Near-colorings: non-colorable graphs and NP-completeness

M. Montassier and P. Ochem*
LIRMM (Université de Montpellier, CNRS) Montpellier, France
montassier,ochem@lirmm.fr

Submitted: Jun 26, 2013; Accepted: Feb 17, 2015; Published: Mar 6, 2015
Mathematics Subject Classification: 05C15

Abstract

A graph G is $\left(d_{1}, \ldots, d_{l}\right)$-colorable if the vertex set of G can be partitioned into subsets V_{1}, \ldots, V_{l} such that the graph $G\left[V_{i}\right]$ induced by the vertices of V_{i} has maximum degree at most d_{i} for all $1 \leqslant i \leqslant l$. In this paper, we focus on complexity aspects of such colorings when $l=2,3$. More precisely, we prove that, for any fixed integers k, j, g with $(k, j) \neq(0,0)$ and $g \geqslant 3$, either every planar graph with girth at least g is (k, j)-colorable or it is NP-complete to determine whether a planar graph with girth at least g is (k, j)-colorable. Also, for every fixed integer k, it is NP-complete to determine whether a planar graph that is either ($0,0,0$)-colorable or non- $(k, k, 1)$-colorable is $(0,0,0)$-colorable. Additionally, we exhibit non- $(3,1)$ colorable planar graphs with girth 5 and non- $(2,0)$-colorable planar graphs with girth 7.

1 Introduction

A graph G is $\left(d_{1}, \ldots, d_{k}\right)$-colorable if the vertex set of G can be partitioned into subsets V_{1}, \ldots, V_{k} such that the graph $G\left[V_{i}\right]$ induced by the vertices of V_{i} has maximum degree at most d_{i} for all $1 \leqslant i \leqslant k$. This notion generalizes those of proper k-coloring (when $d_{1}=\cdots=d_{k}=0$) and d-improper k-coloring (when $d_{1}=\cdots=d_{k}=d \geqslant 1$).

Planar graphs are known to be ($0,0,0,0$)-colorable (Appel and Haken [1, 2]) and $(2,2,2)$-colorable (Cowen, Cowen, and Woodall [13]). The (2,2,2)-colorability is optimal (for any integer k, there exist non- $(k, k, 1)$-colorable planar graphs) and holds in the choosability case (Eaton and Hull [15] or Skrekovski [23]). Improper colorings have then been considered for planar graphs with large girth or graphs with low maximum average degree. We recall that the girth of a graph G, denoted by $g(G)$, is the length of a shortest cycle in

[^0]G, and the maximum average degree of a graph G, denoted by $\operatorname{mad}(\mathrm{G})$, is the maximum of the average degrees of all subgraphs of G, i.e. $\operatorname{mad}(G)=\max \{2|E(H)| /|V(H)|, H \subseteq G\}$.

(1, 0)-coloring.

Glebov and Zambalaeva [20] proved that every planar graph with girth at least 16 is $(1,0)$-colorable. This was then strengthened by Borodin and Ivanova [3] who proved that every graph G with $\operatorname{mad}(G)<\frac{7}{3}$ is $(1,0)$-colorable. This implies that every planar graph G with girth at least 14 is (1,0)-colorable. Borodin and Kostochka [7] then proved that every graph G with $\operatorname{mad}(G) \leqslant \frac{12}{5}$ is $(1,0)$-colorable. In particular, it follows that every planar graph with girth at least 12 is (1,0)-colorable. On the other hand, they constructed graphs G with $\operatorname{mad}(G)$ arbitrarily close (from above) to $\frac{12}{5}$ that are not $(1,0)$-colorable; hence their upper bound on the maximum average degree is best possible. The last result was strengthened for triangle-free graphs: Kim, Kostochka, and Zhu [22] proved that triangle-free graphs G satisfying $11|V(G)|-9|E(G)| \geqslant-4$ are (1,0)-colorable. This implies that planar graphs with girth at least 11 are (1,0)-colorable. On the other hand, Esperet, Montassier, Ochem, and Pinlou [16] proved that determining whether a planar graph with girth 9 is $(1,0)$-colorable is NP-complete. To our knowledge, the question whether all planar graphs with girth at least 10 are $(1,0)$-colorable is still open.

($k, 0$)-coloring with $k \geqslant 2$.

Borodin, Ivanova, Montassier, Ochem, and Raspaud [4] proved that every graph G with $\operatorname{mad}(G)<\frac{3 k+4}{k+2}$ is $(k, 0)$-colorable. The proof in [4] extends the one in [3] but does not work for $k=1$. Moreover, they exhibited a non- $(k, 0)$-colorable planar graph with girth 6. Finally, Borodin and Kostochka [8] proved that for $k \geqslant 2$, every graph G with $\operatorname{mad}(G) \leqslant \frac{3 k+2}{k+1}$ is $(k, 0)$-colorable. This result is tight in terms of maximum average degree.

($k, 1$)-coloring.

Recently, Borodin, Kostochka, and Yancey [9] proved that every graph with $\operatorname{mad}(G) \leqslant \frac{14}{5}$ is $(1,1)$-colorable, and the restriction on $\operatorname{mad}(G)$ is sharp. In [5], it is proven that every $\operatorname{graph} G$ with $\operatorname{mad}(G)<\frac{10 k+22}{3 k+9}$ is $(k, 1)$-colorable for $k \geqslant 2$.

(k, j)-coloring.

A first step was made by Havet and Sereni [21] who showed that, for every $k \geqslant 0$, every graph G with $\operatorname{mad}(G)<\frac{4 k+4}{k+2}$ is (k, k)-colorable (in fact (k, k)-choosable). More generally, they studied k-improper l-choosability and proved that every graph G with $\operatorname{mad}(\mathrm{G})<l+\frac{l k}{l+k}(l \geqslant 2, k \geqslant 0)$ is k-improper l-choosable; this implies that such graphs are (k, \ldots, k)-colorable (where the number of partite sets is l). Borodin, Ivanova, Montassier, and Raspaud [6] gave some sufficient conditions of (k, j)-colorability depending on the density of the graphs using linear programming. Finally, Borodin and Kostochka [8] solved the problem for a wide range of j and k : let $j \geqslant 0$ and $k \geqslant 2 j+2$; every graph G with $\operatorname{mad}(G) \leqslant 2\left(2-\frac{k+2}{(j+2)(k+1)}\right)$ is (k, j)-colorable. This result is tight in terms of the maximum average degree and improves some results in $[4,5,6]$.

Using the fact that every planar graph G with girth $g(G)$ has $\operatorname{mad}(G)<2 g(G) /(g(G)-$ $2)$, the previous results give results for planar graphs. They are summarized in Table 1, which also shows the recent results that planar graphs with girth 5 are (5,3)-colorable (Choi and Raspaud [12]) and (10, 1)-colorable (Choi, Choi, Jeong, and Suh [11]).

girth	$(k, 0)$	$(k, 1)$	$(k, 2)$	$(k, 3)$	$(k, 4)$
3,4	\times	\times	\times	\times	\times
5	\times	$(10,1)[11]$	$(6,2)[8]$	$(5,3)[12]$	$(4,4)[21]$
6	$\times[4]$	$(4,1)[8]$	$(2,2)[21]$		
7	$(4,0)[8]$	$(1,1)[9]$			
8	$(2,0)[8]$				
11	$(1,0)[22]$				

Table 1: The girth and the (k, j)-colorability of planar graphs. The symbol " \times " means that there exist non- (k, j)-colorable planar graphs for every k.

From the previous discussion, the following questions are natural:

Question 1.

1. Are planar graphs with girth $10(1,0)$-colorable?
2. Are planar graphs with girth $7(3,0)$-colorable?
3. Are planar graphs with girth $6(1,1)$-colorable?
4. Are planar graphs with girth $5(4,1)$-colorable?
5. Are planar graphs with girth $5(2,2)$-colorable?

$\left(d_{1}, \ldots, d_{k}\right)$-coloring.

Finally we would like to mention two studies. Chang, Havet, Montassier, and Raspaud [10] gave some approximation results to Steinberg's Conjecture using (k, j, i)-colorings. Dorbec, Kaiser, Montassier, and Raspaud [14] studied the particular case of $\left(d_{1}, \ldots, d_{k}\right)$ coloring where the value of each $d_{i}(1 \leqslant i \leqslant k)$ is either 0 or some value d, making the link between ($d, 0$)-coloring [8] and (d, \ldots, d)-coloring [21].

The aim of this paper is to provide complexity results on the subject and to obtain non-colorable planar graphs showing that some above-mentioned results are optimal.

Claim 2. There exist 2-degenerate planar graphs that are:

1. non- (k, k)-colorable with girth 4 , for every $k \geqslant 0$,
2. non-(3,1)-colorable with girth 5 ,
3. non- $(k, 0)$-colorable with girth 6 ,
4. non-(2,0)-colorable with girth 7.

Claim 2.4 shows that the (2,0)-colorability of planar graphs with girth at least 8 [8] is a tight result. Claim 2.3 has been obtained in [4] and the corresponding graph is depicted in Figure 1.

Figure 1: A non- $(k, 0)$-colorable planar graph with girth 6 [4].

Theorem 3. Let k, j, and g be fixed integers such that $(k, j) \neq(0,0)$ and $g \geqslant 3$. Either every planar graph with girth at least g is (k, j)-colorable or it is $N P$-complete to determine whether a planar graph with girth at least g is (k, j)-colorable.

Theorem 4. Let k be a fixed integer. It is NP-complete to determine whether a 3degenerate planar graph that is either ($0,0,0$)-colorable or non- $(k, k, 1)$-colorable is $(0,0,0)$ colorable.

We construct a non- (k, k)-colorable planar graph with girth 4 in Section 2, a non-$(3,1)$-colorable planar graph with girth 5 in Section 3, and a non- $(2,0)$-colorable planar graph with girth 7 in Section 4. We prove Theorem 3 in Section 5 and we prove Theorem 4 in Section 6.

Notation.

In the following, when we consider a $\left(d_{1}, \ldots, d_{k}\right)$-coloring of a graph G, we color the vertices of V_{i} with color d_{i} for $1 \leqslant i \leqslant k$: for example in a (3,0)-coloring, we will use color 3 to color the vertices of V_{1} inducing a subgraph with maximum degree 3 and use color 0 to color the vertices of V_{2} inducing a stable set. A vertex is said to be colored i^{j} if it is colored i and has j neighbors colored i, that is, it has degree j in the subgraph induced by its color. A vertex is saturated if it is colored i^{i}, that is, if it has maximum degree in the subgraph induced by its color. A cycle (resp. face) of length k is called a k-cycle (resp. k-face). A k-vertex (resp. k^{-}-vertex, k^{+}-vertex) is a vertex of degree k (resp. at most k, at least k). The minimum degree of a graph G is denoted by $\delta(G)$.

2 A non- (k, k)-colorable planar graph with girth 4

For every $k \geqslant 0$, we construct a non- (k, k)-colorable planar graph J_{4} with girth 4 . Let $H_{x, y}$ be a copy of $K_{2,2 k+1}$, as depicted in Figure 2. In any (k, k)-coloring of $H_{x, y}$, the
vertices x and y must receive the same color. We obtain J_{4} from a vertex u and a star S with center v_{0} and $k+1$ leaves v_{1}, \ldots, v_{k+1} by linking u to every vertex v_{i} with a copy $H_{u, v_{i}}$ of $H_{x, y}$. The graph J_{4} is not (k, k)-colorable: by the property of $H_{x, y}$, every vertex v_{i} should get the same color as u. This gives a monochromatic S, which is forbidden. Notice that J_{4} is a planar graph with girth 4 and is 2-degenerate.

Figure 2: A non- (k, k)-colorable planar graph with girth 4.

3 A non-(3, 1)-colorable planar graph with girth 5

We construct a non- $(3,1)$-colorable planar graph J_{5} with girth 5 . Consider the graph $H_{x, y}$ depicted in Figure 3. If x and y are colored 3 but have no neighbor colored 3, then it is

Figure 3: A non- $(3,1)$-colorable planar graph with girth 5.
not possible to extend this partial coloring to $H_{x, y}$. Now, we construct the graph S_{z} as follows. Let z be a vertex and $t_{1} t_{2} t_{3}$ be a path on three vertices. Take 21 copies $H_{x_{i}, y_{j}}$ of $H_{x, y}$ with $1 \leqslant i \leqslant 7$ and $1 \leqslant j \leqslant 3$. Identify every x_{i} with z and identify every y_{i} with t_{i}. Finally, we obtain J_{5} from three copies $S_{z_{1}}, S_{z_{2}}$, and $S_{z_{3}}$ of S_{z} by adding the edges $z_{1} z_{2}$ and $z_{2} z_{3}$ (Figure 3). Notice that J_{5} is planar with girth 5 and is 2 -degenerate. Let us show that J_{5} is not (3,1)-colorable. In every $(3,1)$-coloring of J_{5}, the path $z_{1} z_{2} z_{3}$ contains a vertex z colored 3 . In the copy of S_{z} corresponding to z, the path $t_{1} t_{2} t_{3}$ contains a vertex t colored 3. Since z (resp. t) has at most 3 neighbors colored 3, one of the seven copies of $H_{x, y}$ between z and t, does not contain a neighbor of z or t colored 3. This copy of $H_{x, y}$ is not $(3,1)$-colorable, and thus J_{5} is not $(3,1)$-colorable.

4 A non-(2, 0)-colorable planar graph with girth 7

We construct of a non- $(2,0)$-colorable planar graph J_{7} with girth 7 . Consider the graphs $T_{x, y, z}$ and S in Figure 4.

Figure 4: The graphs $T_{x, y, z}$ and S.

If the vertices x, y, and z of $T_{x, y, z}$ are colored 2 and have no neighbor colored 2 , then w is colored 2^{2}. Suppose that the vertices a, b, c, d, e, f, g of S are respectively colored 2 , $0,2,2,2,2,0$, and that a has no neighbor colored 2 . Using successively the property of $T_{x, y, z}$, we have that w_{1}, w_{2}, and w_{3} must be colored 2^{2}. It follows that w_{4} is colored $0, w_{5}$ is colored 2 , and so w_{6} is colored 2^{2}. Again, by the property of $T_{x, y, z}, w_{7}$ must be colored 2^{2}. Finally, w_{8} must be colored 0 and there is no choice of color for w_{9}. Hence, such a coloring of the outer 7-cycle abcdefg cannot be extended.

The graph H_{z} depicted on the left of Figure 5 is obtained as follows.

Figure 5: The graphs H_{z} and J_{7}.

We link a vertex z to every vertex of a 7 -cycle $v_{1} \ldots v_{7}$ with a path of three edges. Then we embed the graph S in every 7 -face $F_{i}(1 \leqslant i \leqslant 7)$ incident to z by identifying the outer 7 -cycle of S with the 7 -cycle of F_{i} such that a is identified to z. Finally, the graph J_{7} depicted on the right of Figure 5 is obtained from two adjacent vertices u and v and six copies $H_{z_{1}}, \ldots, H_{z_{6}}$ of H_{z} by identifying z_{1}, z_{2}, z_{3} with u and z_{4}, z_{5}, z_{6} with v. Notice that J_{7} is planar with has girth 7 . Let us prove that J_{7} is not $(2,0)$-colorable.

- We assume that u is colored 2 since u and v cannot be both colored 0 .
- In one of the three copies of H_{z} attached to u, say $H_{z_{1}}, u$ has no neighbor colored 2.
- Since a 7 -cycle is not 2 -colorable, the 7 -cycle $v_{1} \ldots v_{7}$ of $H_{z_{1}}$ contains a monochromatic edge colored 2 , say $v_{1} v_{2}$.
- The coloring of the face F_{2} cannot be extended to the copy of S embedded in F_{2}.

5 NP-completeness of (k, j)-colorings

Let $g_{k, j}$ be the largest integer g such that there exists a planar graph with girth g that is not (k, j)-colorable. Because of large odd cycles, $g_{0,0}$ is not defined. For $(k, j) \neq(0,0)$, we have $4 \leqslant g_{k, j} \leqslant 10$ by the example in Figure 2 and the result that planar graphs with girth at least 11 are $(0,1)$-colorable [22]. We prove this equivalent form of Theorem 3:

Theorem 5. Let k and j be fixed integers such that $(k, j) \neq(0,0)$. It is NP-complete to determine whether a planar graph with girth $g_{k, j}$ is (k, j)-colorable.

Let us define the partial order \preceq. Let $n_{3}(G)$ be the number of 3^{+}-vertices in G. For any two graphs G_{1} and G_{2}, we have $G_{1} \prec G_{2}$ if and only if at least one of the following conditions holds:

- $\left|V\left(G_{1}\right)\right|<\left|V\left(G_{2}\right)\right|$ and $n_{3}\left(G_{1}\right) \leqslant n_{3}\left(G_{2}\right)$.
- $n_{3}\left(G_{1}\right)<n_{3}\left(G_{2}\right)$.

Note that the partial order \preceq is well-defined and is a partial linear extension of the subgraph poset. The following lemma is useful.

Lemma 6. Let k and j be fixed integers such that $(k, j) \neq(0,0)$. There exists a planar graph $G_{k, j}$ with girth $g_{k, j}$, minimally non- (k, j)-colorable for the subgraph order, such that $\delta\left(G_{k, j}\right)=2$.

Proof. We have $\delta\left(G_{k, j}\right) \geqslant 2$, since a non- (k, j)-colorable graph that is minimal for the subgraph order does not contain a 1^{-}-vertex. Supppose that for some pair (k, j), we construct a 2-degenerate non- (k, j)-colorable planar graph with girth $g_{k, j}$. Then this graph contains a (not necessarily proper) minimally non- (k, j)-colorable subgraph with minimum degree 2. Thus, we can prove the lemma for the following pairs (k, j) by using Claim 2.

- Pairs (k, j) such that $g_{k, j} \leqslant 4$: We actually have $g_{k, j}=4$ by Claim 2.1.
- Pairs (k, j) such that $g_{k, j} \geqslant 6$: Indeed, a planar graph with girth at least 6 is 2 degenerate. In particular, Claim 2.3 shows that $g_{k, 0} \geqslant 6$, so the lemma is proved for all pairs $(k, 0)$.
- Pairs $(k, 1)$ such that $1 \leqslant k \leqslant 3$: If $g_{k, j} \geqslant 6$, then we are in a previous case. Otherwise, we have $g_{k, j}=5$ by Claim 2.2.

The remaining pairs satisfy $g_{k, j}=5$. There are two types of remaining pairs (k, j) :

- Type 1: $k \geqslant 4$ and $j=1$.
- Type 2: $2 \leqslant j \leqslant k$.

Consider a planar graph G with girth 5 that is non- (k, j)-colorable and is minimal for the order \preceq. Suppose for contradiction that G does not contain a 2 -vertex. Also, suppose that G contains a 3 -vertex a adjacent to three 4^{-}-vertices a_{1}, a_{2}, and a_{3}. For colorings of type 1, we can extend to G a coloring of $G \backslash\{a\}$ by assigning to a the color of improperty at least 4. For colorings of type 2, we consider the graph G^{\prime} obtained from $G \backslash\{a\}$ by adding three 2 -vertices b_{1}, b_{2}, and b_{3} adjacent to, respectively, a_{2} and a_{3}, a_{1} and a_{3}, a_{1} and a_{2}. Notice that $G^{\prime} \preceq G$, so G^{\prime} admits a coloring c of type 2 . We can extend to G the coloring of $G \backslash\{a\}$ induced by c as follows. If a_{1}, a_{2}, and a_{3} have the same color, then we assign to a the other color. Otherwise, we assign to a the color that appears at least twice among the colors of b_{1}, b_{2}, and b_{3}. Now, since G does not contain a 2 -vertex nor a

3 -vertex adjacent to three 4^{-}-vertices, we have $\operatorname{mad}(G) \geqslant \frac{10}{3}$. This can be seen using the discharging procedure such that the initial charge of each vertex is its degree and every 5^{+}-vertex gives $\frac{1}{3}$ to each adjacent 3 -vertex. The final charge of a 3 -vertex is at least $3+\frac{1}{3}=\frac{10}{3}$, the final charge of a 4 -vertex is $4>\frac{10}{3}$, and the final charge of a k-vertex with $k \geqslant 5$ is at least $k-k \times \frac{1}{3}=\frac{2 k}{3} \geqslant \frac{10}{3}$. Now, $\operatorname{mad}(\mathrm{G}) \geqslant \frac{10}{3}$ contradicts the fact that G is a planar graph with girth 5 , and this contradiction shows that G contains a 2 -vertex.

We are ready to prove Theorem 5. The case of $(1,0)$-coloring is proved in a stronger form which takes into account restrictions on both the girth and the maximum degree of the input planar graph [16].

Proof of the case $(k, 0), k \geqslant 2$.
We consider a graph $G_{k, 0}$ as described in Lemma 6, which contains a path $u x v$ where x is a 2 -vertex. By minimality, any ($k, 0$)-coloring of $G_{k, 0} \backslash\{x\}$ is such that u and v get distinct saturated colors. Let G be the graph obtained from $G_{k, 0} \backslash\{x\}$ by adding three 2-vertices x_{1}, x_{2}, and x_{3} to create the path $u x_{1} x_{2} x_{3} v$. So any ($k, 0$)-coloring of G is such that x_{2} is colored k^{1}. To prove the NP-completeness, we reduce the $(k, 0)$-coloring problem to the $(1,0)$-coloring problem. Let I be a planar graph with girth $g_{1,0}$. For every vertex s of I, add $(k-1)$ copies of G such that the vertex x_{2} of each copy is adjacent to s, to obtain the graph I^{\prime}. By construction, I^{\prime} is $(k, 0)$-colorable if and only if I is $(1,0)$-colorable. Moreover, I^{\prime} is planar, and since $g_{k, 0} \leqslant g_{1,0}$, the girth of I^{\prime} is $g_{k, 0}$.

Proof of the case $(1,1)$.
By Claim 2.2 and [9], $g_{1,1}$ is either 5 or 6 . There exist two independent proofs $[17,19]$ that (1, 1)-coloring is NP-complete for triangle-free planar graphs with maximum degree 4 . We use a reduction from that problem to prove that $(1,1)$-coloring is NP-complete for planar graphs with girth $g_{1,1}$. We consider a graph $G_{1,1}$ as described in Lemma 6, which contains a path $u x v$ where x is a 2-vertex. By minimality, any (1,1)-coloring of $G_{1,1} \backslash\{x\}$ is such that u and v get distinct saturated colors. Let G be the graph obtained from $G_{1,1} \backslash\{x\}$ by adding a vertex u^{\prime} adjacent to u and a vertex v^{\prime} adjacent to v. So any (1,1)-coloring of G is such that u^{\prime} and v^{\prime} get distinct colors and u^{\prime} (resp. v^{\prime}) has a color distinct from the color of its (unique) neighbor. We construct the graph $E_{a, b}$ from two vertices a and b and two copies of G such that a is adjacent to the vertices u^{\prime} of both copies of G and b is adjacent to the vertices v^{\prime} of both copies of G. There exists a $(1,1)$-coloring of $E_{a, b}$ such that a and b have distinct colors and neither a nor b is saturated. There exists a (1,1)-coloring of $E_{a, b}$ such that a and b have the same color. Moreover, in every $(1,1)$-coloring of $E_{a, b}$ such that a and b have the same color, both a and b are saturated.

The reduction is as follows. Let I be a planar graph. For every edge (p, q) of I, replace (p, q) by a copy of $E_{a, b}$ such that a is identified with p and b is identified with q, to obtain the graph I^{\prime}. By the properties of $E_{a, b}, I$ is $(1,1)$-colorable if and only if I^{\prime} is $(1,1)$-colorable. Moreover, I^{\prime} is planar with girth $g_{1,1}$.

Proof of the case (k, j).
We consider a graph $G_{k, j}$ as described in Lemma 6, which contains a path $u x v$ where x
is a 2-vertex. By minimality, any (k, j)-coloring of $G_{k, j} \backslash\{x\}$ is such that u and v get distinct saturated colors. Let G be the graph obtained from $G_{k, j} \backslash\{x\}$ by adding a vertex u^{\prime} adjacent to u and a vertex v^{\prime} adjacent to v. So any (k, j)-coloring of G is such that u^{\prime} and v^{\prime} get distinct colors and u^{\prime} (resp. v^{\prime}) has a color distinct from the color of its (unique) neighbor. Let $t=\min (k-1, j)$. To prove the NP-completeness, we reduce the (k, j)-coloring to the $(k-t, j-t)$-coloring. Thus the case (k, k) reduces to the case $(1,1)$ which is NP-complete, and the case (k, j) with $j<k$ reduces to the case $(k-j, 0)$ which is NP-complete. The reduction is as follows. Let I be a planar graph with girth $g_{k-t, j-t}$. For every vertex s of I, add t copies of G such that the vertices u^{\prime} and v^{\prime} of each copy is adjacent to s, to obtain the graph I^{\prime}. By construction, I is $(k-t, j-t)$-colorable if and only if I^{\prime} is (k, j)-colorable. Moreover, I^{\prime} is planar, and since $g_{k, j} \leqslant g_{k-t, j-t}$, the girth of I^{\prime} is $g_{k, j}$.

6 NP-completeness of (k, j, i)-colorings

In this section, we prove Theorem 4 using a reduction from 3 -colorability, i.e. $(0,0,0)$ colorability, which is NP-complete for planar graphs [18].

Let E be the graph depicted in Fig 6. The graph E^{\prime} is obtained from $2 k-1$ copies of E by identifying the edge $a b$ of all copies. Take 4 copies $E_{1}^{\prime}, E_{2}^{\prime}, E_{3}^{\prime}$, and E_{4}^{\prime} of E^{\prime} and consider a triangle T formed by the vertices y_{0}, x_{0}, x_{1} in one copy of E in E_{1}^{\prime}. The graph $E^{\prime \prime}$ is obtained by identifying the edge $y_{0} x_{0}$ (resp. $y_{0} x_{1}, x_{0} x_{1}$) of T with the edge $a b$ of E_{2}^{\prime} (resp. $E_{3}^{\prime}, E_{4}^{\prime}$). The edge $a b$ of E_{1}^{\prime} is then said to be the edge $a b$ of $E^{\prime \prime}$.

Lemma 7.

1. $E^{\prime \prime}$ admits a $(0,0,0)$-coloring.
2. E^{\prime} does not admit a $(k, k, 1)$-coloring such that a and b have a same color of improperty k.
3. $E^{\prime \prime}$ does not admit a $(k, k, 1)$-coloring such that a and b have the same color.

Proof.

1. The following $(0,0,0)$-coloring c of E is unique up to permutation of colors: $c(a)=$ $c\left(x_{i}\right)=1$ for even $i, c(b)=c\left(y_{i}\right)=2$ for even i, and $c\left(x_{i}\right)=c\left(y_{i}\right)=3$ for odd i. This coloring can be extended into a ($0,0,0$)-coloring of E^{\prime} and $E^{\prime \prime}$.
2. Let k_{1}, k_{2}, and 1 denote the colors in a potential $(k, k, 1)$-coloring c of E^{\prime} such that $c(a)=c(b)=k_{1}$. By the pigeon-hole principle, one of the $2 k-1$ copies of E in E^{\prime}, say E^{*}, is such that a and b are the only vertices with color k_{1}. So, one of the vertices x_{0}, y_{0}, and $x_{3 k+3+t}$ in E^{*} must get color k_{2} since they cannot all get color 1 . We thus have a vertex $v_{1} \in\{a, b\}$ colored k_{1} and vertex $v_{2} \in\left\{x_{0}, y_{0}, x_{3 k+3+t}\right\}$ colored k_{2} in E^{*} which both dominate a path on at least $3 k+3$ vertices. This path contains no vertex colored k_{1} since it is in E^{*}. Moreover, it contains at most k vertices colored

Figure 6: The graph E. We take $t=0$ if k is odd and $t=1$ if k is even, so that $3 k+3+t$ is even.
k_{2}. On the other hand, every set of 3 consecutive vertices in this path contains at least one vertex colored k_{2}, so it contains at least $\frac{3 k+3}{3}=k+1$ vertices colored k_{2}. This contradiction shows that E^{\prime} does not admit a $(k, k, 1)$-coloring such that a and b have a same color of improperty k.
3. By the previous item and by construction of $E^{\prime \prime}$, if $E^{\prime \prime}$ admits a $(k, k, 1)$-coloring c such that $c(a)=c(b)$, then $c(a)=c(b)=1$. We thus have that $\left\{c\left(y_{0}\right), c\left(x_{0}\right), c\left(x_{1}\right)\right\} \subset$ $\left\{k_{1}, k_{2}\right\}$. This implies that at least one edge of the triangle T is monochromatic with a color of improperty k. By the previous item, the coloring c cannot be extended to the copy of E^{\prime} attached to that monochromatic edge. This shows that $E^{\prime \prime}$ does not admit a $(k, k, 1)$-coloring such that a and b have the same color.

For every fixed integer k, we give a polynomial construction that transforms every planar graph G into a planar graph G^{\prime} such that G^{\prime} is $(0,0,0)$-colorable if G is $(0,0,0)$ colorable and G^{\prime} is not $(k, k, 1)$-colorable otherwise. The graph G^{\prime} is obtained from G by identifying every edge of G with the edge $a b$ of a copy of $E^{\prime \prime}$. If G is $(0,0,0)$-colorable, then this coloring can be extended into a ($0,0,0$) -coloring of G^{\prime} by Lemma 7.1. If G is not ($0,0,0$)-colorable, then every $(k, k, 1)$-coloring G contains a monochromatic edge $u v$, and then the copy of $E^{\prime \prime}$ corresponding to $u v$ (and thus G^{\prime}) does not admit a $(k, k, 1)$ coloring by Lemma 7.3. The instance graph G in the proof that $(0,0,0)$-coloring is NP-complete [18] is 3-degenerate. Then by construction, $G^{\prime \prime}$ is also 3-degenerate.

References

[1] K. Appel and W. Haken. Every planar map is four colorable. Part I. Discharging. Illinois J. Math., 21:429-490, 1977.
[2] K. Appel and W. Haken. Every planar map is four colorable. Part II. Reducibility. Illinois J. Math., 21:491-567, 1977.
[3] O.V. Borodin and A.O. Ivanova. Near proper 2-coloring the vertices of sparse graphs. Diskretn. Anal. Issled. Oper., 16(2):16-20, 2009.
[4] O.V. Borodin, A.O. Ivanova, M. Montassier, P. Ochem, and A. Raspaud. Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k. J. Graph Theory, 65(2):83-93, 2010.
[5] O.V. Borodin, A.O. Ivanova, M. Montassier, and A. Raspaud. ($k, 1$)-coloring of sparse graphs. Discrete Math., 312(6):1128-1135, 2012.
[6] O.V. Borodin, A.O. Ivanova, M. Montassier, and A. Raspaud. (k, j)-coloring of sparse graphs. Discrete Appl. Math., 159(17):1947-1953, 2011.
[7] O.V. Borodin and A.V. Kostochka. Vertex partitions of sparse graphs into an independent vertex set and subgraph of maximum degree at most one. Sibirsk. Mat. Zh., 52(5):1004-1010, 2011. (in Russian.)
[8] O.V. Borodin and A.V. Kostochka. Defective 2-coloring of sparse graphs. J. Combin. Theory S. B, 104:72-80, 2014.
[9] O.V. Borodin, A.V. Kostochka, and M. Yancey. On 1-improper 2-coloring of sparse graphs. Discrete Math., 313(22):2638-2649, 2013.
[10] G.J. Chang, F. Havet, M. Montassier, and A. Raspaud. Steinberg's Conjecture and near-colorings. Research Report RR-7669, INRIA, 2011.
[11] H. Choi, I. Choi, J. Jeong, and G. Suh. (1,k)-coloring of graphs with girth at least 5 on a surface. arXiv:1412.0344
[12] I. Choi and A. Raspaud. Planar graphs with girth at least 5 are (3,5)-colorable. Discrete Math., 318(4):661-667, 2015.
[13] L.J. Cowen, R.H. Cowen, and D.R. Woodall. Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency. J. Graph Theory, 10(2):187-195, 1986.
[14] P. Dorbec, T. Kaiser, M. Montassier, and A. Raspaud. Limits of near-coloring of sparse graphs. J. Graph Theory, 75(2):191-202, 2014.
[15] N. Eaton and T. Hull. Defective list colorings of planar graphs. Bull. Inst. Combin. Appl., 25:79-87, 1999.
[16] L. Esperet, M. Montassier, P. Ochem, and A. Pinlou. A complexity dichotomy for the coloring of sparse graphs. J. Graph Theory, 73(1):85-102, 2013.
[17] J. Fiala, K. Jansen, V.B. Le, and E. Seidel. Graph subcolorings: complexity and algorithms. SIAM J. Discrete Math., 16(4):635-650, 2003.
[18] M.R. Garey, D.S. Johnson, and L.J. Stockmeyer, Some simplified NP-complete graph problems. Theor. Comput. Sci., 1:237-267, 1976.
[19] J. Gimbel and C. Hartman. Subcolorings and the subchromatic number of a graph. Discrete Math., 272:139-154, 2003.
[20] A.N. Glebov, D.Zh. Zambalaeva. Path partitions of planar graphs. Sib. Elektron. Mat. Izv., 4:450-459, 2007. (in Russian.) http://semr.math.nsc.ru
[21] F. Havet and J.-S. Sereni. Improper choosability of graphs and maximum average degree. J. Graph Theory, 52:181-199, 2006.
[22] J. Kim, A.V. Kostochka, and X. Zhu. Improper coloring of sparse graphs with a given girth, I: (0,1)-colorings of triangle-free graphs. European J. Combin., 42:26-48, 2014.
[23] R. Škrekovski. List improper coloring of planar graphs. Combin. Probab. Comput., 8:293-299, 1999.

[^0]: *This work was partially supported by the ANR grant EGOS 12-JS02-002-01.

