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Abstract

A special case of a combinatorial theorem of De Bruijn and Erdős asserts that
every noncollinear set of n points in the plane determines at least n distinct lines.
Chen and Chvátal suggested a possible generalization of this assertion in metric
spaces with appropriately defined lines. We prove this generalization in all metric
spaces induced by connected chordal graphs.

Keywords: Combinatorial geometry; Metric space; Extremal combinatorics

∗Partially supported by NSF grants DMS-1001091 and IIS-1117631.
†Canada Research Chair in Discrete Mathematics.

the electronic journal of combinatorics 22(1) (2015), #P1.70 1



1 Introduction

It is well known that

(i) every noncollinear set of n points in the plane determines at least n distinct lines.

As noted by Erdős [12], theorem (i) is a corollary of the Sylvester–Gallai theorem (assert-
ing that, for every noncollinear set S of finitely many points in the plane, some line goes
through precisely two points of S); it is also a special case of a combinatorial theorem
proved later by De Bruijn and Erdős [11].

Theorem (i) involves neither measurement of distances nor measurement of angles:
the only notion employed here is incidence of points and lines. Such theorems are a part
of ordered geometry [7], which is built around the ternary relation of betweenness : point
b is said to lie between points a and c if b is an interior point of the line segment with
endpoints a and c. It is customary to write [abc] for the statement that b lies between a
and c. In this notation, a line uv is defined — for any two distinct points u and v — as

{u, v} ∪ {p : [puv] ∨ [upv] ∨ [uvp]}. (1)

In terms of the Euclidean metric dist, we have

[abc] ⇔ a, b, c are three distinct points and dist(a, b) + dist(b, c) = dist(a, c). (2)

In an arbitrary metric space, equivalence (2) defines the ternary relation of metric be-
tweenness introduced in [14] and further studied in [1, 3, 8]; in turn, (1) defines the line
uv for any two distinct points u and v in the metric space. The resulting family of lines
may have strange properties. For instance, a line can be a proper subset of another: in
the metric space with points u, v, x, y, z and

dist(u, v) = dist(v, x) = dist(x, y) = dist(y, z) = dist(z, u) = 1,

dist(u, x) = dist(v, y) = dist(x, z) = dist(y, u) = dist(z, v) = 2,

we have
vy = {v, x, y} and xy = {v, x, y, z}.

Chen [4] proved, using a definition of uv different from (1), that the Sylvester–Gallai
theorem generalizes in the framework of metric spaces. Chen and Chvátal [5] suggested
that theorem (i), too, might generalize in this framework:

(ii) True or false? Every metric space on n points, where n > 2, either has at least n
distinct lines or else has a line that consists of all n points.

They proved that

• every metric space on n points either has at least lg n distinct lines or else has a line
that consists of all n points
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and noted that the lower bound lg n can be improved to lg n + 1
2

lg lg n + 1
2

lg π
2
− o(1).

(Here, as usual, lg x stands for log2 x.)

Every connected undirected graph induces a metric space on its vertex set, where
dist(u, v) is the familiar graph-theoretic distance between vertices u and v, defined as the
smallest number of edges in a path from u to v. (Some people call this the ‘hop distance’.)
Chiniforooshan and Chvátal [6] proved that

• every metric space induced by a connected graph on n vertices either has Ω(n2/7)
distinct lines or else has a line that consists of all n vertices;

we will prove that the answer to (ii) is ‘true’ for all metric spaces induced by connected
chordal graphs. (We follow the graph-theoretic terminology of Bondy and Murty [2]. In
particular, a chordal graph is a graph that contains no induced cycle of length four or
more.)

Theorem 1. Every metric space induced by a connected chordal graph on n vertices,
where n > 2, either has at least n distinct lines or else has a line that consists of all n
vertices.

2 The proof

Given an undirected graph, let us write [abc] to mean that a, b, c are three distinct vertices
such that dist(a, b) + dist(b, c) = dist(a, c); this is equivalent to saying that b is an interior
vertex of a shortest path from a to c.

Lemma 2. Let s, x, y be vertices in a finite chordal graph such that [sxy]. If sx = sy,
then x is a cut vertex separating s and y.

Proof. The set of all vertices u such that dist(s, u) = dist(s, x) separates s and y. Among
all its subsets that separate s and y, choose a minimal one and call it C. Since x is an
interior vertex of a shortest path from s to y, it belongs to C. To prove that C includes
no other vertex, assume, to the contrary, that C includes a vertex u other than x.

Our graph with C removed has distinct connected components S and Y such that
s ∈ S and y ∈ Y ; the minimality of C guarantees that each of its vertices has at least one
neighbour in S and at least one neighbour in Y . Since each of u and x has at least one
neighbour in S, there is a path from u to x with at least one interior vertex and with all
interior vertices in S. Let P be a shortest such path; note that P has no chords except
possibly the chord ux. Similarly, there is a path Q from u to x with at least one interior
vertex, and with all interior vertices in Y , that has no chords except possibly the chord
ux. The union of P and Q is a cycle of length at least four; since this cycle must have a
chord, vertices u and x must be adjacent. In turn, the union of Q and ux is a chordless
cycle, and so Q has precisely two edges. This means that some vertex v in Y is adjacent
to both u and x. (Similarly, some vertex in S is adjacent to both u and x; however, this
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fact is irrelevant to our argument.)

Write i = dist(s, x) and j = dist(x, y). Since all vertices t with dist(s, t) < i belong to
S and since v has no neighbours in S, we must have dist(s, v) > i; since dist(x, v) = 1,
we conclude that dist(s, v) = i + 1 and that v ∈ sx. Since sx = sy, it follows that
v ∈ sy. Since dist(v, x) = 1 and dist(x, y) = j, we have dist(v, y) 6 j + 1. From
dist(s, v) = i+ 1, dist(s, y) = i+ j, dist(v, y) 6 j + 1, i > 1, j > 1, and v ∈ sy, we deduce
that dist(v, y) = j − 1.

Since dist(u, v) = 1, it follows that dist(u, y) 6 j; since dist(s, u) = i and dist(s, y) =
i + j, we conclude that dist(u, y) = j and u ∈ sy. Since dist(s, u) = i, dist(s, x) = i, and
dist(u, x) = 1, we have u 6∈ sx. But then sx 6= sy, a contradiction.

A vertex of a graph is called simplicial if its neighbours are pairwise adjacent.

Lemma 3. Let s, x, y be three distinct vertices in a finite connected chordal graph. If s is
simplicial and sx = sy, then xy consists of all the vertices of the graph.

Proof. Since sx = sy, we have y ∈ sx, and so [ysx] or [syx] or [sxy]; since s is simplicial,
[ysx] is excluded; switching x and y if necessary, we may assume that [sxy]. Given an
arbitrary vertex u, we have to prove that u ∈ xy. Let P be a shortest path from s to
u and let Q be a shortest path from u to y. Lemma 2 guarantees that x is a cut vertex
separating s and y, and so the concatenation of P and Q must pass through x. This
means that [sxu] or [uxy] (or both). If [uxy], then u ∈ xy; to complete the proof, we may
assume that [sxu], and so u ∈ sx.

Since sx = sy, we have [usy] or [suy] or [syu]; since s is simplicial, [usy] is excluded. If
[suy], then [sxu] implies [xuy]; if [syu], then [sxy] implies [xyu]; in either case, u ∈ xy.

Proof of Theorem 1. Consider a connected chordal graph on n vertices where n > 2. By
a theorem of Dirac [10, Theorem 4], this graph has at least two simplicial vertices; choose
one of them and call it s. We may assume that the lines sz with z 6= s are pairwise distinct
(else some line consists of all n vertices by Lemma 3). Since the graph is connected and
has at least two vertices, s has at least one neighbour; choose one and call it u. If u is
the only neighbour of s, then every path from s to another vertex must pass through u,
and so su consists of all n vertices. If s has a neighbour v other than u, then line uv is
distinct from all of the n − 1 lines sz with z 6= s: since s, u, v are pairwise adjacent, we
have s 6∈ uv.

3 Related theorems

In Theorem 1, ‘connected chordal graph’ can be replaced by ‘connected bipartite graph’:

• every metric space induced by a connected bipartite graph on n vertices, where
n > 2, has a line that consists of all n vertices.

the electronic journal of combinatorics 22(1) (2015), #P1.70 4



In fact, xy consists of all n vertices whenever x and y are adjacent. To prove this,
consider an arbitrary vertex u. Since the graph is bipartite, dist(u, x) and dist(u, y) have
distinct parities; since dist(x, y) = 1, they differ by at most one. We conclude that
dist(u, x) and dist(u, y) differ by precisely one, and so u ∈ xy.

In Theorem 1, ‘connected chordal graph’ can be also replaced by ‘graph of diameter
two’: Chvátal [9] proved that

• every metric space on n points where n > 2 and each nonzero distance equals 1 or
2 either has at least n distinct lines or else has a line that consists of all n vertices.

Kantor and Patkós [13] proved that

• if no two of n points in the plane share their x- or y-coordinate, then these n points
with the L1 metric either induce at least n distinct lines or else they induce a line
that consists of all of them.

(For sets of n points in the plane that are allowed to share their coordinates, [13] provides
a weaker conclusion: these n points with the L1 metric either induce at least n/37 distinct
lines or else they induce a line that consists of all of them.)
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