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Abstract

In this paper we present an algorithm which has as input a convex polyomino P
and computes its degree of convexity, defined as the smallest integer k such that any
two cells of P can be joined by a monotone path inside P with at most k& changes of
direction. The algorithm uses space O(m + n) to represent a polyomino P with n
rows and m columns, and has time complexity O(min(m, rk)), where r is the number
of corners of P. Moreover, the algorithm leads naturally to a decomposition of P
into simpler polyominoes.

1 Introduction

A polyomino (cf. [12]) is a finite and connected union of unitary squares (called cells) in
the plane Z x Z, considered up to translations. The number of cells of a polyomino is its
area and the length of the boundary is its perimeter. One of the most investigated class of
polyominoes is the class of hv-convez (or, more simply, convex) polyominoes constituted
by polyominoes whose intersection with any vertical or horizontal line is connected. The
notion of convexity is well defined in the continuous case, whereas in the discrete case
several definitions have been considered. In particular, in [8] the authors provided a
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linear algorithm to detect whether an hv-convex polyomino is convex with respect to the
definition of convexity for discrete regions given in [13].

In literature, the class of convex polyominoes and some of its subclasses have been
studied under several points of view as, for instance, their enumeration and exhaustive
generation [10, 2, 9].

In [6] the authors observe that in a convex polyomino each pair of cells can be joined by
a monotone path (a path that contains only two kinds of steps among East, North, West
and South steps). Then they introduce the degree of convezity of a convex polyomino
as the number of changes of direction needed to connect any pair of cells. A convex
polyomino is said to be k-convex if it has a degree of convexity k, i.e. every pair of its
cells can be connected by means of a monotone path, internal to the polyomino, with
at most k changes of direction. The classification of convex polyominoes with respect to
their degree of convexity provides us an index describing the regularity and the shape of
the polyomino. Recent studies have considered the properties of these objects under many
aspects, attempting to achieve knowledge about this class and to extend the well-known
results about convex polyominoes.

Many of these studies have been approached by taking into consideration a specific
degree of convexity, starting from k = 1 (L-convex polyominoes, cf. [4, 14] ) and k = 2 (Z-
convex polyominoes, cf. [11]). Very recently, in [15] the authors have shown an asymptotic
estimate of a lower bound for the number of k-convex polyominoes with perimeter p, for
a generic k. This results to be u(k) p4P, where u(k) is a fractional function of £ that has
not been explicitly determined.

In this paper we give an efficient algorithm that is able to determine the degree of
convexity k of a convex polyomino P in time O(min(m,rk)), where m is the number of
columns of P and r the number of its corners (cells of P with two adjacent sides belonging
to the boundary).

We take advantage of the property that the degree of convexity of a polyomino depends
only on the paths connecting some cells on the boundary of the polyomino; starting from
these cells, we can identify with ease some areas of P where every pair of cells can be
connected by a given number of changes of direction. Extending these areas to the whole
P, we can identify pairs of cells that require the maximum number of changes of direction
to be connected, and hence detect the degree of convexity. The method is based on the
properties studied at first in [3], where the class of L-convex polyominoes was recognized
by a bidimensional language thanks to a similar procedure, extended in this work to
generic k-convex polyominoes.

From the proposed algorithm, we directly obtain a method for the decomposition of a
k-convex polyomino in simpler shapes. Such a procedure may be useful for future research
in a variety of situations. As an example, we may think that by being able to see a k-
convex polyomino as a (k — 1)-convex polyomino combined with some extra cells that
are easily determinable, we could define a recursive generation algorithm. Further, the
decomposition of a polyomino in simpler polyominoes has been used to define an efficient
encoding, for example in image compression [1], and our procedure could find similar
motivations.
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2 Notation and preliminaries

Let P be a convex polyomino with a minimal bounding rectangle of size m xn. We number
the m columns and the n rows from left to right and from bottom to top, respectively.
Thus, we consider the bottom (resp. top) row of P as its first (resp. last) row, and the
leftmost (resp. rightmost) column of P as its first (resp. last) column.

By (i,j) we denote a cell in the i-th row and j-th column of P. We represent the
convex polyomino by means of four integer vectors. The vectors F' = [fi,..., f,] and
L = [l;...l,] contain the positions (i.e. the indices of columns) of the first and of the
last cell of the polyomino on each row, respectively. Symmetrically, F' = [f{,..., f/]
and L' = [l}, ...l ] provide the positions of the first and of the last cell in each column,
respectively. Given ¢ = (4, j) € P we denote by Op(c) the cell (I},1;); ¢ and Op(c) identify
a rectangle not necessarily in P. A path connecting two cells a and b of a polyomino P, is
a sequence (a = (i1, J1),(72, j2),- - -, (ir, jr) = b) of distinct edge-adjacent cells all belonging
to P. The step ((is,Js),(7s+1, jst1)) is called:

e an Fast step if jo11 = jo + 1 and .1 = ig;
e a North step if i, 1 =i, + 1 and jo11 = Js;
e a West step if jo11 = j, — 1 and i,y = ig;
e a South step if 1511 =15 — 1 and js11 = Js.

A path, is monotone if it is made of steps in only two directions: North and Fast (NE-
path), North and West (NW-path), South and East (SE-path) or South and West (SW-
path). A polyomino is convex if and only if every pair of its cells is joined by a monotone
path (see [6]). Given k € N, a convex polyomino is said to be k-convez if every pair of its
cells can be joined by a monotone path with at most k changes of direction. Obviously, a
k-convex polyomino is also h-convex for every h > k. We define the degree of convexity of
a convex polyomino P as the smallest k € N such that P is k-convex. Figure 1(a) shows a
2-convex polyomino, whereas Figure 1(b) represents a polyomino which is 3-convex, but
not 2-convex, since there exist two cells (highlighted in the figure) that can be connected
only by paths with at least three changes of direction. Hence its degree of convexity is 3.

) mum

(a) (b)

Figure 1: (a) A 2-convex polyomino, (b) a 3-convex polyomino.
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Given two cells a,b € P, we write a /b (a \_b) if there is a NE-path (NW-path)
from a to b, and we define the function Dyg(a,b) (Dyw(a,b)) which returns the smallest
number of changes of direction in any NE-path (NW-path) connecting a to b, called the
NE-distance of b from a. We let Dyg(a, b) = oo if there is not a NE-path from a to b. Note
that if P has degree of convexity k, then one can find a,b € P such that Dyg(a,b) = k
or Dyw(a,b) = k. A NE-path (NW-path) from a to b is called minimal if it has Dyy(a, b)
(Dyxw(a, b)) changes of direction.

We say that a convex polyomino P has NE-degree of convexity (resp. NW-degree of
convexity) k, and we write Dyx(P) = k (resp. Dyw(P) = k), if for any a,b € P such
that a /b (resp. a ™\ b) one has Dyg(a,b) < k (resp. Dyw(a,b) < k). It is clear that
the degree of convexity of a polyomino P is max,pep{Dyr(a,b), Dyw(a,b)}. We say that
a cell (i,7) € Pis a SW-corner (SE-corner) of P if and only if (i — 1,4),(i,j — 1) ¢ P
((i —1,7), (4,5 +1) ¢ P). Analogously, (i,j) € P is a NE-corner (NW-corner) of P if
and only if (i +1,7),(i,7+1) ¢ P ((: +1,7),(i,7 — 1) ¢ P). In the following we denote
by Csw(P) (resp. Csp(P), Cye(P) and Cyyw(P)) the set of SW-corners (resp. SE-corners,
NE-corners, NW-corners) of P. Lastly, the following definition plays a crucial role for
computing the degree of convexity.

Definition 1. Given P, we denote by F;; C P the polyomino consisting of the cells
(7/,7) € P with i’ > i and j' > j.

3 Properties

In this section we give some basic properties and lemmas on which our algorithm is based.

Property 2. Let a = (i,j) and b be two cells of P such that a Sb. If ' = (i,j — 1)
(' = (i —1,7)) belongs to P then Dygz(a,b) < Dyg(a',b) < Dyg(a,b) + 1.

Proof. Let r = Dyg(a,b). Suppose that a’ = (i,j — 1) € P and Dyg(a’,b) < r. Consider
the second cell a” in a minimal path from a’ to b. Obviously a” # a, otherwise one would
have Dyg(a,b) < r. So, one has a” = (i+1, j—1). Eventually, after p North steps, the path
crosses column j with a change of direction in (i 4 p,j — 1), reaching a cell ¥’ = (i + p, j)
with Dy (0',0) < r—1. Since Dyg(a,b’) = 0 one has the contradiction Dyg(a,b) < r. The
relation Dyg(a’,b) < Dyg(a,b) 4+ 1 follows by considering an East step from o’ to a and
the minimal path from a to b. A similar reasoning holds if ¢’ = (i — 1,7) € P. [l

Because of symmetry, we also have:

Property 3. Let a and b = (i,j) be two cells of P such that a S b. IfV = (i,7 + 1)
(b' = (i +1,7)) belongs to P then Dygy(a,b) < Dyg(a,b’) < Dyg(a,b) + 1.

The previous two properties imply that, in order to determine the degree of convexity
of a polyomino P, it is sufficient to consider the distance between opposite corners of P.

Property 4. Let P be a convex polyomino with Dyy(P) =k (resp. Dyw(P) = k). Then,
there are o' € Cysw(P), UV € Cyu(P), (resp. a” € Cyu(P) and V" € Cyy(P)) such that
Dys(a' V) =k (resp. Dyy(a”,b") =k).
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We exploit Property 4 to define an efficient algorithm for determining the degree
of convexity of a convex polyomino P. Informally, the idea consists of labelling some
suitable cells of P with an integer that represents the smallest number of changes of
direction necessary to join a given corner to a cell above and to the right of the labelled
cell. To this aim, we introduce the following:

Definition 5. A cell ¢ = (i,j) € P is labelled ey, with e € N and s € Csw(P), iff
a) for every d € P, one has Dyy(s,d) > e;
b) for every d € P\ P. such that s / d one has Dyy(s,d) < e.

Figure 2(a) shows a cell with label 2 whereas Figure 2(b) illustrates the division of
P into regions of increasing distance D. The previous definition admits some interesting

D>2 E
D>2

Figure 2: A 4-convex polyomino with one SW-corner.

properties as shown in the following lemmas.
Lemma 6. Let P be a convex polyomino. Then any ¢ € Csy(P) has label 0.

Proof. Let ¢ = (i,j) € Csw(P). A cell d in P\ P. such that ¢ / d is either in column j
or in row 7, then Dyy(c,d) = 0. Moreover, at least one change of direction is needed to
reach a cell d = (7', j') € P. since i’ > i and j' > j. O

Lemma 7. Let P be a convex polyomino with a cell (i,j) labelled es. Then, for any
p > 0 such that (i,7 +p) € P (resp. (i +p,j) € P) one has Dyg(s, (i,7 +p)) = e (resp.
Dyi(s, (i + p,J)) = e) and every minimal NE-path from s to (i,7 + p) (resp. (i +p,J))
contains (1,5 +p—1) (resp. (i+p—1,7)).

Proof. Without loss of generality we consider ¢ = (i, j+p) € P. Suppose Dyg(s,c) < e and
let ¢ = (7, j) be the the first cell belonging to column j in a minimal NE-path from s to c.
Since at least one change of direction is needed to reach ¢ from ¢, one has Dyg(s,¢) < e—1
and then Dyg(s, (i + 1,75+ q)) < e for all ¢ < p such that (i + 1,j + q) € P, whereas the
label of (7, 7) implies Dyg(s, (i + 1,7 + q)) > e. Lastly, consider a cell (i + 1,5+ ¢q) € P
with ¢ < p. If the last step in a minimal NE-path from s to (i, j + ¢) were a North-step,
then we would have Dyg(s, (i + 1,7+ q)) = e.

[
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Lemma 8. Let P be a convex polyomino with a cell ¢ = (i, j) labelled es. If Op(c) belongs
to P then it can be labelled (e + 1)s.

Proof. First, recall that Op(c) = (I%,1;) where L = [l;...1,] and L' = [l},...,[},] are
the two vectors providing the position of the last cell on each row and on each column,
respectively. By applying Lemma 7 we may use the cell ¢ labelled eg to detect another
cell that can be labelled: every cell ¢ = (7,7) € P with7 > i and j < 7 < [; can be reached
by extending a minimal path from s to (7,7) with one more change of direction, that is,
Dyg(s, ) = e+ 1. Similarly, a cell ' = (3,)) € P with i <2 <[} and j > [; satisfies
Dyi(s,c”) = e+ 1. Lastly, consider the cell Op(c). A path from s to a cell d € Pop() has
necessarily a change of direction at (7, ), with either 7 > land j <j<liori <i<U]
and j > [;. As a consequence, one has Dyg(s,d) > e + 1. O

Figure 3 contains a graphical representation of the property described by the previous
lemma.

1} (et1)

Figure 3: Derivation of new labels using the L and L’ vectors.

4 The algorithm

Our algorithm to determine the degree of convexity of a convex polyomino uses the prop-
erties of labelled cells to compute the smallest number of changes of direction needed to
join any two cells in P. Actually, the described procedure computes the NE-degree of con-
vezity of a polyomino P. A similar procedure can compute the NW-degree of convexity,
and by taking the maximum of the two values we obtain the degree of convexity of P.

The algorithm exploits Lemma 6 to label all the SW-corners and then continues to
label other cells of P according to Lemma 8. When no more labels can be computed, the
largest ones are examined to determine the NE-degree of convexity. Not all the cells that
could be labelled are computed, but we show in the following that, thanks to the properties
described in the previous section, the labelled cells which are computed, starting from the
SW-corners, are sufficient to obtain the degree of convexity, as the SW-corners determine
the maximal NE-distance.
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In the algorithm’s labelling, for the sake of simplicity, we omit the subscript indicating
a corner associated with a label, since we are looking for the largest distance and we are
not interested in finding the cells that originate it.

From here on, given a cell ¢ = (4, ) in P, we indicate by ¢ the cell Op(c).

Algorithm 1 Degree of convexity.

1: for ¢ € Csw(P) do assign label 0 to ¢; end for

2: for each c labelled e s.t. ¢ € P,¢ # ¢ and ¢ is not labelled or has label less than e + 1
do

assign label e + 1 to ¢;

: end for
. let k£ be the maximum label of the labelled cells ¢ with P, # ();
: return k + 1;

D Ul w

Figure 4 illustrates a run of Algorithm 1 on a simple polyomino.

Figure 4: An example of run of the algorithm.

Theorem 9. Algorithm 1 computes the NE-degree of convexity of a convex polyomino.

Proof. The algorithm exploits Lemma 6 and assigns a label 0 to all SW-corners (the for-
loop at line 1). Then, Lemma 8 is used to iteratively label cells of P (the for-loop at
lines 2-4). Note that if a cell ¢ is already labelled and a greater label is found for ¢ (with
respect to a different corner), then the old label can be discarded since it can not lead
to the degree of convexity thanks to Lemma 7. At the end of the loop, for all cells ¢
with label e one has that either ¢ is not in P or ¢ is in P and has a label greater than
e. Now, observe that, by Lemma 6, for any cell ¢ with label e and such that ¢ ¢ P one
has Dyg(s,d) = e + 1 for a suitable s € Cgy and for all d € P.. Therefore, since any
NE-corner d is either in the same row of ¢ or in the same column or in P., the NE-degree
of convexity is just the largest label of a labelled cell ¢ with P, # (), incremented by 1.

O
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4.1 Implementation and Time Complexity

In this section we show how to develop an efficient implementation of Algorithm 1. To
this aim, we keep track in a queue ) of the labelled cells ¢ for which the successors ¢ have
not yet been computed. Initially, the queue contains all SW-corners, that is, cells with
label 0. Then, the main loop removes a cell ¢ from @, and inserts ¢ in ) with label 1 if it
belongs to P. More general, it is straightforward to see that at any time ) may contain
only a sequence of cells with label e, eventually followed by a sequence of cells with label
e + 1. By storing the label of the latest cell ¢ inserted in ) such that P, # (), we can
immediately obtain the NE-degree of convexity once we exit the loop.

Note that, since P is represented by the two vectors L and L', at every iteration we can
check in constant time the conditions ¢ € P and P, # (). Furthermore, to improve the
time complexity, we make use of the following definition.

Definition 10. Consider two cells ¢ and d labelled e, and e}, respectively. If for all f € P,
there is g € P, such that Dyg(a,g) > € and Dyg(a, g) = Dyg(b, f), then we write d <y c.

It should be clear that if d <y ¢, then the cell d can be discarded from the compu-
tation, as it does not contribute to the degree of convexity of P (see Lemmas 7 and 8).
Thus, the following properties provide us with rules which can be used for reducing the
number of labelled cells computed by the algorithm.

Property 11. Let ¢ and d be two cells with labels e, and ey, respectively. If Py C P, then
d =g cC.

Proof. Let Py # 0 (if P; = () the result holds immediately). Since P; C P,, for each cell
f € Py one has a / f and so it is sufficient to prove that Dyg(a, f) = Dy(b, f).
Suppose there is f € P; such that Dyg(a, f) = p and Dyg(b, f) = ¢ with p < ¢. If
d = (i,j) € P., consider the first cell z in a minimal NE-path from a to f such that
x = (i,j1) or x = (i1,7J) with j; > j, iy = i. Since Dyg(a,x) = e + 1, the number of
changes of direction in a path from x to f is at most Dyg(x, f) < p — e — 1. Thanks
to the property described by Lemma 7, this implies the existence of a path from b to f
which contains z and has at most e + 1 4+ p — e — 1 = p changes of directions, whereas
Dyw(b, f) = q>p.
The case where d is in the same row or in the same column of ¢ can be proved similarly.

]

Property 12. Let ¢ = (i,7) and d = (ia,7), with iy > i, be two cells with labels e, and
ey, respectively. If € > e then ¢ <y d, otherwise d =y c.

Proof. The result follows from Property 11 in the case e = ¢/. Otherwise, let us consider
e’ > e (the case e > ¢’ follows by symmetry). If ¢ = e+ 1 we consider the cell ¢ (with label
(e +1)). It is easy to verify that P; C P, hence Property 11 implies ¢ <y d. Therefore,
one has also ¢ <y d as Dyg(a,g) < e+ 1forall g € P.\ P;. If ¢ = e+ 2, we can apply
the same idea to /é\, and so on for any ¢/, with ¢/ — e > 2. O
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We can make use of Property 12 in order to consider only one labelled cell for each
column; when a new labelled cell is found by the algorithm and there is already a labelled
cell in the same column, the algorithm can discard one of the two cells. By using a
support vector to keep track of labelled cells (indexed by columns), we can execute this
check in constant time. Consequently, the loop iterates at most m (number of columns)
times and then the time complexity of the algorithm is at most O(m). An execution of
the algorithm, including also this feature, is shown in Figure 5.

Figure 5: An example of execution of the algorithm. The presence of the highlighted cell
implies that the NE-degree of convexity of the polyomino is 4.

Further, we observe that for a polyomino with degree of convexity k, every SW-corner
produces at most k labelled cells, so the complexity is also bounded by O(|Csw| k). Thus,
we can state:

Theorem 13. Algorithm 1 admits an implementation with runtime O(min(m, |Csy| k)),
where m is the number of columns, k the degree of convexity and Cl,, the set of SW-corners

of P.

In the worst case, it may happens that £ = ©(m) and |Csy| = ©(m), but we suspect
that these conditions do not hold simultaneously for any given convex polyomino. In fact,
we expect that the average complexity of the algorithm is O(|Csw| k), and for large m it
should be |Csw| kb < m.

5 Decomposition in L-convex polyominoes

Algorithm 1 allows a decomposition of a convex polyomino into NE L-convex polyomi-
noes (having NE-degree of convexity 1) obtained by considering its labelled cells. More
precisely, let {0,1,2,... e} be the set of labels that the algorithm assigns to some cells ¢
of P with P. # (). For each h, with 0 < h < e, let C}, be the set of cells of P that the
algorithm labels by h.

We define a sequence of NE L-convex polyominoes Li, Lo, ..., L. as follows.
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o Ly =P\ U(i,j)eCl P j);
e for each h, with 1 <h <e, Ly = (P \ U )ec, Pip) \ Uicn Lis

Each polyomino in the sequence Lq, Lo, ..., L. is a NE L-convex polyomino by Definition
5. Indeed, if a,b € L; and a b, then there exists some NE-path connecting a to b
with at most 1 change of direction. For example, Figure 6 shows a decomposition of
a 4-convex polyomino into three L-convex polyominoes Li, Ly, L3, and two rectangles
(P\ (Ly U Ly U L3) is not connected).

By definition, Ly, Lo, ..., L. are uniquely determined; in general they are not maximal
because can be contained in a bigger NE L-convex polyomino, but for each m, with
1 < m < e, the polyomino ,, = Ulghgm L;, turns out to be a maximal NE m-convex
polyomino. In fact, we can easily deduce the following property.

Property 14. Q,, is a mazimal NE m-convex polyomino of P, i.e. if Q" is NE m-convex
and Q,, C Q" C P then Q,, = Q'.

mcmn- 0

3

O~

Figure 6: The decomposition of a 4-convex polyomino into 3 L-convex polyominoes and
2 rectangles.

In order to investigate about the NW-degree of convexity of the polyominoes L; and
@ we give the following proposition.

Proposition 15. Let P be a convex polyomino such that Dyy(P) > Dyy(P). If Dyg(P) >

Proof. Since P is convex, the sequence T = [ty, ..., ;] of y coordinates of the top cells
of the columns is unimodal, as well as the the sequence B = [by, ..., b,,] of y coordinates
of the bottom cells. Let h,h’ be the largest indices such that ¢, > ¢, and b, < b,, for
all e with 1 < e < m. Since Dyu(P) > 2 there are a = (i,7) € Csw, b = (7', j') € Cxg
with Dyg(a,b) > 2 (the red and the green cells, respectively, depicted in Figure 7) Let us
consider the two columns j, j*. Notice that ¢; < b; (otherwise, for convexity reasons, one
would have Dyg(a,b) < 2) and that it is impossible to find a column ¢, with j < ¢ < j
such that ¢, > t; and b, < b; (Dyg(a,b) = 2 would hold in this case). Moreover, due
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to convexity, one has j < h,h’ < j'. In particular, one necessarily has h > h’ otherwise
th 2 tjl and bh < bj.
Figure 7 illustrates how P looks like. The boundary of P is divided into 4 parts associated
with the four different kinds of corners. More precisely, SW-corners can appear only along
the red part of the boundary, NW-corners along the blue part, NE-corners along the green
part and, finally, SE-corners along the yellow part. From the figure it is also immediate
to see that Dyw(P) = 1. Indeed, starting from any yellow corner, all the blue corners
that can be reached (by North or West steps) require at most one change of direction.
More formally, suppose Dyw(P) = 2 and let ¢ = (r,s) € Cy, d = (1, s') € Cyw be
two corners such that Dyw(c,d) > 2. This implies t; < ty and by < by (otherwise
Dyw(c,d) = 1). Now, by unimodality of 7" and B it follows s > h (otherwise t; > ty) and
s" < h' (otherwise by < bg). In particular, one has t; > tj and by < bj. Furthermore, one
has also s’ > j (otherwise ¢ty < t5) and then ty > ¢; and by < b;. As a consequence, since
tiy > b; > by and ty >ty > ty, we can easily get a NE-path which starts at a, makes s’ —1
East steps, changes direction at (i,s’), continues with ¢ — ¢ North steps towards (7, ),
makes a change of direction and reach b after 7' — s’ East steps, showing that Dy(a,b) = 2
(contradiction).

m

Figure 7: A polyomino P with Dyg(P) > 2.

An analogous and symmetric result holds if P is such that Dyy(P) < Dyw(P). Note
that the case Dy(P) = 2 and Dyw(P) = 2 may occur, as in the polyomino shown in
Figure 8. Observe that if P has degree of convexity k > 2 with Dys(P) > Dyw(P)
then Dyg(P) = k and Dyw(P) = 1. As a consequence, each L; is both NE and NW
L-convex and @,,, is NE m-convex and NW L-convex. If P has degree of convexity k with
Dyu(P) = Dyw(P) then k is at most 2 and some L; can be not L-convex in some of the
directions.
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Figure 8: A polyomino P with Dyg(P) = Dyw(P) = 2.

For completeness, we point out that P\ Q). is not necessarily connected (it may be
empty or a set of NE L-convex polyominoes).

6 Conclusions and further work

Since, in general, the L-convexity is easier to handle than the k-convexity (with & > 1), the
decomposition here presented suggests a possible approach to solve problems concerning
k-convex polyominoes. For example, it is known (cf. [5]) that an L-convex polyomino
can be uniquely reconstructed by its orthogonal projections, or by partial information (cf.
[7]), whereas nothing is known in general for k-convex polyominoes. By extending the
result in [3], a tiling system for k-convex polyominoes can be investigated. In the same
way, enumeration problems can be handed. Lastly, the labelling of a k-convex polyomino
might be used to develop an efficient encoding with some applications to compression
methods.
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