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Abstract

A graph is supereulerian if it has a spanning closed trail. For an integer r, let
Q0(r) be the family of 3-edge-connected nonsupereulerian graphs of order at most
r. For a graph G, define δL(G) = min{max{d(u), d(v)}| for any uv ∈ E(G)}. For a
given integer p > 2 and a given real number ε, a graph G of order n is said to satisfy
a Lai’s condition if δL(G) > n

p − ε. In this paper, we show that if G is a 3-edge-
connected graph of order n with δL(G) > n

p −ε, then there is an integer N(p, ε) such
that when n > N(p, ε), G is supereulerian if and only if G is not a graph obtained
from a graph Gp in the finite family Q0(3p−5) by replacing some vertices in Gp with
nontrivial graphs. Results on the best possible Lai’s conditions for Hamiltonian line
graphs of 3-edge-connected graphs or 3-edge-connected supereulerian graphs are
given, which are improvements of the results in [J. Graph Theory 42(2003) 308-319]
and in [Discrete Mathematics, 310(2010) 2455-2459].
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1 Introduction

We follow Bondy and Murty [3] for terms and notations, unless otherwise stated. Graphs
considered in this paper are finite and loopless, but multiple edges are allowed. As in [3],
κ′(G) and dG(v) (or d(v)) denote the edge-connectivity of G and the degree of a vertex v
in G, respectively. The maximum size of a matching in G is denoted by α′(G). Let O(G)
be the set of vertices of odd degree in G. A connected graph G is Eulerian if O(G) = ∅.
An Eulerian subgraph H in a graph G is called a closed trail; and is called a spanning
closed trail of G if V (H) = V (G); and is called a dominating closed trail of G if
G− V (H) is edgeless. A graph is supereulerian if it has a spanning closed trail. We use
SL denote the family of supereulerian graphs. A graph G is collapsible if for any even
subset R ⊆ V (G) or R = ∅, G has a spanning connected subgraph HR with O(HR) = R.
We use CL denote the family of collapsible graphs. Thus, CL ⊂ SL.

Catlin’s reduction method

Let G be a graph and let X ⊆ E(G). The contraction G/X is the graph obtained from
G by identifying the two ends of each edge in X and then deleting the resulting loops. A
graph is trivial if it is edgeless. If H is a subgraph of G, then we write G/H for G/E(H).
If H is a connected subgraph of G, and if vH denotes the vertex in G/H to which H is
contracted, then H is called the preimage of vH . A vertex v in a contraction of G is
nontrivial if v has a nontrivial preimage. If G0 = G/X and if every vertex of G0 is a
nontrivial vertex, then G0 is a nontrivial contraction of G.

In [6], Catlin showed that every graph G has a unique collection of pairwise disjoint
maximal collapsible subgraphs H1, H2, · · · , Hc such that V (G) =

⋃c
i=1 V (Hi). The re-

duction of G is G′ = G/(∪ci=1Hi), the graph obtained from G by contracting all nontrivial
maximal collapsible subgraphs of G. A graph G is reduced if G′ = G.

For an integer r, let Q0(r) be the set of 3-edge-connected reduced nonsupereulerian
graphs of order at most r. In this paper, we use P for the Petersen graph and use P14 for
the graph in Figure 1.1. It is known that Q0(13) = {P} and Q0(14) = {P, P14} [13].
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Figure 1.1

For a graph G, the line graph L(G) has E(G) as its vertex set, where two vertices in
L(G) are adjacent if and only if the corresponding edges in G are adjacent. The following
theorem relates dominating closed trails and Hamiltonian line graphs.

Theorem A (Harary and Nash-Williams [17]). Let G be a graph with at least three
edges. Then L(G) is Hamiltonian if and only if G has a dominating closed trail.

Graphs with spanning or dominating closed trails have been studied by many authors.
The subject is closely related to the study on Hamiltonian graphs [23], Chinese Postman
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problem [2] and Traveling Salesman problem [4]. Pulleyblank [22] showed that the problem
of determining if a graph G is supereulerian is NP-complete. Like the studies on many
NP-complete problems in graph theory, various degree conditions have been studied for
problems related to supereulerian graphs. For a graph G, we define

δ(G) = min{d(v) | for any v ∈ V (G)};
σ2(G) = min{d(u) + d(v) | for any uv 6∈ E(G)};
σt(G) = min{Σt

i=1d(vi) | {v1, v2, · · · , vt} is independent in G (t > 2) };
δF (G) = min{max{d(u), d(v)} | for any u, v ∈ V (G) with dist(u, v) = 2};
σ2(G) = min{d(u) + d(v) | for every edge uv ∈ E(G)};
δL(G) = min{max{d(u), d(v)}| for every edge uv ∈ E(G)}.

These are all the degree parameters that have been studied for graphs with spanning
or dominating closed trails (see [5, 6, 8, 10, 11, 18, 19, 24]). Let

Ω(G) = {δ(G), σ2(G), σt(G), δF (G), σ2(G), δL(G)}.

For a given integer p and a given real number ε, a graph G of order n is said to satisfy
a Lai’s degree condition or Lai’s condition if

δL(G) >
n

p
− ε. (1)

Such degree condition was first considered by Lai [18] in the study of Hamiltonian line
graphs. Obviously, if σ2(G) > 2(n

p
− ε), then δL(G) > n

p
− ε.

Here are some prior results related to Lai’s conditions.
Settling a conjecture posted in [1], Veldman [24] proved the following.

Theorem B (Veldman [24]). Let G be a 2-edge-connected simple graph on n vertices. If

σ2(G) >
2n

5
− 2, (2)

then, for n sufficiently large, L(G) is Hamiltonian.

Condition (1) with p = 5 and ε = 1 is a relaxation of (2). Lai [18] proved the following.

Theorem C (Lai [18]). Let G be a 2-edge-connected simple graph on n vertices. If
δL(G) > n

5
−1, then, for n sufficiently large, either L(G) is Hamiltonian, or (2) is violated

and G can be contracted to one of seven specified graphs.

For a 3-edge-connected graph, the Lai’s condition in Theorem C can be lowered.

Theorem D (Chen, et al. [12]). Let G be a 3-edge-connected simple graph on n vertices
and let ε > 1 be a constant. If δL(G) > n

12
− ε, then, for n sufficiently large, L(G) is

Hamiltonian if and only if G does not have the Petersen graph as a nontrivial contraction.

Adding δ(G) > 4 to Theorem D, Li et al. [20] proved the following.

Theorem E (Li, et al. [20]). Let G be a 3-edge-connected simple graph on n vertices. If
δ(G) > 4 and if δL(G) > n−13

12
, then either G ∈ SL or G′ = P .

the electronic journal of combinatorics 22(1) (2015), #P1.62 3



For a 3-edge-connected graph with σ2(G) condition, the following was proved:

Theorem F (Chen and Lai [11]). Let p > 0 be a given integer and let G be a 3-edge-
connected simple graph of order n > 12p(p − 1). Let G′ be the reduction of G. If
σ2(G) > n

p
− 2, then either G ∈ CL or G′ 6= K1 with |V (G′)| 6 3p− 4 and α′(G′) 6 p.

In this paper, we prove the following theorem analogous to Theorem F, which unifies
Theorems D, E and their improvements given in Section 4.

Theorem 1.1. Let G be a 3-edge-connected simple graph of order n. Let G′ be the
reduction of G. Let S0 be the set of nontrivial vertices in G′. Let Y = V (G′) − S0. Let
N(p, ε) = max{(ε− 5)p(p + 1), 12p(p + 1), (6p + ε− 4)p, (ε− 1)p(p− 1)}, where p > 1 is
a given integer and ε is a given real number. If

δL(G) >
n

p
− ε, (3)

then, for n > N(p, ε), either G ∈ CL, or G′ ∈ Q0(3p − 5) with α′(G′) 6 |S0| 6 p, and
|V (G′)| 6 3|S0| − 5 6 3p− 5. Furthermore,

(i) if G′ has a closed trail containing S0, then G has a dominating closed trail;
(ii) if |S0| = p, then ε > 1 and |Y | 6 (ε− 1)p and |V (G′)| 6 εp;
(iii) if δ(G) > 4, then |V (G′)| 6 max{|S0|, 2|S0| − 3} 6 max{p, 2p− 3}.

Combining Theorem 1.1 with the recently proved result on Fan-type condition [15],
Theorem F and the prior results in [8, 10, 11], we have the following:

Theorem 1.2. Let G be a 3-edge-connected graph of order n. Let p > 1 be a given
integer and let ε > 0 be a given real number. For any d(G) ∈ Ω(G), if d(G) > n

p
− ε,

then, for n sufficiently large, G ∈ SL if and only if G′ /∈ Q0(cp), where c depends on
d(G) ∈ Ω(G) and c 6 5 for all d(G).

Thus, a 3-edge-connected graph G of order n with d(G) > n
p
− ε where d(G) ∈ Ω(G) is

supereulerian unless G is a graph obtained from a graph Gp in Q0(cp) by replacing some
(or all) vertices in Gp with nontrivial subgraphs. From a computational point of view,
for given p and c, the number of graphs in Q0(cp) is fixed and so it can be determined
in a constant time. Like the characterizations of planar graphs, people view that K5

and K3,3 are the only non-planar graphs. Thus, in some sense, only a finite number of
3-edge-connected graphs G with d(G) > n

p
− ε are nonsupereulerian.

With Ryjáček’s closure concept on claw-free graphs [23], the techniques used in this
paper can be applied to solve degree condition problems of Hamiltonian claw-free graphs.

In Section 2, we present some prior results related to Catlin’s reduction method, which
are the needed mechanism in our proofs in this paper. The proof of Theorem 1.1 is given
in Section 3. Applications of Theorem 1.1 are presented in Section 4.
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2 Prior results related to Catlin’s reduction method

For a graph G, let F (G) be the minimum number of extra edges that must be added to G
to obtain a spanning supergraph having two edge-disjoint spanning trees. For an integer
i > 0, the set of vertices of degree i in G is denoted by Di(G).

Theorem G. Let G be a connected graph and let G′ be the reduction of G. Then each
of the following holds:

(a) (Catlin [6]) G ∈ CL if and only if G′ = K1; G ∈ SL if and only if G′ ∈ SL; and G has
a dominating closed trail if and only if G′ has a dominating closed trail containing
all the nontrivial vertices of G′.

(b) (Catlin, et al.[9]) G′ is simple and K3-free with δ(G′) 6 3, and either F (G′) > 3 or
G′ ∈ {K1, K2, K2,t(t > 2)}.

(c) (Catlin [7]) F (G′) = 2|V (G′)| − |E(G′)| − 2.

Theorem H. Let G be a 3-edge-connected graph of order n. Let G′ be the reduction of
G. Then each of the following holds:

(a) (Chen [13]). If n 6 14, then either G ∈ SL or G′ ∈ {P, P14}.
(b) (Chen, et al. [16]). If α′(G) 6 7, then G is supereulerian if and only if G′ 6∈ {P, P14}.

If n 6 15, then G is supereulerian if and only if G′ 6∈ {P, P14}.

Theorem I (Chen, et al. [12]). Let G be a 3-edge-connected graph and let S ⊆ V (G)
be a vertex subset such that |S| 6 12. Then either G has a closed trail H such that
S ⊆ V (H), or G can be contracted to the Petersen graph in such a way that the preimage
of each vertex of the Petersen graph contains at least one vertex in S.

Theorem J (Li, et al. [21]). Let G be a 3-edge-connected reduced graph and G 6∈ SL.
(a) (Lemma 2.6 [21]). If F (G) = 3, then |D3(G)| = the number of edge-cuts of size 3.
(b) (Theorem 1.3 [21]). If G has at most 11 edge-cuts of size 3, then G = P .

Lemma 2.1. If G is a reduced graph with κ′(G) > 3 and G 6∈ SL∪ {P}, then |D3(G)| >
12.

Proof. Since G 6∈ SL and κ′(G) > 3, G′ 6∈ {K1, K2, K2,t}. By Theorem G(b), F (G) > 3.
If F (G) = 3, then since G 6∈ SL ∪ {P}, by Theorem J(b), G has at least 12 edge-cuts

of size 3 and so by Theorem J(a) |D3(G)| > 12.
If F (G) > 4, then by Theorem G(c), 4 6 F (G) = 2|V (G)| − |E(G)| − 2, and so

|E(G)| 6 2|V (G)| − 6. Since 2|E(G)| =
∑

v∈V (G) dG(v) =
∑

i=3 i|Di(G)| and |V (G)| =∑
i=3 |Di(G)|,

2|E(G)| 6 4|V (G)| − 12 = 4|D3(G)|+ 4|D4(G)|+ · · · − 12;

3|D3(G)|+ 4|D4(G)|+ 5|D5(G)|+ · · · 6 4|D3(G)|+ 4|D4(G)|+ · · · − 12;

12 + |D5(G)|+ · · · 6 |D3(G)|.

Thus, |D3(G)| > 12.
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3 Proof of Theorem 1.1

We prove the following lemma first.

Lemma 3.1. Let G be a graph of order n with the properties stated in Theorem 1.1. Let
G′ 6= K1 be the reduction of G. For a vertex v in V (G′), let H(v) be the preimage of v in
G. Let S0 = {v ∈ V (G′) | |V (H(v))| > 1}. Let Y = V (G′) − S0. Then, for n > N(p, ε)
(as required in Theorem 1.1), |V (G′)| 6 3p− 1. Furthermore, each of the following holds:

(a) If |V (H(v))| > 1 then |V (H(v))| > n
p
− ε+ 1.

(b) |S0| 6 p. If ε < 1, |S0| < p.
(c) Y is an independent set and so for any v ∈ Y , NG′(v) ⊆ S0.

Proof. Let c = |V (G′)| and let p1 = p+ 1. When n > (ε− 5)p(p+ 1), n
p
− ε+ 3 > n

p1
− 2.

Since κ′(G) > 3, d(u) > 3 for any u ∈ V (G). Thus, for any xy ∈ E(G), by (3)

d(x) + d(y) > max{d(x), d(y)}+ 3 > δL(G) + 3 >
n

p
− ε+ 3 >

n

p1
− 2.

Thus, σ2(G) > n
p1
− 2. By n > 12p(p+ 1) = 12p1(p1 − 1) and Theorem F, c 6 3p1 − 4 =

3p− 1.

(a) Since |H(v)| > 1, H(v) has an edge xy. We may assume that d(x) > d(y). By (3)

d(x) = max{d(x), d(y)} > δL(G) >
n

p
− ε. (4)

Let i(x) be the number of edges in E(G′) incident with x. Then by (4)

n

p
− ε 6 d(x) 6 i(x) + |V (H(v))| − 1;

n

p
− ε+ 1− i(x) 6 |V (H(v))|. (5)

Since i(x) 6 dG′(v) 6 c−1 6 3p−2, by (5) and n > (6p+ε−4)p, |V (H(v))| > 3p−1 > c.
Hence, H(v) has edges that are not incident with any edges in E(G′). We may assume
xy is such an edge and so i(x) = 0. Therefore, by (5), |V (H(v))| > n

p
− ε+ 1.

(b) Since ∪v∈S0V (H(v)) ⊂ V (G), |S0|(np − ε + 1) 6 n and so |S0| 6 np
n−(ε−1)p . If ε < 1,

n− (ε− 1)p > n, and so |S0| < p. Otherwise, for n > (ε− 1)p(p− 1), |S0| 6 p.

(c) Suppose that there are two vertices y1 and y2 in Y such that y1y2 ∈ E(G′). Since
y1 and y2 are trivial vertices in G′, dG(yi) = dG′(yi) 6 c − 1 (i = 1, 2). By (3) and
n > (6p+ ε− 4)p,

3p− 2 > c− 1 > max{dG(y1), dG(y2)} >
n

p
− ε > 2(3p− 2),

a contradiction. Lemma 3.1 is proved.
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Proof of Theorem 1.1. Let G′ be the reduction of G. If G′ = K1, Theorem 1.1 is true
trivially. We may assume that G′ 6= K1. Since κ′(G′) > 3, G′ 6∈ {K1, K2, K2,t (t > 2)}.

By Lemma 3.1, |S0| 6 p. For each vertex v ∈ Y , NG′(v) ⊆ S0. Thus, for any edge e
in E(G′), at least one of the ends of e is in S0. Therefore, α′(G′) 6 |S0| 6 p.

Since dG′(v) > 3 for any v ∈ Y , |E(G′)| > 3|Y |. By Theorem G(b), F (G′) > 3. By
Theorem G(c) and |V (G′)| = |S0|+ |Y |,

3 6 F (G′) = 2|V (G′)| − |E(G′)| − 2 6 2(|S0|+ |Y |)− 3|Y | − 2.

It follows that |Y | 6 2|S0| − 5. Therefore, |V (G′)| = |S0|+ |Y | 6 3|S0| − 5 6 3p− 5.

(i) G′ has a closed trail H containing S0. By Lemma 3.1 (c), for any y ∈ Y , NG′(y) ⊆ S0.
Thus, H is a dominating closed trail containing all the nontrivial vertices in S0. By
Theorem G(a), G has a dominating closed trail. (i) is proved.

(ii) |S0| = p. By Lemma 3.1 (a), for any v ∈ S0, |V (H(v))| > n
p
− ε+ 1. Then

n = |V (G)| =
∑
v∈S0

|V (H(v))|+
∑
u∈Y

|V (H(u))| > |S0|(
n

p
− ε+ 1) + |Y | = n− pε+ p+ |Y |.

Thus, |Y | 6 (ε− 1)p, and so |V (G′)| = |S0|+ |Y | 6 p+ (ε− 1)p = εp. (ii) is proved.

(iii) δ(G) > 4. If Y = ∅, then |V (G′)| = |S0| 6 p. We are done for this case.
Next, Y 6= ∅. By Lemma 3.1(c), for any u ∈ Y , NG′(u) ⊆ S0. Since for every u ∈ Y ,

u is a trivial vertex in G′ and δ(G) > 4, dG′(u) = dG(u) > 4. Hence, |E(G′)| > 4|Y |.
By Theorem G(b), |E(G′)| 6 2|V (G′)| − 5. Since |V (G′)| = |Y |+ |S0|, we have

4|Y | 6 |E(G′)| 6 2|V (G′)| − 5 = 2(|Y |+ |S0|)− 5;

2|Y | 6 2|S0| − 5.

Since |Y | is an integer, |Y | 6 |S0|−3, and so |V (G′)| = |Y |+ |S0| 6 2|S0|−3 6 2p−3.

4 Applications of Theorem 1.1

Using Theorem 1.1, we obtain some new results on Lai’s degree conditions for supereule-
rian graphs and hamiltonian line graphs.

For Hamiltonian line graphs, the following theorem is an improvement of Theorem D.

Theorem 4.1. Let G be a 3-edge-connected simple graph of order n. For any given
ε < 16

13
, if δL(G) > n

13
− ε, then, for n sufficiently large, G has a dominating closed trail,

i.e., L(G) is Hamiltonian, if and only if G does not have the Petersen graph P as a
nontrivial contraction.

Proof. This is the special case of Theorem 1.1 with p = 13 and ε < 16
13

. Let G′ be the
reduction of G. If G ∈ SL, then we are done. Thus, we may assume that G 6∈ SL. Let S0

and Y be the sets defined in Theorem 1.1. Then |S0| 6 13.
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Case 1. |S0| = 13. By Theorem 1.1(ii), p = 13 and ε < 16
13

, |V (G′)| 6 εp < 16
13
· 13 = 16.

Thus, 13 6 |V (G′)| 6 15. By Theorem H(b), G′ = P14. Then Y = V (P14) − S0 and
|Y | = 1.

Let u be the only vertex in Y . Note that P14 is obtained by replacing a vertex in the
Petersen graph P with a K2,3 such that P14/K2,3 = P . Let v0 be the contraction image
of K2,3 in P . Then v0 is a non-trivial contraction. If u is a vertex in the K2,3 subgraph in
P14, then G has the Petersen graph P as a nontrivial contraction. We are done for this
case.

Next, u is a vertex in V (P14)− V (K2,3). Then P has a closed trail containing V (P )−
{u}. Thus, G′ = P14 has a dominating closed trail containing S0. By Theorem 1.1(i), G
has a dominating closed trail. Theorem 4.1 is proved for Case 1.

Case 2. |S0| 6 12. By Theorem I, one of the following holds:
Subcase 1. G′ has a closed trail H containing S0. By Lemma 3.1(c) for any v ∈ Y =
V (G′)−S0, NG′(v) ⊆ S0 and so the closed trail H is a dominating closed trail containing
all the nontrivial vertices of G′. By Theorem 1.1(i), G has a dominating closed trail.

Subcase 2. G′ can be contracted to P in such a way that the preimage of each vertex of
P contains at least one vertex in S0. Then G has P as a nontrivial contraction.

Ga

Figure 4.1

qg
B
B
BB

�
�
�qg
Q
Q
Q

qg����
qg� qgqg�������qg

@
B
B
BB
qgqHHHHqg

Q
Q
Qq�

q qg
qg����qg�������q
@

qg
B
B
BB

q
Q
Q
Q

Remark. Let Ga be the graph shown in Figure 4.1. Let S be the set of the 13 vertices
marked by

⊙
. Then Ga does not have a closed trail containing S. Let G be the graph

obtained from Ga by replacing each vertex with
⊙

by a complete graph Ks where s = n−5
13

.
Then δL(G) > s− 1 = n−18

13
. But G does not have a dominating closed trail. By Theorem

A, L(G) is non-Hamiltonian. Thus, p = 13 in Theorem 4.1 cannot be replaced by p = 14
and ε cannot be reduced to 18

13
with p = 13.

For supereulerian graphs, the following theorem is an improvement of Theorem E.

Theorem 4.2. Let G be a 3-edge-connected graph of order n with δ(G) > 4. For any
given ε < 4

3
, if δL(G) > n

12
− ε, then, for n sufficiently large, G ∈ SL if and only if G does

not have the Petersen graph P as a nontrivial contraction.

Proof. This is the special case of Theorem 1.1 with p = 12 and ε < 4
3
. Let G′ be the

reduction of G. If G′ ∈ SL, then by Theorem G(a), graph G ∈ SL, and we are done.
Thus, we may assume that G′ 6∈ SL and so G′ 6= K1. Since κ′(G) > 3, κ′(G′) > 3.

Let S0 and Y be the two sets defined in Theorem 1.1. Since δ(G) > 4, D3(G
′) ⊆ S0.

By Theorem 1.1, |D3(G
′)| 6 |S0| 6 12. By Lemma 2.1, either G′ = P or |D3(G

′)| = 12.
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Case 1. |D3(G
′)| = |S0| = 12. By Theorem 1.1(ii), |V (G′)| 6 εp < 4

3
· 12 = 16, and so

|V (G′)| 6 15. By Theorem H(b), since G′ 6∈ SL, G′ ∈ {P, P14}, contrary to |D3(G
′)| = 12.

Case 2. G′ = P . Since |D3(G
′)| = |S0| = 10 = |V (G′)|, each vertex of G′ = P is a

non-trivial contraction. Theorem 4.2 is proved.

If δ(G) > 4 is dropped from Theorem 4.2, then the best Lai’s degree condition for
3-edge-connected supereulerian graphs is the following:

Theorem 4.3. Let G be a 3-edge-connected simple graph of order n. If δL(G) > n
8
− 13

8
,

then, for n sufficiently large, G ∈ SL if and only if G′ 6= P .

Proof. This is the special case of Theorem 1.1 with p = 8 and ε = 13
8

. Using some prior
results on 3-edge-connected reduced graphs in [14], one can prove Theorem 4.3 in the
same way as the proof of Theorem 4.2. The details are omitted here.

Remark. Let G1 be the graph shown in Figure 4.2, where each
⊙

represents a Kn−6
8

subgraph. Then G1 is a 3-edge-connected graph of order n with δL(G) > n−6
8
−1 = n

8
− 14

8
.

However, G′1 = P14. Thus, the Lai’s degree condition in Theorem 4.3 is the best possible.
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