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Abstract

Based on the combinatorial proof of Schur’s partition theorem given by Bressoud,
and the combinatorial proof of Alladi’s partition theorem given by Padmavathamma,
Raghavendra and Chandrashekara, we obtain a bijective proof of a partition theorem
of Alladi, Andrews and Gordon.
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1 Introduction

In 1926, Schur [15] proved one of the most profound results in the theory of partitions,
which can be stated as follows.

Theorem 1.1 (Schur). The number of partitions of n into distinct parts ≡ 1, 2 (mod 3)
is equal to the number of partitions of n into distinct parts λ1 > λ2 > λ3 > · · · where
λi − λi+1 > 3 with strict inequality if λi ≡ 3 ( mod 3).

Throughout this paper x ≡ y (mod M) means that x = y + kM for a nonnegative
integer k, where x > y and x > 0. Theorem 1.1 is usually called Schur’s celebrated
partition theorem of 1926. It was extended by Göllnitz [13] in 1967.

Theorem 1.2 (Göllnitz). Let B(n) be the number of partitions of n into distinct parts
≡ 2, 4, 5 (mod 6). Let C(n) be the number of partitions of n into distinct parts λ1 > λ2 >
λ3 > · · · where no part equals 1 or 3, and λi − λi+1 > 6 with strict inequality if λi ≡ 6, 7
or 9 ( mod 6). Then B(n) = C(n).
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Theorem 1.2 is one of the most striking extensions of Theorem 1.1. It is not a priori
evident that B(n) = C(n). Göllnitz’s proof is quite involved. Andrews gave two simpler
proofs of Theorem 1.2, one by generating functions [8], and the other by computer algebra
[9, §10]. Göllnitz [13] also gave the following refinement of Theorem 1.2:

B(n; s) = C(n; s), (1.1)

where B(n; s) and C(n; s) denote, respectively, the number of partitions enumerated by
B(n) and C(n) with exactly s parts and the parts ≡ 6, 7 or 9 (mod 6) are counted twice.
Andrews [9] asked for a proof which would offer more insights into the refinement (1.1)
of Göllnitz’s theorem.

There has been a lot of progress towards this direction, see [1, 5, 14]. The first
combinatorial approach to Theorem 1.2 was provided by Alladi [1]. Precisely, Alladi
constructed a bijection to prove a three-parameter q-identity [1, Eq. (1.2)], which first
appeared in [5] and is a deep refinement of Theorem 1.2. However, as mentioned by Alladi
[1], his construction can not be used to give a bijection between the sets of partitions of
n counted by B(n) and C(n). Padmavathamma, Raghavendra and Chandrashekara [14]
presented a bijective proof of another partition theorem due to Alladi [2, Theorem 1],
and remarked that their bijection also implies Theorem 1.2. They also noted that their
method is very similar in spirit to Bressoud’s [11] combinatorial proof of Schur’s partition
theorem.

By using weighted words introduced by Alladi and Gordon [6, 7], Alladi, Andrews and
Gordon [5] obtained a more general partition theorem.

Theorem 1.3 (Alladi-Andrews-Gordon). Let M > 6 and let r1, r2, r3 be residues satisfy-
ing the following conditions:

0 < r1 < r2 < r3 < M 6 r1 + r2 and r1 +M < r2 + r3. (1.2)

Let B(n; s) denote the number of partitions of n into s distinct parts congruent to
r1, r2 or r3 (mod M). Let C(n; s) denote the number of partitions of n into s distinct
parts λ1 > λ2 > λ3 > · · · such that

(i) each part λi is ≡ r1, r2, r3, r1 + r2, r1 + r3 or r2 + r3 (mod M),

(ii) λi − λi+1 >M with strict inequality if λi ≡ r1 + r2, r1 + r3 or r2 + r3 (mod M),

(iii) the parts ≡ r1 + r2, r1 + r3 or r2 + r3 (mod M) are counted twice.

Then B(n; s) = C(n; s).

Clearly, Theorem 1.3 reduces to (1.1) by setting M = 6, r1 = 2, r2 = 4, and r3 = 5.
As remarked by Alladi, Andrews and Gordon [5, §1], Theorem 1.3 also generalizes two
extensions of (1.1) given by Göllnitz [13, Sätze 4.8 and 4.10]. In fact, Alladi, Andrews and
Gordon established a three-parameter key identity [5, Eq. (1.4)] which implies Theorem
1.3. Alladi [1, §6] noticed that Jacobi’s triple product identity [12, p. 12] can be derived
from a special case of this key identity.
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Alladi, Andrews and Berkovich [4] found an interpretation of Theorem 1.3 in terms
of partitions into six colored integers, and they obtained a more general theorem on
partitions into eleven colored integers. Moreover, they showed that the partition theorem
involving eleven colored integers is combinatorially equivalent to a four-parameter key-
identity [4, Eq. (1.7)]. Further studies related to Theorem 1.2 and Theorem 1.3 can be
found in Alladi and Andrews [3] and Andrews, Bringmann and K. Mahlburg [10].

The objective of this paper is to provide a bijective proof of Theorem 1.3. Our proof is
in the spirit of the combinatorial proof of Alladi’s partition theorem [2, Theorem 1] given
by Padmavathamma, Raghavendra and Chandrashekara [14].

2 A Bijective Proof of Theorem 1.3

In this section, we present a bijective proof of Theorem 1.3. Let B(n; s) and C(n; s) denote
the sets of partitions counted by B(n; s) and C(n; s), respectively. We define a map from
B(n; s) to C(n; s), then we show that it is a bijection. We need Lemma 2.1 to transform
the congruence condition for integers congruent to ri + rj modulo M (1 6 i < j 6 3) into
difference conditions for consecutive integers congruent to ri and rj modulo M .

By the conditions in (1.2), we see that

0 6 r1 + r2 −M < r1 + r3 −M < r1 < r2 + r3 −M < r2 < r3 < M. (2.1)

This implies that r1, r2, r3, r1 + r2, r1 + r3 and r2 + r3 are distinct modulo M . For a
partition µ in C(n, s), if a part µk is congruent to ri + rj modulo M , where 1 6 i < j 6 3,
we can represent µk as a sum of two positive integers congruent to ri and rj modulo M
subject to a difference condition. This property also holds for µk − tM , where t is an
integer such that µk − tM > ri + rj.

Lemma 2.1. Let r1, r2 and r3 be integers satisfying the conditions in (1.2). Let u be a
positive integer congruent to ri + rj modulo M and u > ri + rj, where 1 6 i < j 6 3. Let
w = (u− ri − rj)/M . Then for integer 0 6 t 6 w, u− tM can be uniquely expressed as

u− tM = at + bt, (2.2)

where at and bt are positive integers such that

at, bt ≡ ri or rj (mod M) and at 6≡ bt (mod M), (2.3)

and
0 < at − bt < M. (2.4)

More precisely,
at = `M + rj, bt = `M + ri, (2.5)

if u− tM = 2`M + ri + rj, and

at = (`+ 1)M + ri, bt = `M + rj, (2.6)

if u− tM = (2`+ 1)M + ri + rj, where ` is a nonnegative integer.
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Proof. Clearly, u − tM ≡ ri + rj (mod M) can be deduced from (2.2) and (2.3). To
determine at and bt from (2.2), (2.3) and (2.4), we may represent u− tM by 2`M + ri + rj
or (2`+ 1)M + ri + rj, where ` is a nonnegative integer. First consider the case u− tM =
2`M + ri + rj. There are two possibilities. Subcase 1: at = `′M + ri and bt = `′′M + rj,
where `′ and `′′ are nonnegative integers such that `′ + `′′ = 2`. Hence we have

at − bt = (`′ − `′′)M + ri − rj = 2(`′ − `)M + ri − rj. (2.7)

Since 0 < r1 < r2 < r3 < M as given in (1.2), we have

−M < ri − rj < 0. (2.8)

Under the condition at−bt > 0, it follows from (2.7) and (2.8) that 2(`′−`) > 1. Moreover,
since at− bt < M , by (2.7) and (2.8) we get 2(`′− `) 6 1. So we deduce that 2(`′− `) = 1.
But this is impossible since `′ and ` are integers. This means that Subcase 1 cannot
happen.

We now consider Subcase 2: at = `′M + rj and bt = `′′M + ri, where `′ and `′′ are
nonnegative integers such that `′ + `′′ = 2`. In this case, we have

at − bt = (`′ − `′′)M + rj − ri = 2(`′ − `)M + rj − ri. (2.9)

Under the condition at−bt > 0, it follows from (2.9) and (2.8) that 2(`′−`) > 0. Moreover,
since at − bt < M , by (2.9) and (2.8) we get 2(`′ − `) 6 0. So we deduce that `′ = `′′ = `,
which yields (2.5).

For the case u − tM = (2` + 1)M + ri + rj, we also consider two subcases. Subcase
1: at = `′M + rj and bt = `′′M + ri, where `′ and `′′ are nonnegative integers such that
`′ + `′′ = 2` + 1. Subcase 2: at = `′M + ri and bt = `′′M + rj, where `′ and `′′ are
nonnegative integers such that `′ + `′′ = 2` + 1. In Subcase 1, there is no solution for
`′. In Subcase 2, there is only one solution, that is, `′ = ` + 1 and `′′ = `. So we arrive
at (2.6). The detailed proof is similar to the argument for the first case and hence it is
omitted.

We are now ready to give a bijective proof of Theorem 1.3.
Proof of Theorem 1.3. Define a map Φ: B(n; s) −→ C(n; s) by the following procedure.
Let λ = (λ1, λ2, . . . , λs) be a partition in B(n; s). We aim to construct a partition µ such
that µk − µk+1 > M with strictly inequality if µk ≡ ri + rj (mod M) (1 6 i < j 6
3). Assume that λ has only positive parts. For notational convenience, set λ0 = +∞.
Consider the following two cases.
Case 1: Condition (ii) in Theorem 1.3 holds for all consecutive parts of λ, that is, for
any 1 6 i 6 s − 1, we have λi − λi+1 > M with strict inequality if λi is congruent to
r1 + r2, r1 + r3 or r2 + r3 modulo M . In this case, we see that λ ∈ C(n; s), and we set
µ = λ.
Case 2: Condition (ii) in Theorem 1.3 does not hold, that is, there exists an integer i such
that λi − λi+1 < M . We choose i1 to be the minimum integer subject to this condition.
We aim to construct a partition, denoted α(1), such that the condition (ii) holds for the
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first i1 parts of α(1). If this can be achieved, then one can iterate this process to find a
desired partition in C(n, s). Here are two subcases.

Subcase 2.1: λi1−1 − (λi1 + λi1+1) >M . Let

α(1) = (λ1, . . . , λi1−2, λi1−1, λi1 + λi1+1, λi1+2 . . .).

It is easily checked that the condition (ii) holds for the first i1 parts of α(1), that is, for

any 1 6 j 6 i1− 1 we have α
(1)
j −α

(1)
j+1 >M with strict inequality if α

(1)
j ≡ r1 + r2, r1 + r3

or r2 + r3 (mod M).
Since 0 < λi − λi+1 < M , we get λi 6≡ λi+1 (mod M). This means that λi1 +

λi1+1 ≡ ri + rj (mod M). So we need also show that λi1 + λi1+1 − λi1+2 > M when
s > i1 + 2. This relation is obvious when λi1 − λi1+2 > M . We now assume that
λi1 − λi1+2 < M . Note that λi1 , λi1+1 and λi1+2 are positive integers congruent to r1, r2
or r3 modulo M . By the condition 0 < r1 < r2 < r3 < M as given in (1.2) and the
assumption λi1 − λi1+2 < M , we see that (λi1 , λi1+1, λi1+2) can be expressed in one of
the three forms (`M + r3, `M + r2, `M + r1), ((` + 1)M + r1, `M + r3, `M + r2) and
((` + 1)M + r2, (` + 1)M + r1, `M + r3), where ` is a nonnegative integer. Using the
conditions 0 < r1 < r2 < r3 < M , r1 + M < r2 + r3 as given in (1.2) and the condition
λi1 − λi1+2 < M , one can check that λi1 + λi1+1 − λi1+2 > M holds in any of the above
three cases. So we have shown that α(1) is a desired partition in Subcase 2.1.

Subcase 2.2: λi1−1− (λi1 +λi1+1) < M . There is a unique integer 1 6 k1 6 i1− 1 such
that

λi1−1−t − (λi1 + λi1+1 + tM) < M (2.10)

for 0 6 t 6 k1 − 1, and

λi1−1−k1 − (λi1 + λi1+1 + k1M) >M. (2.11)

Let

α(1) = (λ1, . . . , λi1−1−k1 , λi1 + λi1+1 + k1M,λi1−k1 −M, . . . , λi1−1 −M,λi1+2, . . .).

As i1 is chosen to be the minimum integer i such that λi−λi+1 < M , for any 1 6 j 6 i1−1,
we have λj−λj+1 >M . This implies that for i1−k1 6 j 6 i1−2, (λj−M)−(λj+1−M) >
M . By (2.11), λi1−1−k1 − (λi1 + λi1+1 + k1M) > M . To verify the condition (ii) for the
first i1 parts of α(1), it remains to show that

(λi1 + λi1+1 + k1M)− (λi1−k1 −M) > M, (2.12)

since the part λi1 +λi1+1 + k1M is congruent to ri + rj modulo M . Notice that (2.12) can
be deduced from (2.10) by setting t = k1 − 1. This completes the proof in Subcase 2.2.

For the partition α(1), if condition (ii) holds for all consecutive parts, then we set µ =

α(1). Otherwise, we can find a minimum integer i2 such that i2 > i1 and α
(1)
i2
−α(1)

i2+1 < M .
Then we may repeat the above process in Case 2. Finally, we obtain a partition µ for
which condition (ii) holds for all consecutive parts.
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We observe that each part of µ is congruent to r1, r2, r3, r1+r2, r1+r3 or r2+r3 modulo
M , and the number of parts of λ is equal to the number of parts of µ if the number of
parts congruent to r1+r2, r1+r3 or r2+r3 modulo M are counted twice. Hence conditions
(i) and (iii) in Theorem 1.3 also hold for µ. So we have µ ∈ C(n; s).

To prove that Φ is a bijection, we now describe the inverse map Φ−1. Let µ =
(µ1, µ2, . . . , µv) be a partition in C(n; s). Assume that µ1 > µ2 > · · · > µv > 0. We aim
to construct a partition λ such that Φ(λ) = µ by transforming the congruence condition
for parts congruent to ri + rj modulo M into difference conditions for consecutive parts
congruent to ri and rj modulo M . For notational convenience, set µt+1 = 0 if µt is the
last positive part of µ. Consider the following two cases.
Case 1: There is no part of µ that is congruent to r1 + r2, r1 + r3 or r2 + r3 modulo M .
In this case, we see that µ ∈ B(n; s), and we set λ = µ.
Case 2: There exists an integer j such that µj is congruent to r1 + r2, r1 + r3 or r2 + r3
modulo M . We choose j1 to be the maximum integer subject to this condition. Using
Lemma 2.1 for u = µj1 and t = 0, we get µj1 = a0 + b0, where a0 and b0 are given by (2.5)
or (2.6). We can transform µ into a partition, denoted β(1), such that the number of parts
congruent to ri + rj modulo M in β(1) is one less than the number of parts congruent to
ri + rj modulo M in µ. There are two cases.
Case (i): 0 6 µj1+1 < b0. Let

β(1) = (µ1, . . . , µj1−1, a0, b0, µj1+1, . . . , µv).

We claim that β(1) is a partition. Let β(1) = (β
(1)
1 , β

(1)
2 , . . . , β

(1)
v+1). Since µ1 > µ2 > · · · >

µv > 0, by (2.5) and (2.6), we see that µ1 > µ2 > · · · > µj1−1 > a0 > b0 > 0 if µj1+1 = 0,
and µ1 > µ2 > · · · > µj1−1 > a0 > b0 > µj1+1 > · · · > µv > 0 if µj1+1 > 0. It follows that

β
(1)
1 > β

(1)
2 > · · · > β

(1)
v+1 > 0.

As j1 is the maximum integer such that µj1 is congruent to r1 + r2, r1 + r3 or r2 + r3
modulo M , for j1 6 t 6 v + 1, we have β

(1)
t ≡ r1, r2 or r3 (mod M) since all parts of µ

are congruent to r1, r2, r3, r1 + r2, r1 + r3 or r2 + r3 modulo M . So the number of parts
congruent to ri + rj modulo M in β(1) is one less than the number of parts congruent to
ri + rj modulo M in µ.
Case (ii): µj1+1 > b0. The following procedure generates a partition β(1) from µ. Using
Lemma 2.1 for u = µj1 and t > 1 with µj1 − tM > ri + rj, we obtain a unique expression
µj1 − tM = at + bt, where at and bt are given by (2.5) or (2.6). Since µj1+1 > b0, there is
a unique integer 1 6 k1 6 v − j1 such that

µj1+t+1 > bt (2.13)

for 0 6 t 6 k1 − 1, and
0 6 µj1+k1+1 < bk1 . (2.14)

Let
β(1) = (µ1, . . . , µj1−1, µj1+1 +M, . . . , µj1+k1 +M,ak1 , bk1 , µj1+k1+1, . . .),

and denote β(1) by (β
(1)
1 , β

(1)
2 , . . . , β

(1)
v+1). Note that ak1 and bk1 are congruent to r1, r2 or

r3 modulo M . Recall that j1 is the maximum integer such that µj1 is congruent to r1 +r2,
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r1 +r3 or r2 +r3 modulo M . Since all parts of µ are congruent to r1, r2, r3, r1 +r2, r1 +r3
or r2 + r3 modulo M , for j1 6 t 6 v + 1, we have β

(1)
t ≡ r1, r2 or r3 (mod M). Hence

the number of parts congruent to ri + rj modulo M in β(1) is one less than the number of
parts congruent to ri + rj modulo M in µ.

It remains to show that β(1) is a partition. First, if j1 > 2, we need to verify that

µj1−1 > µj1+1 +M. (2.15)

Since µ = (µ1, µ2, . . . , µv) is a partition in C(n; s), we have µi−µi+1 >M for 1 6 i 6 v−1.
It follows that

µj1−1 − (µj1+1 +M) = (µj1−1 − µj1) + (µj1 − µj1+1)−M > 0,

which yields (2.15). Next, we prove that

µj1+k1 +M > ak1 . (2.16)

We claim that
ak1 = bk1−1. (2.17)

To derive (2.17), we note that µj1 − k1M = ak1 + bk1 and µj1 − (k1− 1)M = ak1−1 + bk1−1,
where ak1 , bk1 , ak1−1 and bk1−1 are given by (2.5) or (2.6). If µj1−k1M can be represented
by 2`M + ri + rj, where ` is a nonnegative integer, then we have µj1 − (k1 − 1)M =
(2`+ 1)M + ri + rj. By (2.5) and (2.6) we deduce that

ak1 = `M + rj and bk1−1 = `M + rj,

as required. Similarly, it can be shown that (2.17) also holds if µj1 − k1M can be repre-
sented by (2`+ 1)M + ri + rj for a nonnegative integer `. So (2.17) is confirmed.

Setting t = k1 − 1 in (2.13) gives

µj1+k1 > bk1−1. (2.18)

Combining (2.18) and (2.17), we find that µj1+k1 > ak1 . It follows that

µj1+k1 +M > ak1 +M > ak1 .

This proves (2.16). So we have shown that β(1) is a partition. Since µ is a partition in
C(n; s), it has distinct parts. Thus we have reached the conclusion that β(1) has distinct
parts. This completes the proof in Case (ii).

For either case (i) or case (ii), if each part of β(1) is congruent to r1, r2 or r3 modulo
M , then we set λ = β(1). Otherwise, we can find a maximum integer j2 such that j2 < j1
and β

(1)
j2

is congruent to r1 + r2, r1 + r3 or r2 + r3 modulo M . Then we may iterate the
above process until we obtain a partition λ with all parts congruent to r1, r2 or r3 modulo
M .

Moreover, it can be seen that the number of parts of λ is equal to the number of parts
of µ with the convention that the parts congruent to r1 + r2, r1 + r3 or r2 + r3 modulo M
are counted twice. Thus we have λ ∈ B(n; s), and so Φ is surjective.
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Due to the uniqueness of the expression of a positive integer congruent to ri + rj
modulo M in Lemma 2.1, we see that every step of Φ is reversible. Hence Φ is a bijection
between B(n, s) and C(n, s). So we have B(n, s) = C(n, s). This completes the proof.

The following example gives an illustration of the map Φ. Let M = 6, r1 = 2, r2 = 4
and r3 = 5, for which the conditions in (1.2) are satisfied. Let

λ = (92, 70, 64, 53, 52, 46, 38, 35, 23, 17, 4, 2),

which is a partition in B(496; 12). In the construction of Φ(λ), the intermediate partitions
α(1), α(2) and α(3) are given below:

α(1) = (123, 86, 64, 58, 46, 38, 35, 23, 17, 4, 2),

α(2) = (123, 97, 80, 58, 52, 40, 23, 17, 4, 2),

α(3) = (123, 97, 80, 58, 52, 40, 23, 17, 6).

Note that condition (ii) in Theorem 1.3 holds for all consecutive parts of α(3), that

is, for 1 6 i 6 8, we have α
(3)
i − α

(3)
i+1 > M with strict inequality if α

(3)
i is congruent to

r1 + r2, r1 + r3 or r2 + r3 modulo M . Moreover, there are only three parts, 123, 97 and
6, which are congruent to r1 + r2, r1 + r3 or r2 + r3 modulo M , and therefore should be
counted twice. Hence

µ = α(3) = (123, 97, 80, 58, 52, 40, 23, 17, 6),

which belongs to C(496; 12).
The following example gives an illustration of the inverse map Φ−1. Let M = 6, r1 = 2,

r2 = 4 and r3 = 5, for which the conditions in (1.2) are satisfied. Let

µ = (123, 97, 80, 58, 52, 40, 23, 17, 6),

which is a partition in C(496; 12). The intermediate partitions β(1), β(2) and β(3) are given
below:

β(1) = (123, 97, 80, 58, 52, 40, 23, 17, 4, 2),

β(2) = (123, 86, 64, 58, 46, 38, 35, 23, 17, 4, 2),

β(3) = (92, 70, 64, 53, 52, 46, 38, 35, 23, 17, 4, 2).

Clearly, all the parts of β(3) are congruent to 2, 4 or 5 modulo M . Hence

λ = β(3) = (92, 70, 64, 53, 52, 46, 38, 35, 23, 17, 4, 2),

which belongs to B(496; 12).
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tition theorem of Göllnitz, J. Reine Angew. Math. 460 (1995) 165–188.

[6] K. Alladi and B. Gordon, Generalizations of Schur’s partition thoerem, Manuscr.
Math. 79 (1993) 113–126.

[7] K. Alladi and B. Gordon, Schur’s partition theorem, companions, refinements and
generalizations, Trans. Amer. Math. Soc. 347 (1995) 1591–1608.

[8] G.E. Andrews, On a partition theorem of Göllnitz and related formula, J. Reine
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