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Abstract

We evaluate in closed form series of the type
∑
u(n)R(n), with (u(n))n a strongly

B-multiplicative sequence and R(n) a (well-chosen) rational function. A typical
example is: ∑

n>1

(−1)s2(n)
4n+ 1

2n(2n+ 1)(2n+ 2)
= −1

4

where s2(n) is the sum of the binary digits of the integer n. Furthermore closed
formulas for series involving automatic sequences that are not strongly B-multipli-
cative, such as the regular paperfolding and Golay-Shapiro-Rudin sequences, are
obtained; for example, for integer d > 0:

∑
n>0

v(n)

(n+ 1)2d+1
=

π2d+1|E2d|
(22d+2 − 2)(2d)!

where (v(n))n is the ±1 regular paperfolding sequence and E2d is an Euler number.

Keywords: summation of series; strongly B-multiplicative sequences; paperfolding
sequence; Golay-Shapiro-Rudin sequence

1 Introduction

The problem of evaluating a series
∑

nR(n) where R is a rational function with integer
coefficients is classical: think of the values of the Riemann ζ function at integers. Such

∗The author was partially supported by the ANR project “FAN” (Fractals et Numération), ANR-12-
IS01-0002.

the electronic journal of combinatorics 22(1) (2015), #P1.59 1



sums can also be “twisted”, usually by a character (think of the L-functions), or by the
usual arithmetic functions (e.g., the Möbius function µ).

Another possibility is to twist such sums by sequences related to the digits of n in some
integer base. Examples can be found in [5] with, in particular, series

∑ u(n)
n(n+1)

, and in [7]

with, in particular, series
∑ u(n)

2n(2n+1)
(also see [9]): in both cases u(n) counts the number

of occurrences of a given block of digits in the B-ary expansion of the integer n, or is
equal to sB(n), the sum of the B-ary digits of the integer n (B being an integer > 2).
Two emblematic examples are (see [10, Problem B5, p. 682] and [12, 5] for the first one,
and [14, 7] for the second one):

∑
n>1

sB(n)

n(n+ 1)
=

B

B − 1
and

∑
n>1

s2(n)

2n(2n+ 1)
=
γ + log 4

π

2

where γ is the Euler-Mascheroni constant.

Similarly one can try to evaluate infinite products
∏

nR(n), where R(n) is a rational
function, as well as twisted such products

∏
nR(n)u(n), where the sequence (u(n))n>0 is

related to the digits of n in some integer base. An example can be found in [2] (also see
[11] for the original problem):

∏
n>1

(
(4n+ 2)(4n+ 2)

(4n+ 1)(4n+ 3)

)2z(n)

=
4

π

where z(n) is the sum of the number of 0’s and the number of 1’s in the binary expansion
of n, i.e., the length of this expansion. Other examples can be found in [4], e.g.,

∏
n>0

(
(4n+ 2)(8n+ 7)(8n+ 3)(16n+ 10)

(4n+ 3)(8n+ 6)(8n+ 2)(16n+ 11)

)u(n)
=

1√
2

where u(n) = (−1)a(n) and a(n) is equal to the number of blocks 1010 occurring in the
binary expansion of n. The products studied in [4] (also see references therein) are of

the form
∏

nR(n)(−1)a(n)
where R(n) is a (well-chosen) rational function with integer

coefficients, and a(n) counts the number of occurrences of a given block of digits in the
B-ary expansion of the integer n. The case where a(n) counts the number of 1’s occurring
in the binary expansion of n is nothing but the case a(n) = s2(n). If a(n) = sB(n), the
sequence ((−1)a(n))n>0 is strongly B-multiplicative: the more general evaluation of the
product

∏
nR(n)u(n) where (u(n))n>0 is a strongly B-multiplicative sequence, is addressed

in [8] (also see [13]). Recall that a strongly B-multiplicative sequence (u(n))n>0 satisfies
u(0) = 0, and u(Bn + j) = u(n)u(j) for all j ∈ [0, B − 1] and all n > 0. In particular,
(u(n))n>0 is B-regular (or even B-automatic if it takes only finitely many values): recall
that a sequence (u(n))n>0 is called B-automatic if its B-kernel, i.e., the set of subsequences
{(u(Ban + r))n>0 | a > 0, 0 6 r 6 Ba − 1}, is finite; a sequence (u(n))n>0 with values
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in Z is called B-regular if the Z-module spanned by its B-kernel has finite type (for more
on these notions, see, e.g., [6]).

Since log
∏

nR(n)u(n) =
∑

n u(n) logR(n), it is natural to look at “simpler” series of the
form

∑
n u(n)R(n) with R and u as previously. All the examples above involve sequences

(u(n))n>0 that are B-regular or even B-automatic. Unfortunately we were not able to
address the general case where (u(n))n>0 is any B-regular or any B-automatic sequence.
The purpose of the present paper is to study the special case where, as in [8], the sequence
u(n) is strongly B-multiplicative and R(n) is a well-chosen rational function. The paper
can thus be seen as a companion paper to [8]. We will end with the evaluation of similar
series where (u(n))n>0 is the regular paperfolding sequence or the Golay-Shapiro-Rudin
sequence.

2 Preliminary definitions and results

This section quickly recalls definitions and results from [8].

Definition 1. Let B > 2 be an integer. A sequence of complex numbers (u(n))n>0 is
strongly B-multiplicative if u(0) = 1 and, for all n > 0 and all k ∈ {0, 1, . . . , B − 1},

u(Bn+ k) = u(n)u(k).

Example 2. Let B > 2 be an integer and sB(n) be the sum of the B-ary digits of n. Then
for every complex number a 6= 0 the sequence (asB(n))n>0 is strongly B-multiplicative.
This sequence is B-regular (see the introduction); it is B-automatic if and only if a is a
root of unity.

The following lemma is a variation of Lemma 1 in [8].

Lemma 3. Let B > 1 be an integer. Let (u(n))n>0 be a strongly B-multiplicative sequence
of complex numbers different from the sequence (1, 0, 0, . . .). We suppose that |u(n)| 6 1
for all n > 0 and that |

∑
06k<B u(k)| < B. Let f be a map from the set of nonnegative

integers to the set of complex numbers such that |f(n + 1) − f(n)| = O(n−2). Then the
series

∑
n>0 u(n)f(n) is convergent.

Proof. Use [8, Lemma 1] to get the upper bound |
∑

06n<N u(n)| < CNα for some positive
constant C and some real number α in (0, 1). Then use summation by parts.

3 Main results

We state in this section some basic identities as well as first applications and examples.
First we define δk, a special case of the Kronecker delta:

δk =

{
1 if k = 0,

0 otherwise.
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Theorem 4. Let B > 1 be an integer. Let (u(n))n>0 be a strongly B-multiplicative
sequence, and let f be a map from the nonnegative integers to the complex numbers, such
that (u(n))n>0 and f satisfy the conditions of Lemma 3. Define the series S1(k,B, u, f),
for k = 0, 1, . . . , B − 1, by

S(k,B, u, f) :=
∑
n>0

u(n)f(Bn+ k).

Then the following linear relations hold:∑
n>0

u(n)f(n) =
∑

06k6B−1

u(k)S(k,B, u, f)

and ∑
n>0

u(n)
∑

06k6B−1

f(Bn+ k) =
∑

06k6B−1

S(k,B, u, f).

In particular, define the series S1(k,B, u) and S2(k,B, u), for k = 0, 1, . . . , B − 1, by

S1(k,B, u) :=
∑
n>δk

u(n)

Bn+ k
and S2(k,B, u) :=

∑
n>δk

u(n)

(Bn+ k)(Bn+ k + 1)
·

Then the following linear relations hold:

(B − 1)S1(0, B, u)−
∑

16k6B−1

u(k)S1(k,B, u) = 0

and ∑
06k6B−1

(B − u(k))S2(k,B, u) = B − 1.

Proof. It follows from Lemma 3 that all the series in the theorem converge. To prove the
first relation, we split

∑
n>0 u(n)f(n), obtaining∑

n>0

u(n)f(n) =
∑

06k6B−1

∑
n>0

u(Bn+ k)f(Bn+ k) =
∑

06k6B−1

∑
n>0

u(n)u(k)f(Bn+ k)

=
∑

06k6B−1

u(k)
∑
n>0

u(n)f(Bn+ k) =
∑

06k6B−1

u(k)S(k,B, u, f).

To prove the second relation, we write∑
n>0

u(n)
∑

06k6B−1

f(Bn+ k) =
∑

06k6B−1

∑
n>0

u(n)f(Bn+ k) =
∑

06k6B−1

S(k,B, u, f).

To prove the last part of the theorem, we make two choices for f . First we take f defined
by f(n) = 1/n for n 6= 0 and f(0) = 0. Then we take f(n) = 1/n(n + 1) if n 6= 0 and
f(0) = 0.
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Remark The formula S2(k,B, u) = S1(k,B, u)− (S1(k + 1, B, u)− δk) (0 6 k 6 B − 2)
holds. Nevertheless, the last two relations in Theorem 4 are independent, because S2(B−
1, B, u) cannot be expressed in terms of the S1(k,B, u) for k = 0, 1, . . . , B − 1.

Corollary 5. If (u(n))n>0 is a strongly B-multiplicative sequence satisfying the conditions
of Lemma 3, then ∑

n>1

u(n)
∑

16k6B−1

(
1

Bn
− u(k)

Bn+ k

)
=

∑
16k6B−1

u(k)

k

and ∑
n>1

u(n)
∑

06k6B−1

B − u(k)

(Bn+ k)(Bn+ k + 1)
=

∑
16k6B−1

u(k)

k(k + 1)
·

Proof. This follows from the last part of Theorem 4 by substitution and manipulation.

Recall that the nth harmonic number Hn and the nth alternating harmonic number
H∗
n are defined by

Hn :=
∑

16k6n

1

k
and H∗

n :=
∑

16k6n

(−1)k−1

k
·

Corollary 6. If Nj,B(n) is the number of occurrences of the digit j ∈ {0, 1, . . . , B− 1} in
the B-ary expansion of n, then the following summations hold when j 6= 0:

∑
n>1

(−1)Nj,B(n)

(
2

Bn+ j
+

1

Bn

∑
16k6B−1

k

Bn+ k

)
= HB−1 −

2

j

and ∑
n>1

(−1)Nj,B(n)

(
B − 1

n(n+ 1)
+

2B

(Bn+ j)(Bn+ j + 1)

)
= B − 1− 2B

j(j + 1)
·

Proof. It is not hard to see that, if j 6= 0, we can apply the last part of Theorem 4 to the
sequence u(n) := (−1)Nj,B(n). Using Corollary 5 and the fact that Nj,B(k) = δk,j when
0 6 k < B, the result follows.

Example 7. Taking B = 2 and j = 1, we get∑
n>1

(−1)N1,2(n)
4n+ 1

2n(2n+ 1)
= −1

and ∑
n>1

(−1)N1,2(n)
4n+ 1

2n(2n+ 1)(2n+ 2)
= −1

4
·
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Subtracting the second equation from the first, we multiply by 4 and obtain∑
n>1

(−1)N1,2(n)
4n+ 1

n(n+ 1)
= −3.

With B = 3 and j = 1 we get∑
n>1

(−1)N1,3(n)
18n2 + 21n+ 4

3n(3n+ 1)(3n+ 2)
= −1

2

and ∑
n>1

(−1)N1,3(n)
6n2 + 6n+ 1

3n(3n+ 1)(3n+ 2)(3n+ 3)
= − 1

36
·

Corollary 8. If sB(n) is the sum of the B-ary digits of n, then

∑
n>1

(−1)sB(n)
∑

16k6B−1

(
1

Bn
− (−1)k

Bn+ k

)
= −H∗

B−1

and ∑
n>1

(−1)sB(n)
∑

06k6B−1

B − (−1)k

(Bn+ k)(Bn+ k + 1)
= 1 +

(−1)B

B
− 2H∗

B−1.

Proof. Setting u(n) := (−1)sB(n), it is not hard to see that u(2n + 1) = −u(2n) for all
n > 0. (Hint: look at the cases B even and B odd separately.) It follows that (u(n))n>0

satisfies the conditions of Lemma 3. Noting that u(k) = (−1)k when 0 6 k < B, the
result follows from Corollary 5.

Example 9. Taking B = 2 or 3 gives the same pair of series as those with that value
of B in Example 1, since s2(n) = N1,2(n) and s3(n) = N1,3(n) + 2N2,3(n). (We can also
replace s3(n) with n, as (−1)sB(n) = (−1)n when B is odd.) With B = 4 we get∑

n>1

(−1)s4(n)
128n3 + 176n2 + 76n+ 9

4n(4n+ 1)(4n+ 2)(4n+ 3)
= − 5

12

and ∑
n>1

(−1)s4(n)
128n3 + 184n2 + 80n+ 9

4n(4n+ 1)(4n+ 2)(4n+ 3)(4n+ 4)
= − 5

12
·

4 More examples

Using Corollary 5 with sequences (u(n))n>0 taking complex values yields other examples
of sums of series.
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Example 10. We may let u(n) := is2(n) in Corollary 5. This gives the two summations

∑
n>1

(
is2(n)

2n
− is2(n)+1

2n+ 1

)
= i =

∑
n>1

is2(n)(3n+ 1)− is2(n)+1n

n(n+ 1)(2n+ 1)
,

and by taking the imaginary and real parts we obtain the following result:

If χ is the non-principal Dirichlet character modulo 4, defined by

χ(n) :=


+1 if n ≡ 1 mod 4,

−1 if n ≡ 3 mod 4,

0 otherwise,

then ∑
n>1

(
χ(s2(n))

2n
− χ(s2(n) + 1)

2n+ 1

)
= 1 =

∑
n>1

(3n+ 1)χ(s2(n))− nχ(s2(n) + 1)

n(n+ 1)(2n+ 1)

and∑
n>1

(
χ(s2(n) + 1)

2n
− χ(s2(n) + 2)

2n+ 1

)
= 0 =

∑
n>1

(3n+ 1)χ(s2(n) + 1)− nχ(s2(n) + 2)

n(n+ 1)(2n+ 1)
·

Example 11. Generalizing Example 10 by replacing is2(n) with e2iπs2(n)/d, for integer
d > 2, is straightforward, yielding the following summations (Example 10 is another
formulation for the case d = 4):

∑
n>1

(
sin 2πs2(n)

d

2n
−

sin 2π(s2(n)+1)
d

2n+ 1

)
= sin

2π

d
=
∑
n>1

(3n+ 1) sin 2πs2(n)
d
− n sin 2π(s2(n)+1)

d

n(n+ 1)(2n+ 1)

and

∑
n>1

(
cos 2πs2(n)

d

2n
−

cos 2π(s2(n)+1)
d

2n+ 1

)
= cos

2π

d
=
∑
n>1

(3n+ 1) cos 2πs2(n)
d
− n cos 2π(s2(n)+1)

d

n(n+ 1)(2n+ 1)
·

5 The paperfolding and Golay-Shapiro-Rudin sequences

The results above involve sums
∑
u(n)R(n) where (u(n))n>0 is a strongly B-multiplicative

sequence, which, in all of our examples except Example 2 with alpha not a root of unity,
happens to take only finitely many values. This implies that (u(n))n>0 is B-automatic
(see the introduction). One can then ask about more general sums

∑
u(n)R(n) where the

sequence (u(n))n>0 is B-automatic. We give two cases where such series can be summed.
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Theorem 12. Let (v(n))n>0 be the regular paperfolding sequence. Its first few terms are
given by (replacing +1 by + and −1 by −)

(v(n))n>0 = + + − + + − − . . . ;

it can be defined by: v(2n) = (−1)n and v(2n + 1) = v(n) for all n > 0. Then, for all
integers d > 0, we have the relation∑

n>0

v(n)

(n+ 1)2d+1
=

π2d+1|E2d|
(22d+2 − 2)(2d)!

where the E2d’s are the Euler numbers defined by:

1

cosh t
=
∑
n>0

E2n

(2n)!
t2n for |t| < π

2
·

Proof. First note that the series
∑

n>0
v(n)

(n+1)s
converges for <(s) > 0: use the inequality

|
∑

n<N v(n)| = O(logN) (see, e.g., [6, Exercise 28, p. 206]) and summation by parts; note
that the sequence (Rn)n>1 in [6, Exercise 28, p. 206] is equal to the sequence (v(n))n>0

here. Now, Exercise 27 in [6, p. 205–206] asks to prove, for all complex numbers s with
<(s) > 0, the equality (again with slightly different notation)∑

n>0

v(n)

(n+ 1)s
=

2s

2s − 1

∑
n>0

(−1)n

(2n+ 1)s
·

This can be easily done by splitting the sum on the left into even and odd indexes.
Recalling that the Dirichlet beta function is defined by β(s) =

∑
n>0

(−1)n

(2n+1)s
for <(s) > 0,

we thus have, for any nonnegative integer d,∑
n>0

v(n)

(n+ 1)2d+1
=

22d+1

22d+1 − 1
β(2d+ 1).

But, when s is an odd integer, the value of β(s) can be expressed as a rational multiple
of π (see, e.g., [1, 23.2.22, p. 807]):

β(2d+ 1) =
(π/2)2d+1

2(2d)!
|E2d|.

Example 13. Taking d = 0 in Theorem 12 yields a result due to F. von Haeseler (see [6,
Exercise 27, p. 205–206]) ∑

n>0

v(n)

n+ 1
=
π

2
·

The second result we give in this section involves the Golay-Shapiro-Rudin sequence.
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Theorem 14. Let (r(n))n>0 be the ±1 Golay-Shapiro-Rudin sequence. This sequence can
be defined by r(n) = (−1)a(n), where a(n) is the number of possibly overlapping occurrences
of the block 11 in the binary expansion of n, so that (replacing +1 by + and −1 by −1)

(r(n))n>0 = + + + − + + − + . . . ;

alternatively it can be defined by

r(0) = 1, and r(2n) = r(n), r(2n+ 1) = (−1)nr(n) for n > 0.

Let R(n) be a function from the nonnegative integers to the complex numbers, such that
|R(n+ 1)−R(n)| = O(n−2). Then we have the relation∑

n>1

r(n)(R(n)−R(2n) +R(2n+ 1)− 2R(4n+ 1)) = R(1).

Proof. It is well known that |
∑

n<N r(n)| < K
√
n for some positive constant K (actually

more is known; see, e.g., [6, Theorem 3.3.2, p. 79] and the historical comments given in
[6, 3.3, p. 121]). Thus, by summation by parts, the series

∑
n>0 r(n)R(n) is convergent.

Now we write∑
n>0

r(n)R(n) =
∑
n>0

r(2n)R(2n) +
∑
n>0

r(2n+ 1)R(2n+ 1)

=
∑
n>0

r(n)R(2n) +
∑
n>0

(−1)nr(n)R(2n+ 1)

=
∑
n>0

r(n)R(2n) +
∑
n>0

r(2n)R(4n+ 1)−
∑
n>0

r(2n+ 1)R(4n+ 3)

=
∑
n>0

r(n)(R(2n) +R(4n+ 1))−
∑
n>0

r(2n+ 1)R(4n+ 3).

Hence∑
n>0

r(n)(R(n)−R(2n)−R(4n+ 1)) = −
∑
n>0

r(2n+ 1)R(4n+ 3)

= −(
∑
n>0

r(n)R(2n+ 1)−
∑
n>0

r(2n)R(4n+ 1))

= −
∑
n>0

r(n)R(2n+ 1) +
∑
n>0

r(n)R(4n+ 1)

where the penultimate equality is obtained by splitting the sum
∑

n>0 r(n)R(2n+ 1) into
even and odd indices. Thus, finally∑

n>0

r(n)(R(n)−R(2n) +R(2n+ 1)− 2R(4n+ 1)) = 0,

hence ∑
n>1

r(n)(R(n)−R(2n) +R(2n+ 1)− 2R(4n+ 1)) = R(1).
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Example 15. Taking R(n) = 1/n if n 6= 0 and R(0) = 1 in Theorem 14 above yields∑
n>1

r(n)
8n2 + 4n+ 1

2n(2n+ 1)(4n+ 1)
= 1.

Example 16. Taking R defined by R(n) = log n− log(n+ 1) for n 6= 0 and R(0) = 0 in
Theorem 14 above yields∑

n>1

r(n) log
(2n+ 1)4

(n+ 1)2(4n+ 1)2
= − log 2.

Hence ∑
n>0

r(n) log
(2n+ 1)2

(n+ 1)(4n+ 1)
= −1

2
log 2.

After exponentiating we obtain:

∏
n>0

(
(2n+ 1)2

(n+ 1)(4n+ 1)

)r(n)
=

1√
2

thus recovering the value of an infinite product obtained in [3, Theorem 2, p. 148] (also
see [4]).
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