where Lw = (L1, . . . , Lm+n) = (0, 1
n
,0, 2N

m+n
).

For w = (s0s1)N , N > 0 one has (33)

e−Λχ(Vw)(z, q) =

z−(n+m)N−n/2qN
2m+N(N+1)nχ(F(0,Lw)(zq−2N−1, q)

where Lw = (L1, . . . , Lm+n) = (0, 1
n
,0, 2N − 1

m+n
).

For w = (s1s0)N , N > 0 one has (34)

e−Λχ(Vw)(z, q) =

z−(n+m)N+n/2qN
2m+N(N−1)nχ(F(0,Lw)(zq−2N , q)

where Lw = (L1, . . . , Lm+n) = (0, 1
m
,0, 2N − 1

m+n
).

For w = s0(s1s0)N−1, N > 0 one has (35)

e−Λχ(Vw)(z, q) =

z−(n+m)N+n/2qN
2m+N(N−1)nχ(F(0,Lw)(zq−2N , q)

where Lw = (L1, . . . , Lm+n) = (0, 1
m
,0, 2N − 2

m+n
).

The sum of the entries in Lw represents the length l(w) of the Weyl group element w.
When either n or m equals 0, then Lw = (0, l(w)).

Proof. Feigin [10, (11)] denotes an integrable highest weight representation by Li,k =

U(ŝl2).vi,k with highest weight vector vi,k such that c.vi,k = kvi,k, h0.vi,k = ivi,k, and
d.vi,k = 0. In our notation, the canonical central element is c = α∨0 + α∨1 , the coroot is
h0 = α∨0 , and the scaling element d is given by α0(d) = 1 and α1(d) = 0. Therefore,
by comparison of the highest weight vector we have Li,k = V ((k − i)Λ0 + iΛ1). The
bigrading is chosen according to the action of h0 and d, and consequently, the character
is denoted in the monomials eα0 = eδ−α1 and e−δ, respectively. By [10, Corollary 3.1]
each such module Li,k can be constructed as an inductive limit of fusion products, that
is Li,k = Ci+1 ∗ (Ck+1)2∞. Each fusion product can be identified with the corresponding
Demazure module Vw((k − i)Λ0 + iΛ1) by comparing the weights of the extremal weight
vectors described in [10, §1]. Now apply the character formula [9, Theorem 5.1], noting
that eα0 = zq−1.
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We can now compare our findings to established results in the literature [4, 5, 3, 17].

3.2.1 The unrestricted one component case

Consider L = (0, . . . , 0, N) ∈ Zm
+ in which case the distribution of Y N has been investi-

gated as a generalized Galois numbers by Bliem and Kousidis [4] and later on by Janson
[17]. They studied the random variables Y N with probability generating function

E(qY
N

) =
1

(m+ 1)N

∑
(k0,...,km)∈Nm+1

0
k0+···+km=N

[
N

k0, . . . , km

]
q

(36)

Note that if we let B0 = Lm − Jm, B1 = Jm − Jm−1, . . . , Bm−1 = J2 − J1, Bm = J1 it
becomes evident that this distribution coincides with the distribution of Y N in the one
component case. Now, Bliem and Kousidis showed

Theorem 3.6 ([4, Theorem 3.5]). Consider the random variables Y N defined through
(36). Then,

E(Y N) =
1

4

m

m+ 1
N(N − 1),

Var(Y N) =
1

72

(m+ 1)2 − 1

(m+ 1)2
N(N − 1)(2N + 5),

and
Y N − E(Y N)

N3/2

d−→ N
(
0,

1

36

(m+ 1)2 − 1

(m+ 1)2

)
.

Janson derived the same result in a variety of ways, proved a corresponding local
central limit theorem, and gave different interpretations of the distribution of Y N . He
also showed joint convergence of Y N and BN :

Theorem 3.7 ([17, Theorem 2.4]). Let BN , Y N be as above. Then,(Y N − E(Y N)

N3/2
,
BN − E(BN)

N1/2

)
(37)

d−→
(
N
(
0,

1

36

(m+ 1)2 − 1

(m+ 1)2

)
,N (0,Σ)

)
,

where the constituents on the right hand side are independent, and the matrix Σ is given
by Σi,j = 1

m+1
(δi,j − 1

m+1
).

Let us compare these results to our findings above. We obtain from Lemma 2.14:

E(Y N) =
1

4

m

m+ 1
N2 − 1

4

m

m+ 1
N,

which agrees with the expectation given in Theorem 3.6. Further, we have

E(JNi ) = i
N

m+ 1
, bi =

i

m+ 1
, a0 = . . . = am−1 = 0, am = 1,
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and find that

CN =
m(m+ 1)

4
N2,

and

v(a,b) =
1

12(m+ 1)3

m∑
i=1

i(i+ 1) =
1

36

m(m+ 2)

(m+ 1)2
.

Finally, c = 0, where c = c(a,b) is as in Corollary 2.11. Thus, by Corollary 2.11 we have

Y N − CN

N3/2

d−→ N
(
0,

1

36

m(m+ 2)

(m+ 1)2

)
,

which is equivalent to the weak convergence assertion in Theorem 3.6, and hence estab-
lishes an independent proof. Moreover, by Corollary 2.11

e(LN ,JN)− CN

N3/2

d−→ N (0, 0) = δ0,

that together with Theorem 2.1 independently proves Janson’s Theorem 3.7.
Note that Theorem 3.7 as it stands does not generalize to more general distributions.

As an example let BN be multinomial with parameters N,p where p is not uniform. Here
we get from Corollary 2.11 that

e(LN ,JN)− CN

N3/2

d−→ N (0, v1(p)),

where v1(p) = 1
4

(∑m
i=0 p

3
i − (

∑m
i=0 p

2
i )

2
)
. The corresponding joint limiting distribution

(on the right hand side of (37)) is normal, but the constituents are not independent.

3.2.2 The unrestricted two component case

For the two component case of L = (L1, . . . , Lm), i.e. Lm = M , Lk = K for a k < m, and
all other Li = 0, we find

E(TL) =
1

12

m(4m+ 5)

m+ 1
M2 +

1

12

m(2m+ 1)

m+ 1
M +

1

12

k(4k + 5)

k + 1
K2

+
1

12

k(2k + 1)

k + 1
K +

1

2
mKM +

1

6

k(k + 2)

m+ 1
KM.

For K = 1 this simplifies to

E(TL) =
1

12

m(4m+ 5)

m+ 1
M2 +

1

12

m(8m+ 7) + 2k(k + 2)

m+ 1
M +

k

2
.

Let us interpret this in terms of the Demazure modules Vw(mΛ0 + nΛ1) from (30). The
random variables Xw having probability generating function the basic specialization of
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the character χ(Vw(Λ)) are given due to Proposition 3.5 by translations and rotations
(averaging over the random variable SLw) as follows

Equations (32) and (33) read as: (38)

Xw = N2m+N(N + 1)n+ (−2N − 1) · SLw + TLw .

Equations (34) and (35) read as: (39)

Xw = N2m+N(N − 1)n− 2N · SLw + TLw .

The cases covered here correspond to the cases found in [3, Theorem 4.1]. Let us restrict
for simplicity reasons to (39) for w = (s1s0)N , and compare our findings to [3, Theorem
4.1], where the corresponding case is [3, (4.1)] for even N .

Theorem 3.8 ([3, (4.1) in Theorem 4.1]). For L with entries 0 except Lm = 1, Lm+n =
2N − 1, and with U = 2N − 1, u = m+ n one has

E(N2m+N(N − 1)n− 2SLN + TL) (40)

=
2Um(m+ 2) + U(U − 1)u(u+ 2)

12(u+ 1)
+
U − 1

2

u

2
+
m

2
.

Proof. We can establish (40) by the computation of the left-hand side through the linearity
of E(.) and the mean of the random variables SL and TL. That is

E(TL) =
1

12

u(4u+ 5)

u+ 1
U2 +

1

12

u(8u+ 7) + 2m(m+ 2)

u+ 1
U +

m

2
,

and E(SL) = 1
2
(mLm + uLu) = 1

2
(m+ uU) = 1

2
(2uN − n) which gives

E(N2m+N(N − 1)n− 2SLN) = −N2u = −(U + 1)2

4
u.

Finally, we settle a question that was posed by Bliem and Kousidis in [5].

Lemma 3.9 (Cf. [5, Conjecture 8.3]). Fix a dominant integral weight Λ and a sequence
(wN) in W aff such that l(wN)→∞. Let µN be the joint distribution of the degree and the
finite weight in VwN (Λ). Let µ̃N be the distribution obtained from µN by normalizing to
a probability distribution and rescaling the two coordinates individually so that supp(µ̃N)
just fits into the rectangle [0, 1]× [−1, 1]. Then, as N →∞,

µ̃N
w−→ δ( 〈c,Λ〉+2

3(〈c,Λ〉+1)
,0),

where c = α∨0 + α∨1 denotes the canonical central element.
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Proof. We consider only the Demazure modules V(s1s0)N (mΛ0 + nΛ1) as the other cases
can be derived similarly. Let rN denote the maximal degree in these Demazure modules,
i.e. rN = N2m+N(N−1)n. Let u = m+n = 〈c,Λ〉 denote the level of the representation,
and consider the random variable with probability generating function given by the basic
specialization of our Demazure module, that is

XN = rN − 2NSLN + TN

= E
(
rN − 2NE(SLN ) + TN

)
− 2N(SLN − E(SLN )) + (TN − E(TN))

The probability distribution of XN and 1
rN
XN is the first coordinate of µN and µ̃N for the

Weyl group element wN = (s1s0)N , respectively. Now, equivalent to the asserted weak
convergence of µ̃N we have

XN

rN

d−→ u+ 2

3(u+ 1)
,

since

E
(
rN − 2NSLN + TN

)
rN

→ 1

3

4u+ 5

u+ 1
− 1 =

u+ 2

3(u+ 1)
,

and by (11) and Corollary 2.11 we have the convergences in distribution

SLN − E(SLN )

N

d−→ 0, and
TN − E(TN)

N2

d−→ 0.

Since it is well known that the second coordinate of µ̃N concentrates in 0, the claim
follows.

4 Fusion of symmetric power representations

The Kostka numbers are the coefficients in the expansion∏
i

hξi(x) =
∑
ξ

Kη,ξ · sη(x) (41)

of the product of complete symmetric functions hξi in terms of the Schur functions sη. The
Kostka polynomials Kη,µ(q) generalize the Kostka numbers in the sense that Kη,µ(1) =
Kη,µ. They give the transition matrix between the Schur function sη and Hall-Littlewood
function Pµ, i.e.

sη(x) =
∑
µ

Kη,µ(q) · Pµ(x, q). (42)

A standard reference for the above functions is [23].
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Now, the q-supernomial Sξ,µ(q) [16, 20, 25, 26, 27] is defined as the combination of
(41) and (42), i.e. as the transition between the above product of complete symmetric
functions and Hall-Littlewood functions

Sξ,µ(q) =
∑
η

Kη,ξ ·Kη,µ(q). (43)

An explicit form of Sξ,µ(q) is proven in [16, Proposition 5.1], where µ = (µ1, . . . , µm) is a
partition and ξ ∈ Zn

+ a composition such that |µ| = |ξ| = M , as

Sξ,µ(q) =
∑
{ν}

qφ({ν})
∏

16a6n−1
16i6µ1

[
ν

(a+1)
i − ν(a)

i+1

ν
(a)
i − ν

(a)
i+1

]
q

, (44)

with

φ({ν}) =
n−1∑
a=0

µ1∑
i=1

(
ν

(a+1)
i − ν(a)

i

2

)
,

and where the sum
∑
{ν} is indexed over the sequences of Young diagrams ν(1), . . . , ν(n−1)

such that

∅ ⊂ ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(n−1) ⊂ ν(n) = µt,

|ν(a)| = ξ1 + · · ·+ ξa for 1 6 a 6 n− 1.

Remark 4.1. For n = 2 and arbitrary µ, (43) agrees with the definition of q-supernomials
as given by Schilling and Warnaar [26]. See [20, §3.1] for a detailed discussion.

We define a slight variant of the above q-supernomials, which describes the string
functions in the fusion product of slr+1 symmetric power representations Fµ = Vµ1ω1 ∗
Vµ2ω1 ∗ . . . ∗ Vµmω1 . That is,

S∗ξ,µ(q) = qn(µ)Sξ,µ(q−1) = qn(µ)
∑
η

Kη,ξ ·Kη,µ(q−1), (45)

where for the partition µ = (µ1, . . . , µm) we set n(µ) (Cf. [19, (3.10)], [21, §2.1], [26, §2.1])
to be the normalization constant

n(µ) =
m∑
i=1

(i− 1)µi =
∑

16i<j6m

min(µi, µj). (46)

Note that this normalization ensures that qn(µ)Kη,µ(q−1) is a polynomial in q.
Then, we have a fermionic formula (a positive sum of products of q-binomial coeffi-

cients) for the graded character of the above fusion product Fµ. That is,

Proposition 4.2. Let µ = (µ1, . . . , µm) be a partition of M . Then,

χ(Fµ) =
∑

ξ weight

S∗ξ,µ(q) ·mξ.
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Proof. Let mξ denote the monomial symmetric functions. Then, with the translation

K̃η,µ(q) = qn(µ)Kη,µ(q−1) where n(µ) =
∑

i(i−1)µi as in [19, (3.10)] one has [19, Corollary
7.6]:

χ(Fµ) =
∑
η `M

χ(πη) · K̃η,µ(q)

=
∑
η `M

sη · K̃η,µ(q)

=
∑
η `M

( ∑
ξ weight

Kη,ξ ·mξ

)
· K̃η,µ(q)

=
∑

ξ weight

( ∑
η `M

Kη,ξ · K̃η,µ(q)

)
·mξ

=
∑

ξ weight

S∗ξ,µ(q) ·mξ

Note that all partitions except µ have at most r entries, corresponding to the rank of the
Lie algebra.

Remark 4.3. For the graded character of fusion of fundamental representations ∗jV (ωij),
Chari and Loktev prove an equivalent fermionic formula [8, Proposition 2.1.4].

Remark 4.4 (Cf. [4, 17, 22, 32]). Kirillov [20, 21] is a great source of various combina-
torial, geometric and statistical interpretations of q-supernomials Sξ,µ(q). Let us shortly
remark on the geometric one. As pointed out by Kirillov [20, §1.4] it has been proven by
Shimomura [28] that the q-supernomials count the number of rational points Flµξ (Fq) over
the finite field Fq of the unipotent partial flag variety Flµξ . To be precise, for a composi-
tion ξ ∈ Zr

+ of n, a ξ-flag in a n-dimensional vector space V is a sequence V1 ⊂ · · · ⊂ Vr
such that dimVi = ξ1 + · · · + ξi. The set of all such flags is the partial flag variety Flξ.
We let Flµξ ⊂ Flξ be the subset of the partial flag variety Flξ consisting of the set of all
ξ-flags F ∈ Flξ fixed by a unipotent endomorphism u ∈ Gl(V ) of type µ (a partition
of n that describes the Jordan canonical form of u). Then, Flµξ is a closed subvariety of
Flξ, the so-called unipotent partial flag variety. Now, Shimomura [28] proves that the
q-supernomials count the number of Fq-rational points in Flµξ . That is, with n(µ) as in
(46) one has

#Flµξ (Fq) = qn(µ)Sξ,µ(q−1) = S∗ξ,µ(q). (47)

In particular, the basic specialization of the fusion module Fµ gives the number of Fq-
rational points in

∐
ξ Flµξ ,

χ(Fµ)(q) =
∑
ξ

S∗ξ,µ(q) =
∑
ξ

#Flµξ (Fq). (48)
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Our Proposition 4.2 exhibits the objects that have to be analyzed in order to establish a
general central limit theorem along the same lines as Theorem 3.1. The explicit expression
(45) shows that one can interpret the q-supernomials again as mixtures of probability
distributions. For an Ansatz let

fµ,η(q) =
qn(µ)Kη,µ(q−1)

Kη,µ

,

P(Xµ,ξ = η) =
Kη,ξKη,µ∑
ηKη,ξKη,µ

.

Here, fµ,η(q) would take the place of the inversion statistic, andXµ,ξ of the mixing distribu-
tion. It should be straightforward to check the reductions to the distributions investigated
in §2 in the case of q-supernomials as defined by Schilling and Warnaar (see Remark 4.1).
We pose a conjecture for further research.

Conjecture 4.5. Consider the sequence of fusion modules of symmetric power represen-
tations for the current algebra slr ⊗C[t]

FµN = V ∗L
N
1

ω1
∗ V ∗L

N
2

2ω1
∗ . . . ∗ V ∗LNmmω1

,

associated to the partition µN = (1L
N
1 , 2L

N
2 , . . . ,mLNm) with LNi -many i’s. Assume that as

N →∞ we have
1

N
(LN1 , L

N
2 , . . . , L

N
m)→ a 6= 0.

Then, the central string functions and the basic specialization of the character χ(FµN )
behaves asymptotically normal as N →∞.
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