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Abstract
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monomial ideal to have a linear resolution over fields of characteristic 2.
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1 Introduction

Recently there has been interest in finding a characterization of square-free monomial
ideals with linear resolutions in terms of the combinatorics of their associated simplicial
complexes or hypergraphs. See, for example, [5], [8], [9], [10], and [11]. This exploration
was motivated by a theorem of Fröberg from [7] in which he gives the following combi-
natorial classification of the square-free monomial ideals generated in degree two which
have linear resolutions.

Theorem 1 (Fröberg [7]). The edge ideal of a graph G has a linear resolution if and only
if the complement of G is chordal.

This characterization has inspired the introduction of several different definitions of
a “chordal” hypergraph with the goal of achieving a generalization of Fröberg’s theorem
to higher-dimensions. Emtander [5] and Woodroofe [11] use their respective definitions
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of a “chordal” hypergraph to give a sufficient condition for a square-free monomial ideal
to have a linear resolution over all fields. In [3], the authors introduce the notion of a
d-chorded simplicial complex and use it to give a necessary combinatorial condition for
an ideal to have a linear resolution over all fields.

Obtaining a complete generalization of Fröberg’s theorem to higher dimensions is
made difficult by the fact that there exist square-free monomial ideals which have linear
resolutions over some fields and not others. In particular the existence of a linear resolution
depends on the characteristic of the field. The Stanley-Reisner ideal of the triangulation
of the real projective plane is a typical example and has a linear resolution only over fields
of characteristic not equal to 2. Such examples tell us that when an ideal is generated
in degrees higher than two it is not always the combinatorics of the associated simplicial
complex that determines the existence of a linear resolution. In this paper we concentrate
on fields of characteristic 2 because in this case we have a more direct relationship between
the combinatorics of a complex and its simplicial homology (see [2]) which is of primary
interest when determining the existence of a linear resolution.

The condition given in [3] is not sufficient to ensure linear resolution. In this paper
we are able to characterize the obstructions to the converse over fields of characteristic 2
by demonstrating that all counter-examples share a specific combinatorial property. In
Section 3 we are able to give the following necessary and sufficient condition for an ideal to
have a linear resolution over fields of characteristic 2 based on the combinatorial structure
of the Stanley-Reisner complex of the ideal.

Theorem 2. Let I be generated by square-free monomials in the same degree. Then I
has a linear resolution over fields of characteristic 2 if and only if the Stanley-Reisner
complex of I is chorded.

Using this result one can give a new combinatorial proof of Theorem 1 over fields of
characteristic 2 (Connon [1]).

2 Background

Let k be a field and let R = k[x1, . . . , xn]. For any monomial ideal I in R there is a
minimal graded free resolution of I of the form

0→
⊕
j

R(−j)βm,j(I) →
⊕
j

R(−j)βm−1,j(I) → · · · →
⊕
j

R(−j)β0,j(I) → I → 0

where R(−j) denotes the free R-module obtained by shifting the degrees of R by j
and m 6 n. The numbers βi,j(I) are called the graded Betti numbers of I. We say
that I has a d-linear resolution over k if βi,j(I) = 0 for all j 6= i+ d. It follows that I
is generated in degree d.

It is known that classifying monomial ideals with linear resolutions is equivalent to
classifying Cohen-Macaulay monomial ideals and that it is sufficient to consider square-
free monomials [4, 6].

the electronic journal of combinatorics 22(1) (2015), #P1.63 2



By studying square-free monomial ideals we are able to make use of techniques from
Stanley-Reisner theory and facet ideal theory by associating our ideal to a combinatorial
object. Recall that an (abstract) simplicial complex Γ on the finite set of vertices V (Γ)
is a collection of subsets of V (Γ) called faces or simplices such that if F ∈ Γ and F ′ ⊆ F
then F ′ ∈ Γ. The faces of Γ that are not strictly contained in any other face of Γ are
called facets and we denote the facet set of Γ by Facets(Γ). If Facets(Γ) = {F1, . . . , Fk}
then we write

Γ = 〈F1, . . . , Fk〉.

The dimension of a face F of Γ is equal to |F | − 1. A face of Γ of dimension d is
referred to as a d-face. The dimension of the simplicial complex Γ, denoted by dim Γ,
is the maximum dimension of its facets. The complex Γ is pure if these facets all share
the same dimension.

The pure d-skeleton of a simplicial complex Γ, written Γ[d], is the simplicial complex
whose facets are the faces of Γ of dimension d. The complex Γ is said to be d-complete
when all (d+ 1)-subsets of V (Γ) are faces of Γ. The d-complete complex on n vertices is
denoted Λd

n. The d-complement of Γ is the complex Γd with

Facets(Γd) = {F ⊂ V (Γ) | |F | = d+ 1, F /∈ Γ}.

The induced subcomplex of Γ on the vertex set S ⊆ V (Γ), denoted ΓS, is the
simplicial complex whose faces are those faces of Γ contained in S.

A pure d-dimensional simplicial complex is d-path-connected when each pair of d-
dimensional faces are joined by a sequence of d-dimensional faces where adjacent pairs
intersect in (d− 1)-faces. The d-path-connected components of a pure d-dimensional
simplicial complex are the maximal subcomplexes which are d-path-connected.

The Stanley-Reisner complex of the square-free monomial ideal I in the polyno-
mial ring k[x1, . . . , xn] is the simplicial complex on the vertices x1, . . . , xn whose faces are
given by the square-free monomials not belonging to I. The Stanley-Reisner complex of I
is denoted N (I). Conversely, the Stanley-Reisner ideal of the simplicial complex Γ, de-
noted N (Γ), is the ideal generated by monomials xi1xi2 · · ·xik such that {xi1 , xi2 , . . . , xik}
is not a face of Γ. See Figure 1 for an example of this relationship.

x1

x4

x2

x3

SR ideal

SR complex

I = (       ,         )x1 x4 x2x3 x4

Figure 1: Stanley-Reisner relationship

The facet complex of the square-free monomial ideal I in k[x1, . . . , xn] is the sim-
plicial complex F(I) on the vertices x1, . . . , xn whose facets are given by the minimal
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monomial generators of I. The facet ideal of the complex Γ is generated by the mono-
mials xi1xi2 · · ·xik such that {xi1 , xi2 , · · · , xik} is a facet of Γ. The facet ideal of Γ is
denoted by F(Γ). An example is given in Figure 2.

x1

x3

x2 x4

x5

facet complex

I = (          ,          ,       )

facet ideal

x1x2x3 x2x3 x4 x3 x5

Figure 2: Facet ideal relationship

In [6], Fröberg shows that a square-free monomial ideal has a linear resolution if and
only if the simplicial homology groups of its Stanley-Reisner complex and its induced
subcomplexes vanish in all but one dimension.

Theorem 3 (Fröberg [6]). A square-free monomial ideal I has a t-linear resolution over
a field k if and only if H̃i((N (I))S; k) = 0 for all S ⊆ V (N (I)) and i 6= t− 2.

Therefore one way to discover which square-free monomial ideals have linear resolu-
tions is to examine the simplicial homology of their Stanley-Reisner complexes. In [2] it is
shown that non-vanishing d-dimensional simplicial homology in characteristic 2 is equiv-
alent to the presence of a particular combinatorial structure in the simplicial complex
called a d-dimensional cycle.

Definition 4 (d-dimensional cycle). For d > 1, a d-dimensional cycle is a pure
d-dimensional simplicial complex which is d-path-connected and has the property that
each of its (d− 1)-dimensional faces is contained in an even number of its d-dimensional
faces.

Examples of 2-dimensional cycles are given in Figure 3.

(a) A triangulation of the sphere

x

y

x

y

(b) A triangulation of the sphere pinched along a 1-face

Figure 3: Examples of 2-dimensional cycles.
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A graph cycle can be thought of as the 1-dimensional simplicial complex necessary
and sufficient to generate 1-dimensional simplicial homology. The motivation for the
concept of the d-dimensional cycle is to generalize the graph cycle to higher dimensions
from this homological perspective. Recall that the support complex of a homological
d-chain c = α1F1 + · · · + αqFq, where each αi is a non-zero element of the field k under
consideration, is the simplicial complex 〈F1, . . . , Fq〉. The d-chain c is a homological
d-cycle if it belongs to the kernel of the d-boundary operator so that ∂d(c) = 0. It is
considered a d-boundary if ∂d+1(c′) = c for some (d+ 1)-chain c′. In this paper we will
make use of the following close relationship between d-dimensional cycles and homological
d-cycles over the field Z2.

Proposition 5 (Proposition 5.1 in Connon [2]). The sum of the d-faces of a d-dimensional
cycle is a homological d-cycle over Z2 and, conversely, the d-path-connected components
of the support complex of a homological d-cycle over Z2 are d-dimensional cycles.

The following two propositions provide ways of building higher and lower-dimensional
cycles from a d-dimensional cycle.

Proposition 6 (Proposition 4.4 in Connon [2]). Let Ω be a d-dimensional cycle with d-
faces F1, . . . , Fk in a simplicial complex Γ. Suppose that there exist (d+1)-faces A1, . . . , A`
in ΓV (Ω) such that, over Z2 we have

∂d+1

(∑̀
i=1

Ai

)
=

k∑
j=1

Fj (1)

and for no strict subset of {A1, . . . , A`} does (1) hold. Let v be a vertex with v /∈ V (Ω)
and let Φ = 〈F1 ∪ v, . . . , Fk ∪ v,A1, . . . , A`〉 then Φ is a (d+ 1)-dimensional cycle.

Proposition 7 (Proposition 4.3 in Connon [2]). Let Ω be a d-dimensional cycle and let
v ∈ V (Ω). If F1, . . . , Fk are the d-faces of Ω which contain v then the (d − 1)-path-
connected components of the complex 〈F1 \ {v}, . . . , Fk \ {v}〉 are (d − 1)-dimensional
cycles.

A d-dimensional cycle is called face-minimal if no strict non-empty subset of its
d-dimensional faces also forms a d-dimensional cycle. The complex in Figure 4a is an
example of a non-face-minimal 2-dimensional cycle and the complex in Figure 4b is a
face-minimal 2-dimensional cycle.

Remark 8. It is not difficult to show that any d-dimensional cycle can be written as a
disjoint union of face-minimal cycles (see [2, Lemma 4.7]).

To generalize Fröberg’s criterion, we develop a higher-dimensional counterpart to
chordal graphs.

Definition 9 (chord set, d-chorded, chorded [3]). Given a d-dimensional cycle Ω in
a simplicial complex Γ a chord set of Ω in Γ is a set C of d-dimensional faces in ΓV (Ω)

not belonging to Ω which satisfy the following properties:
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(a) Two hollow triangulated square pyramids glued along a 1-face (b) The hollow tetrahedron

Figure 4: Non-face-minimal versus face-minimal

1. the simplicial complex whose set of facets is C∪Facets(Ω) consists of k d-dimensional
cycles Ω1, . . . ,Ωk for k > 2

2. each d-face in C is contained in an even number of the cycles Ω1, . . . ,Ωk,

3. each d-face of Ω is contained in an odd number of the cycles Ω1, . . . ,Ωk,

4. V (Ωi) ( V (Ω) for i = 1, . . . , k.

A simplicial complex Γ is d-chorded if it is pure of dimension d > 1 and all face-
minimal d-dimensional cycles in Γ which are not d-complete have a chord set in Γ. We say
that an arbitrary simplicial complex Γ is chorded if Γ[d] is d-chorded for all 1 6 d 6 dim Γ.

Remark 10. Notice that the conditions in Definition 9 imply that over Z2 we have
∑

i Ωi =
Ω.

As a consequence of the properties of a chord set and Remark 8 all face-minimal d-
dimensional cycles in a d-chorded complex can be broken down into cycles on fewer and
fewer vertices until only d-complete cycles remain. It is shown in [2] that these are the
d-dimensional cycles on the smallest number of vertices, namely d + 2. The notion of a
d-chorded simplicial complex generalizes the graph theoretic notion of a chordal graph.
In particular a 1-chorded complex is a chordal graph and conversely. See Figure 5 for an
example of a 2-chorded simplicial complex. This complex is comprised of a 2-dimensional
cycle, the hollow octahedron, with a chord set shown in a darker shading.

Figure 5: A 2-chorded simplicial complex

Some of the simplest examples of d-chorded simplicial complexes are the d-complete
complexes.
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Proposition 11 (d-complete ⇒ d-chorded). For n > d + 1, the d-dimensional d-
complete simplicial complex Λd

n is d-chorded.

Proof. Let Ω be a face-minimal d-dimensional cycle in Λd
n which is not d-complete. Then

Ω is also a face-minimal d-dimensional cycle in the simplex on V (Ω). Call this simplex Γ.
Since any simplex is acyclic over any field, we have H̃d(Γ;Z2) = 0. Hence Ω, which is the
support complex of a d-cycle by Proposition 5, is the support complex of a d-boundary
over Z2. It is shown in [3, Lemma 5.9] that under these conditions Ω has a chord set in
Γ. Since Λd

n = Γ[d], Ω has a chord set in Λd
n as well. Therefore Λd

n is d-chorded.

Recall that the clique complex of a graph G, denoted ∆(G), is the simplicial complex
on the same vertex set as G whose facets are given by the vertices in the maximal complete
subgraphs of G. In fact, Fröberg originally gave Theorem 1 in terms of the Stanley-Reisner
ideal of the clique complex of a graph. It is not hard to see that this ideal is equivalent
to the edge ideal of a graph’s complement.

Theorem 12 (Fröberg [7]). If a graph G is chordal then the Stanley-Reisner ideal of
∆(G) has a 2-linear resolution over any field. Conversely, if the Stanley-Reisner ideal of
a simplicial complex Γ has a 2-linear resolution over any field, then Γ = ∆(Γ[1]) and Γ[1]

is chordal.

There exists a similar notion to the clique complex in higher dimensions.

Definition 13 (d-closure). The d-closure of a pure d-dimensional simplicial complex
Γ, denoted ∆d(Γ), is the simplicial complex on V (Γ) whose faces are given in the following
way:

• the d-faces of ∆d(Γ) are exactly the d-faces of Γ

• all subsets of V (Γ) with at most d elements are faces of ∆d(Γ)

• a subset of V (Γ) with more than d+ 1 elements is a face of ∆d(Γ) if and only if all
of its subsets of d+ 1 elements are faces of Γ.

The d-closure of Γ is also called the complex of Γ [5] and the clique complex of
Γ [10]. We use the term d-closure to keep track of the dimension at which the operation
is applied. Note that the pure d-skeleton of ∆d(Γ) is Γ. See Figure 6 for an example of
2-closure.

The motivation for properties 2 and 3 in Definition 13 is algebraic in nature. We
are interested in when the Stanley-Reisner ideals of these d-closures have (d + 1)-linear
resolutions. The minimal generators of these ideals must all have size d + 1 and so the
minimal non-faces of these complexes must all have size d+ 1. Therefore such a complex
must contain all faces of dimension less than d which is ensured by property 2. As well,
any non-face of size larger than d+ 2 must contain a minimal non-face of size d+ 1. This
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c

d e

b

a

(a) Γ = 〈abc, abd, acd, bcd, bce, cde〉

c

d e

b

a

(b) ∆2(Γ) = 〈abcd, bce, cde, ae〉

Figure 6: 2-closure

follows from property 3. Therefore the minimal generators of the Stanley-Reisner ideal of
the d-closure of a simplicial complex will all have degree d+ 1.

The following lemma explains the results of subsequent applications of the closure
operation on different dimensions.

Lemma 14 (The n-closure is stronger than the m-closure when n < m). Let Γ
be a pure n-dimensional simplicial complex.

1. If m < n then ∆m(∆n(Γ)[m]) is a simplex.

2. If m = n then ∆m(∆n(Γ)[m]) = ∆n(Γ).

3. If m > n then ∆m(∆n(Γ)[m])[t] = ∆n(Γ)[t] for all t > m.

Proof.

1. If m < n then ∆n(Γ)[m] is m-complete as the n-closure adds all faces of dimension
less than n. Therefore by the definition of m-closure the set of all vertices of ∆n(Γ)[m]

is a face of ∆m(∆n(Γ)[m]) and so ∆m(∆n(Γ)[m]) is a simplex.

2. If m = n then by the nature of n-closure

∆m(∆n(Γ)[m]) = ∆n(∆n(Γ)[n]) = ∆n(Γ).

3. Let m > n and let F be a facet of ∆n(Γ)[t]. Then every subset A of F of size m+1 6
t+ 1 is also a face of ∆n(Γ)[t] so A ∈ ∆n(Γ)[m]. Therefore F ∈ ∆m(∆n(Γ)[m])[t].

Conversely, if F is a facet of ∆m(∆n(Γ)[m])[t] then all subsets of F of size m+1 6 t+1

belong to ∆n(Γ)[m]. Therefore ∆n(Γ)
[m]
F is m-complete. Thus all subsets of F of size

n + 1 < m + 1 are in ∆n(Γ)[m] which means they are n-faces of Γ. Hence by the
definition of n-closure F ∈ ∆n(Γ)[m].
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In [3] we were able to show the following theorem which gives a necessary combinatorial
condition for a Stanley-Reisner ideal to have a linear resolution over fields of characteristic
2. It is a generalization of one direction of Theorem 12 in the case of fields having
characteristic 2.

Theorem 15 (Theorem 6.1 in Connon and Faridi [3]). Let Γ be a simplicial complex, let
k be any field of characteristic 2 and let d > 1. If N (Γ) has a (d + 1)-linear resolution
over k then Γ = ∆d(Γ

[d]) and Γ[d] is d-chorded.

The converse of Theorem 15 does not hold. The following is a counterexample.

Example 16. Let Γ be the pure 2-dimensional simplicial complex on the vertex set
{x0, . . . , x5} whose minimal non-faces are {x0, x1, x2} and {x3, x4, x5}. Note that Γ is the
join of two triangle boundaries, and is thus a triangulation of a 3-sphere. The complex
Γ is a 2-chorded simplicial complex and the Stanley-Reisner ideal of the 3-dimensional
simplicial complex ∆2(Γ) does not have a linear resolution over Z2. The pure 3-skeleton
of ∆2(Γ) is a 3-dimensional cycle with no chord set which is not 3-complete and we have
H̃3(∆2(Γ);Z2) 6= 0.

In the next section we determine which d-chorded complexes have d-closures which do
not have (d + 1)-linear resolutions in characteristic 2. By doing this we give a necessary
and sufficient combinatorial condition for an ideal to have a linear resolution over a field
of characteristic 2.

3 Combinatorial criterion for linear resolution in characteristic 2

As we can see from Theorem 3 for a square-free monomial ideal to have a linear resolu-
tion its Stanley-Reisner complex must have vanishing simplicial homology in all but one
dimension. Theorem 15 shows that in characteristic 2 this corresponds to a pure complex
that is d-chorded, where d is the dimension of the complex.

Conversely, in order to show that a particular class of simplicial complexes have
Stanley-Reisner ideals with linear resolutions we must show that the simplicial homol-
ogy of these simplicial complexes and of their induced subcomplexes vanishes in the right
dimensions. Consider any pure d-dimensional simplicial complex Γ. We know that ∆d(Γ)
contains all possible faces of dimension less than d. This means that ∆d(Γ) cannot have
any non-zero simplicial homology in dimensions less than d− 1. Furthermore, when Γ is
d-chorded ∆d(Γ) has vanishing homology in dimension d also and so altogether we have
the following result.

Proposition 17 (Proposition 5.8 in Connon and Faridi [3]). For any d-chorded simplicial
complex Γ and any field k of characteristic 2 we have H̃i(∆d(Γ)W ; k) = 0 for all W ⊆
V (Γ), 0 6 i 6 d− 2 and i = d.

As we can see from Example 16 it is not necessarily the case that the upper-level
homology groups of the d-closure of a d-chorded complex vanish. In examples such as
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this the Stanley-Reisner ideal of the d-closure will not have a linear resolution. In these
cases the d-closure of the complex has a pure m-skeleton which is not m-chorded for some
m > d. When we require these m-skeletons to be m-chorded we obtain a necessary and
sufficient condition for linear resolution over fields of characteristic 2.

Theorem 18 (Criterion for a linear resolution I). Let I be generated by square-free
monomials of degree d+ 1. The following are equivalent:

a) I has a linear resolution over some (equivalently any) field of characteristic 2.

b) N (I) is chorded.

c) N (I)[m] is m-chorded for all m > d.

d) ∆d(F(I)d) is chorded.

e) ∆d(F(I)d)
[m] is m-chorded for all m > d.

Proof. Let Γ = N (I) and let Υ = F(I)d.

a) ⇒ b) Suppose that I has a (d + 1)-linear resolution over any field of characteristic 2.
By Theorem 15 we know that Γ = ∆d(Γ

[d]) and Γ[d] is d-chorded. We also know that
Γ is m-complete for all m < d by the definition of d-closure. Therefore it follows from
Proposition 11 that Γ[m] is m-chorded for m < d.

Let m > d and let Ω be any face-minimal, non-m-complete m-dimensional cycle in
Γ[m]. By Proposition 5 we know that Ω is the support complex of a homological m-cycle
over Z2. The ideal I has a linear resolution over Z2 and so we know that H̃m(ΓV (Ω);Z2) = 0
by Theorem 3. Thus Ω is also the support complex of an m-boundary of faces of ΓV (Ω)

over Z2. It follows by [3, Lemma 5.9] we know that Ω has a chord set in ΓV (Ω). Hence Γ[m]

is m-chorded. Therefore Γ[m] is m-chorded for all 1 6 m 6 dim Γ and so Γ is chorded.

b) ⇒ c) This is clear.

c)⇒ a) Suppose that Γ[m] is m-chorded for all m > d. Since I is generated by square-free
monomials of degree d + 1 then by [3, Proposition 5.6] we know that its Stanley-Reisner
complex Γ satisfies Γ = ∆d(Γ

[d]). Therefore by Proposition 17 we know that for all
W ⊆ V (Γ) we have H̃i(ΓW ; k) = 0 for 0 6 i 6 d− 2 and i = d.

Let m > d and let W ⊆ V (Γ). We would like to show that H̃m(ΓW ; k) = 0. By assump-
tion Γ[m] is m-chorded. Therefore by Proposition 17 we know that H̃m(∆m(Γ[m])W ; k) = 0.
Furthermore, by Lemma 14 we have

∆m(Γ[m])[t] = ∆m(∆d(Γ
[d])[m])[t] = ∆d(Γ

[d])[t]

for all t > m. Thus the m-faces and the m+1-faces of ∆m(Γ[m])W and ΓW = ∆d(Γ
[d])W

are equivalent. Therefore we have

H̃m(ΓW ; k) = H̃m(∆m(Γ[m])W ; k) = 0
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for all m > d. Consequently H̃m(ΓW ; k) = 0 for all m 6= d − 1. Hence I has a
(d+ 1)-linear resolution by Theorem 3.

b) ⇔ d) It is easy to see that the d-complement of F(I) is equal to the pure d-skeleton
of N (I) = Γ. Thus Υ = Γ[d] and so ∆d(Υ) is chorded if and only ∆d(Γ

[d]) = N (I) is
chorded.

c) ⇔ e) As before, Υ = Γ[d] and so ∆d(Υ)[m] is m-chorded for all m > d if and only
∆d(Γ

[d])[m] is m-chorded for all m > d.

The condition for (d+ 1)-linear resolution in Theorem 18 requires checking that every
non-m-complete, face minimal m-dimensional cycle in N (I)[m] has a chord set for all
m > d which can be tedious. However our next result shows that in most cases assuming
that N (I)[d] is d-chorded suffices. The only possible obstruction to this implication is
the presence of a 1-complete, face-minimal, m-dimensional cycle which is not m-complete
and which has no chord set. Thus to check for a linear resolution one need only verify
that N (I)[d] is d-chorded and that any cycles of this special nature have chord sets. In
general we expect these types of cycles to occur infrequently. For example, in the 2-
dimensional case we find that of the 235 2-dimensional cycles on 8 vertices only 0.063%
are face-minimal and 1-complete without being 2-complete. In the case of 9 vertices
there are 256 2-dimensional cycles and approximately 0.00023% of those cycles fall into
this category. It seems likely that this percentage would continue to decrease as the
number of vertices increased as requiring a complete 1-skeleton is more restrictive the
more vertices are present. An example of a simplicial complex which is 2-chorded, but
whose closure contains one of these problem cycles is given in Example 16. In this case
Γ is 2-chorded but ∆2(Γ)[3] is not 3-chorded. The simplicial complex ∆2(Γ)[3] is a face-
minimal, 1-complete, 3-dimensional cycle which is not 3-complete and which has no chord
set. The Stanley-Reisner ideal of the 3-dimensional simplicial complex ∆2(Γ) does not
have a linear resolution over Z2.

For an illustration of the technique used in the proof of the following theorem see
Figure 7.

Theorem 19 (Chordedness can be transferred upwards in the closure). Let Γ be
a d-chorded simplicial complex. Then ∆d(Γ) is chorded if and only if for all m > d each
1-complete, face-minimal, non-m-complete m-dimensional cycle in ∆d(Γ) has a chord set
in ∆d(Γ).

Proof. If ∆d(Γ) is chorded then all face-minimal, non-m-complete m-dimensional cycles
in ∆d(Γ) have chord sets in ∆d(Γ) for all m by definition.

Now suppose that for all m > d each 1-complete, face-minimal, non-m-complete m-
dimensional cycle in ∆d(Γ) has a chord set in ∆d(Γ). We would like to show that ∆d(Γ)
is chorded. By the nature of the d-closure we know that ∆d(Γ) is t-complete for all t < d.
Thus ∆d(Γ)[t] is t-chorded for all t < d by Proposition 11.
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v

u

(a) The 2-dimensional cycle Ω with 1-dimensional
cycles Φ1 and Φ2 shown in bold

v

(b) The 2-dimensional cycles
Ω1 and Ω2 joined by v

u

(c) The 2-dimensional cycle Ω3 = 〈H1, . . . ,Hs〉

Figure 7: Construction used in the proof of Theorem 19.

For the remaining cases we will use induction on t. When t = d we have ∆d(Γ)[d] = Γ.
Since Γ is d-chorded by assumption this proves the base case.

Now suppose that t > d and we know that ∆d(Γ)[n] is n-chorded for all n < t. Let Ω
be a face-minimal t-dimensional cycle that is not t-complete in ∆d(Γ)[t]. We would like
to show that Ω has a chord set in ∆d(Γ)[t]. If Ω is 1-complete then by assumption Ω has
a chord set in ∆d(Γ)[t], and so we may assume that Ω is not 1-complete. Then there exist
u, v ∈ V (Ω) such that u and v are not contained in the same t-face of Ω.

Let F1, . . . , Fk be the t-faces of Ω containing v. By Proposition 7 we know that the
(t − 1)-path-connected components of 〈F1 \ {v}, . . . , Fk \ {v}〉 are (t − 1)-dimensional
cycles. Call these cycles Φ1, . . . ,Φm. For each i ∈ {1, . . . ,m} let Pi ⊆ {1, . . . , k} be such
that Fj \ {v} ∈ Φi if and only if j ∈ Pi. Since for each j the face Fj \ {v} must belong to
exactly one of Φ1, . . . ,Φm, the sets P1, . . . , Pm form a partition of {1, . . . , k}.

In [3, Lemma 5.7] it is shown that the sum of the d-faces of a d-dimensional cycle Θ
in a d-chorded simplicial complex forms a d-boundary on V (Θ) in the d-closure of the
complex over Z2. The complex ∆d(Γ)[t−1] is (t− 1)-chorded by assumption and since, for
each i, Φi is a (t − 1)-dimensional cycle in ∆d(Γ)[t−1], the sum of the (t − 1)-faces of Φi

form a (t− 1)-boundary in ∆t−1(∆d(Γ)[t−1]) on V (Φi) over Z2. This also holds in ∆d(Γ)
by Lemma 14.

Hence for each i there exist t-faces Ai1, . . . , A
i
`i

in ∆d(Γ)V (Φi) such that
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∂t

(
`i∑
j=1

Aij

)
=
∑

((t− 1)-faces of Φi). (2)

Without loss of generality we may assume that the choice of Ai1, . . . , A
i
`i

is minimal in
the sense that for no strict subset of Ai1, . . . , A

i
`i

is (2) satisfied. Let Ωi be the simplicial
complex whose facets are {Fj|j ∈ Pi} ∪ {Ai1, . . . , Ai`i}. By Proposition 6, under these
conditions, Ωi is a t-dimensional cycle. Furthermore, V (Ωi) ( V (Ω) as u /∈ V (Ωi). Since
Ω is a face-minimal t-dimensional cycle, each Ωi must contain at least one t-face which is
not in Ω. We collect all of these t-faces in the non-empty set C:

C = {Aij /∈ Ω | 1 6 i 6 m, 1 6 j 6 `i}.

We would like to show that C is a chord set of Ω in ∆d(Γ)[t].
Consider the collection of t-faces in Ω and those in Ω1, . . . ,Ωm with repeats. Let

H1, . . . , Hs be the t-faces in this collection which appear an odd number of times so that
over Z2 we have

s∑
i=1

Hi =
∑

(t-faces of Ω) +
m∑
i=1

∑
(t-faces of Ωi). (3)

Since Ω and Ω1, . . . ,Ωm are all t-dimensional cycles, by Proposition 5 they correspond
to homological t-cycles over Z2. Therefore by (3) over Z2 we have,

∂t

(
s∑
i=1

Hi

)
= ∂t

(∑
(t-faces of Ω)

)
+

m∑
i=1

∂t

(∑
(t-faces of Ωi)

)
= 0.

Hence the t-path-connected components of the simplicial complex 〈H1, . . . , Hs〉 are
t-dimensional cycles by Proposition 5. Call these cycles Ωm+1, . . . ,ΩM . We would like to
show that our set C is a chord set that breaks Ω into the cycles Ω1, . . . ,ΩM . By (3), after
rearranging the sums, over Z2 we have

∑
(t-faces of Ω) =

M∑
i=1

∑
(t-faces of Ωi).

By noticing that the set C is exactly those t-faces on the right-hand side of this
equation which do not belong to Ω we can see that properties 2 and 3 of a chord set hold
for C. Also, it is clear from our construction that all t-faces of both Ω and of C appear
in at least one of the Ωi’s. Therefore property 1 of a chord set holds for the set C.

Now since none of Ω1, . . . ,Ωm contain u by construction we have |V (Ωi)| < |V (Ω)| for
all 1 6 i 6 m. We would like to show that none of Ωm+1, . . . ,ΩM contain v. Recall that
Φ1, . . . ,Φm are the (t− 1)-path-connected components of 〈F1 \ {v}, . . . , Fk \ {v}〉 and so
no two such distinct components could share a face of the form Fi \ {v}. Thus each face
Fi appears in only one of the cycles Ω1, . . . ,Ωm. Each such Fi is also a face of Ω and so by
our choice of H1, . . . , Hs we know that we cannot have Fi = Hj for any i ∈ {1, . . . , k} and
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j ∈ {1, . . . , s}. Therefore, by the construction of the cycles Ωm+1, . . . ,ΩM we know that
none of the Fi’s appear in any of these cycles. Recall that F1, . . . , Fk are the only t-faces of
Ω that contain v and none of the t-faces of C contain v since they are subsets of

⋃m
i=1 V (Φi).

It follows that none of Ωm+1, . . . ,ΩM contain v. This implies that |V (Ωi)| < |V (Ω)| for all
m+ 1 6 i 6 M . Thus property 4 of a chord set is also satisfied by C and hence ∆d(Γ)[t]

is t-chorded. Hence ∆d(Γ) is chorded.

As a consequence of Theorems 18 and 19 we have the following theorem.

Theorem 20 (Criterion for a linear resolution II). Let I be generated by square-free
monomials of degree d + 1. Then I has a linear resolution over any (equivalently, some)
field of characteristic 2 if and only if N (I)[d] is d-chorded and for m > d each 1-complete,
face-minimal, non-m-complete m-dimensional cycle in N (I) has a chord set in N (I).

We close by noting that in the 1-dimensional case, such obstructions to linear resolution
do not exist. In particular if Γ[1] is 1-chorded then in ∆1(Γ[1]) all 1-completem-dimensional
cycles lie in m-complete induced subcomplexes which are m-chorded and consequently
such cycles have chord sets.
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