
Crystal structure on rigged configurations

and the filling map

Anne Schilling∗

Department of Mathematics
University of California Davis
Davis, CA 95616-8633, U.S.A.

anne@math.ucdavis.edu

Travis Scrimshaw†

Department of Mathematics
University of California Davis
Davis, CA 95616-8633, U.S.A.

scrimsha@math.ucdavis.edu

Submitted: Sep 10, 2014; Accepted: Mar 11, 2015; Published: Mar 23, 2015

Mathematics Subject Classifications: 17B3, 05A19, 05E10, 81R50

Abstract

In this paper, we extend work of the first author on a crystal structure on
rigged configurations of simply-laced type to all non-exceptional affine types using
the technology of virtual rigged configurations and crystals. Under the bijection
between rigged configurations and tensor products of Kirillov–Reshetikhin crystals
specialized to a single tensor factor, we obtain a new tableaux model for Kirillov–
Reshetikhin crystals. This is related to the model in terms of Kashiwara–Nakashima
tableaux via a filling map, generalizing the recently discovered filling map in type

D
(1)
n .

1 Introduction

Rigged configurations index solutions of the Bethe Ansatz equations used to solve in-
tegrable systems such as the XXX spin 1/2 Heisenberg chain. Despite their analytic
origin, rigged configurations have fascinating combinatorial properties. Kerov, Kirillov,
and Reshetikhin [KKR86, KR86] introduced them in type A

(1)
n and showed that they are

in bijection with semi-standard tableaux. This bijection Φ is defined in a rather recursive
manner which leaves many of its properties obscure. For example, the bijection preserves
certain statistics (cocharge and energy) and also maps the very intricate combinatorial
R-matrix to the identity map on rigged configurations.

Given the recursive nature of the bijection, it is desirable to explain it in more algebraic
terms. In [Sch06a] a classical crystal structure was imposed on rigged configurations for
simply-laced types by verifying that the Stembridge [Ste03] local axioms hold. This led
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to the generalization [DS06] of the Kerov, Kirillov, and Reshetikhin rigged configurations,
which correspond to highest weight elements in a tensor product of single row representa-
tions in this setting. One of the main achievements in the current paper is the generaliza-
tion of the classical crystal structure on rigged configurations to non-simply-laced types.
Since the Stembridge local rules only characterize simply-laced highest weight crystals, we
employ the method of virtual crystals initially introduced in [OSS03b, OSS03c] to achieve
this goal. The virtual crystal method realizes a crystal of non-simply-laced type in terms
of an embedding into a simply-laced crystal. In terms of the Kashiwara–Nakashima (KN)
tableaux model [KN94], it is not always easy to characterize the image of these embed-
dings in order to check that the virtual crystal is “aligned” and hence in bijection with the
expected non-simply-laced crystal. One of the major advantages of using rigged configu-
rations is that the image is easy to compute and the alignedness property readily follows
(see Section 3).

The bijection Φ was generalized beyond type A
(1)
n to arbitrary non-exceptional types

in [OSS03a] and to type E
(1)
6 in [OS12] for tensor products of Kirillov–Reshetikhin (KR)

crystals indexed by the vector representation. In the spirit of [KSS02] for type A
(1)
n , it

is conjectured that Φ can be extended to arbitrary tensor products of KR crystals. This
involves certain splitting maps (of the rectangles that index the KR crystals) and, beyond

type A
(1)
n , also a “filling map” as first pointed out in [Sch05] and fully established in

type D
(1)
n in [OSS13]. More precisely, the recursive algorithm for Φ yields rectangular

tableaux (which are not necessarily semi-standard), which we coin Kirillov–Reshetikhin
(KR) tableaux following [OSS13], that are similar to the KN tableaux appearing in the
theory of crystal bases. The filling map is a crystal isomorphism between these two
versions of tableaux. The second main result of the current paper is an explicit description
of the filling map on classically highest weight elements for all non-exceptional types.

In order to utilize the algebraic structure of crystal bases to its fullest degree, it is
necessary not only to define a classical crystal structure, but also affine crystal operators.
Since tensor products of affine KR crystals are connected [Kas02], this would provide
a description of the bijection between rigged configurations and tensor products of KR
crystals as an affine crystal isomorphism. For a single tensor factor in type D

(1)
n , this

was achieved in [OSS13]. In this paper, we extend the result of [OSS13] to any type that

embeds into type D
(1)
n . Note that semi-infinite tensor products of perfect KR crystals play

an important role in the path realization [HK02] of highest weight representations for g.
Also, the characters of KR crystals correspond to solutions of certain Q-systems, and
their corresponding modules are solutions of certain T -systems [KNS11]. It is conjectured
that KR crystals are universal objects in the category of finite-dimensional U ′q(g)-crystals.
In addition, tensor products of KR crystals are related to Macdonald polynomials and
q-deformed Whittaker functions [LNS+14b, ST12].

This paper is organized as follows. We begin with background on crystals, rigged
configurations, the Kleber algorithm, and their corresponding virtual counterparts in
Section 2. We provide an explicit description of crystal operators on non-simply-laced
rigged configurations in Section 3. In Section 4, the filling map for all non-exceptional
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types is described and proved on highest weight elements for a single tensor factor, along
with the existence of a statistics preserving bijection. The affine crystal structure for the
types that embed virtually into type D

(1)
n is given in Section 5. We conclude in Section 6

by showing that the aforementioned bijection commutes with the virtualization map on
highest weight elements for a single tensor factor. The appendix provides a proof of a
generalization of a result of Baker [Bak00].
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2 Background

In this section we give some background information on crystals, rigged configurations,
Kirillov–Reshetikhin crystals, virtual crystals, and the Kleber and virtual Kleber algo-
rithm.

Let g be an affine Kac–Moody Lie algebra with index set I, generalized Cartan matrix
A = (Aij)i,j∈I , fundamental weights {Λi | i ∈ I}, weight lattice P , root lattice Q, simple
roots {αi | i ∈ I}, and simple coroots {α∨i | i ∈ I}. Denote by P∨ and Q∨ the coweight
and coroot lattice, respectively. Our conventions for the Dynkin diagrams and Cartan
matrices follow Kac [Kac90] (see also Figure 1). Let 〈·, ·〉 : P∨ × P → Z be the canonical
pairing defined by the evaluation pairing. In particular, 〈α∨i , αj〉 = Aij. In addition,
let g0 be the classical subalgebra of g with index set I0 = I \ {0}, fundamental weights
{Λi | i ∈ I0}, and weight lattice P =

⊕
i∈I0 ZΛi.

2.1 Crystals

We begin by giving the axiomatic definition of a crystal.

Definition 2.1. An abstract Uq(g)-crystal is a non-empty set B together with maps

wt: B → P, εi, ϕi : B → Z t {−∞}, ei, fi : B → B t {0},

subject to the following conditions:

(1) ϕi(b) = εi(b) + 〈α∨i ,wt(b)〉 for all i ∈ I,

(2) if b ∈ B satisfies eib 6= 0, then

(a) εi(eib) = εi(b)− 1,
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Figure 1: Dynkin diagrams for X
(r)
N . The enumeration of the nodes with I = {0, 1, . . . , n}

is specified under or the right side of the nodes. In addition, the numbers ti (resp. t∨i )
defined in (2.7) are attached above the nodes for r = 1 (resp. r > 1) if and only if ti 6= 1
(resp. t∨i 6= 1).

(b) ϕi(eib) = ϕi(b) + 1,

(c) wt(eib) = wt(b) + αi,

(3) if b ∈ B satisfies fib 6= 0, then

(a) εi(fib) = εi(b) + 1,
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(b) ϕi(fib) = ϕi(b)− 1,

(c) wt(fib) = wt(b)− αi,

(4) fib = b′ if and only if b = eib
′ for b, b′ ∈ B and i ∈ I,

(5) if ϕi(b) = −∞ for b ∈ B, then eib = fib = 0.

The maps ei and fi (i ∈ I) are called the crystal or Kashiwara operators.

We call a crystal regular if

εi(b) = max{k ∈ Z | eki (b) 6= 0} and ϕi(b) = max{k ∈ Z | fki (b) 6= 0} (2.1)

for all i ∈ I and b ∈ B. In this case, we depict the entire i-string diagrammatically as

e
εi(b)
i b i // · · · i // eib

i // b i // fib
i // · · · i // f

ϕi(b)
i b.

Let B1 and B2 be abstract Uq(g)-crystals. The tensor product B2 ⊗ B1 is defined to
be the Cartesian product B2 ×B1 equipped with crystal operators given by

ei(b2 ⊗ b1) =

{
eib2 ⊗ b1 if εi(b2) > ϕi(b1),

b2 ⊗ eib1 if εi(b2) 6 ϕi(b1),

fi(b2 ⊗ b1) =

{
fib2 ⊗ b1 if εi(b2) > ϕi(b1),

b2 ⊗ fib1 if εi(b2) < ϕi(b1),

εi(b2 ⊗ b1) = max
(
εi(b1), εi(b1) + εi(b2)− ϕi(b1)

)
,

ϕi(b2 ⊗ b1) = max
(
ϕi(b2), ϕi(b2) + ϕi(b1)− εi(b2)

)
,

wt(b2 ⊗ b1) = wt(b2) + wt(b1).

Remark 2.2. Our convention for tensor products is opposite to the convention given by
Kashiwara in [Kas91]. The above tensor product rules can also be described by the
signature rule, see for example [HK02].

Again let B1 and B2 be abstract Uq(g)-crystals. A crystal morphism ψ : B1 −→ B2 is
a map B1 t {0} −→ B2 t {0} such that

(i) ψ(0) = 0;

(ii) if b ∈ B1 and ψ(b) ∈ B2, then wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), and ϕi(ψ(b)) =
ϕi(b);

(iii) for b, b′ ∈ B1, ψ(b), ψ(b′) ∈ B2 and fib = b′, we have ψ(fib) = fiψ(b) and ψ(eib
′) =

eiψ(b′) for all i ∈ I.
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A morphism ψ is called strict if ψ commutes with ei and fi for all i ∈ I. Moreover, a
morphism ψ : B1 −→ B2 is called an embedding if the induced map B1t{0} −→ B2t{0}
is injective.

For a dominant integral weight λ, let B(λ) denote the highest weight crystal with
highest weight λ. Let uλ denote the unique highest weight vector in B(λ). Recall that in
general we can consider the classical dominant weight λ =

∑
i∈I0 kiΛi as a partition with ki

columns of height i and width 1 (resp. width 1/2 for spin nodes i). We draw our diagrams
(and hence our tableaux) using French convention. In the Kashiwara–Nakashima (KN)
model [KN94], the elements of B(λ) are given by certain tableaux of shape λ. The crystal
structure is determined by the embedding B(λ) ↪→ B(Λ1)⊗|λ|, where the inclusion is the
reading word given by reading down the columns from left to right. For more on this
model, see for instance [HK02, Chapter 8].

2.2 Simple subalgebras

For later use, specific realizations are given for the simple roots and fundamental weights
of the simple Lie algebras of types Bn, Cn, and Dn. In each case, the sublattice of P given
by the weights appearing in tensor products of the vector representation is identified with
Zn. Let {εi | 1 6 i 6 n} be the standard basis of Zn.

The simple Lie algebra Bn

αa = εa − εa+1 for 1 6 a < n

αn = εn

Λa = ε1 + · · ·+ εa for 1 6 a < n

Λn =
1

2
(ε1 + · · ·+ εn).

(2.2)

λ ∈ Zn is Bn-dominant if and only if

λa − λa+1 > 0 for 1 6 a < n

λn > 0.
(2.3)

The simple Lie algebra Cn

αa = εa − εa+1 for 1 6 a < n

αn = 2εn

Λa = ε1 + · · ·+ εa for 1 6 a 6 n.

(2.4)

λ ∈ Zn is Cn-dominant if and only if it is Bn-dominant (2.3).
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The simple Lie algebra Dn

αa = εa − εa+1 for 1 6 a < n

αn = εn−1 + εn

Λa = ε1 + · · ·+ εa for 1 6 a 6 n− 2

Λn−1 =
1

2
(ε1 + · · ·+ εn−1 − εn)

Λn =
1

2
(ε1 + · · ·+ εn−1 + εn)

(2.5)

λ ∈ Zn is Dn-dominant if and only if

λa − λa+1 > 0 for 1 6 a < n

λn−1 + λn > 0.
(2.6)

2.3 Rigged configurations

Set H0 = I0 × Z>0. Let ci and c∨i be the Kac and dual Kac labels [Kac90, Table Aff1-3],
respectively. Let (· | ·) be the invariant bilinear form on P , normalized such that

(αi | αj) =
c∨i
ci
Aij .

We also define

ti = max

(
ci
c∨i
, c∨0

)
, t∨i = max

(
c∨i
ci
, c0

)
. (2.7)

Moreover let (α̃a)a∈I0 denote the simple roots of the classical type g0 except for type A
(2)
2n ,

where it will be of type Bn (as opposed to type Cn and is the subalgebra fixed by the
automorphism σ of [Kac90, Sec. 8.3]).

We now define rigged configurations by mostly following [OSS03a]. Consider the mul-
tiplicity array

L =
(
L

(a)
i ∈ Z>0 | (a, i) ∈ H0

)
with only finitely many nonzero entries and a dominant integral weight λ of g0. We call
a sequence of partitions ν = {ν(a) | a ∈ I0} an (L, λ)-configuration if

∑
(a,i)∈H0

im
(a)
i α̃a = η

 ∑
(a,i)∈H0

iL
(a)
i Λa − λ

 , (2.8)

where m
(a)
i is the number of parts of length i in the partition ν(a). Here η is the identity

map except in type A
(2)
2n , in which case η is the Z-linear map from the weight lattice of

type Cn to the weight lattice of type Bn such that

η(Λ
C

a ) =

{
Λ
B

a 1 6 a < n,

2Λ
B

n a = n.
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The set of all such (L, λ)-configurations is denoted by C(L, λ). For ν ∈ C(L, λ), define
the vacancy numbers of ν as

p
(a)
i (ν) = p

(a)
i =

∑
j>1

min(i, j)L
(a)
j −

1

t∨a

∑
(b,j)∈H0

(α̃a|α̃b) min(tbυai, taυbj)m
(b)
j , (2.9)

where

υa =


2 a = n and g = C

(1)
n ,

1
2

a = n and g = B
(1)
n ,

1 otherwise.

Define C∗(L, λ) = {ν ∈ C(L, λ) | p(a)
i (ν) > 0 for all (a, i) ∈ H0}.

Recall that we can consider a partition as a multiset of positive integers (typically
sorted in decreasing order). A rigged partition is a multiset of pairs of integers (i, x) such
that i > 0 (typically sorted under decreasing lexicographic order). Each (i, x) is called
a string, and we call i the length (or size) of the string and x is the label (or quantum
number) of the string. Finally, a rigged configuration is a pair (ν, J), where ν ∈ C(L, λ)

and J =
(
J

(a)
i

)
(a,i)∈H0

with each J
(a)
i a multiset of labels of strings of length i in ν(a) and

max J
(a)
i 6 p

(a)
i for all (a, i) ∈ H0 for which m

(a)
i > 0. In particular, the multiset J

(a)
i

has m
(a)
i elements. We define the colabel (or coquantum number) of a string (i, x) to be

p
(a)
i − x. We call a string (i, x) singular if x = p

(a)
i (or equivalently, its colabel is 0). For

brevity, we will denote the a-th part (rigged partition) of (ν, J) by (ν, J)(a) (as opposed

to (ν(a), J (a))). In type A
(2)†
2n , we must have x ∈ Z + 1

2
for all x ∈ J (n)

2j−1

Remark 2.3. We use a slightly different definition of rigged configurations than the one
given in [OSS03a]. In particular, ν(n) in type B

(1)
n and C

(1)
n in our definition is a usual

partition as compared to 1
2
ν(n) and 2ν(n) of half-width or double-width as in [OSS03a],

respectively. An example of this convention choice can be seen with υa used in Equa-
tion (2.9), which are the values P

(a)
i in [OSS03a]. We use this convention since it makes

the definition of the crystal structure given in Definition 3.1 more uniform.

Define the set of L-highest weight rigged configurations of dominant weight λ as

RC∗(L;λ) := {(ν, J) | ν ∈ C∗(L, λ) and 0 6 x 6 p
(a)
i for all x ∈ J (a)

i and all (a, i) ∈ H0},

RC∗(L) :=
⊔
λ

RC∗(L;λ).

Example 2.4. Consider type D
(1)
5 with L

(2)
1 = L

(1)
2 = 1 and all other L

(r)
s = 0. An

example of a rigged configuration (ν∗, J∗) ∈ RC∗(L; 2Λ1) is

1 0
0 0

0
0 0

0 0 0 0 0 ,

where the vacancy numbers are displayed to the left of a part and the riggings to the
right.
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Definition 2.5 ([Sch06a]). Let g0 be a Lie algebra of type An, Dn, or E6,7,8 and L a
multiplicity array. We define the set RC(L) as the set generated from the highest weight
rigged configurations RC∗(L) by the application of operators ea, fa for a ∈ I0 as follows.
Fix a ∈ I0, and let x be the smallest label of (ν, J)(a).

1. Definition of ea: If x > 0, then set ea(ν, J) = 0. Otherwise, let ` be the minimal
length of all strings in (ν, J)(a) which have label x. The rigged configuration ea(ν, J)
is obtained by replacing the string (`, x) with the string (`−1, x+1) and by changing
all other labels so that all colabels remain fixed.

2. Definition of fa: If x > 0, then add the string (1,−1) to (ν, J)(a). Otherwise, let
` be the maximal length of all strings in (ν, J)(a) which have label x. Replace the
string (`, x) by the string (`+1, x−1) and change all other labels so that all colabels
remain fixed. If the result is a rigged configuration, then it is fa(ν, J). Otherwise
fa(ν, J) = 0.

We define the classical weight wt: RC(L)→ P by solving Equation (2.8) for λ. Thus
we have

wt(ν, J) =
∑

(a,i)∈H0

i
(
L

(a)
i Λa −m(a)

i η−1(α̃a)
)
,

=
∑

(a,i)∈H0

iL
(a)
i Λa −

∑
a∈I0

∣∣ν(a)
∣∣η−1(α̃a).

(2.10)

Note that
〈α∨a ,wt(ν, J)〉 = kap

(a)
∞ , (2.11)

where ka = 1 except kn = 2 for type A
(2)†
2n . We can extend this to an affine weight

wt: RC(L)→ P by
wt(ν, J) = c0Λ0 + wt(ν, J),

where we lift Λa → Λa for all a ∈ I0 and c0 is such that 〈c,wt(ν, J)〉 = 0 with c =∑
i∈I c

∨
i α
∨
i (the canonical central element). That is to say, we make the resulting affine

weight level 0.
From Definition 2.5, we can see that applying ea for a ∈ I0 to a highest weight rigged

configuration returns 0. So this agrees with the usual notation of a highest weight element
of a crystal. It is known that Definition 2.5 and Equation (2.10) gives a classical crystal
structure on RC(L) for simply-laced types.

Theorem 2.6 ([Sch06a, Thm. 3.7]). Let g0 be a Lie algebra of type An, Dn, or E6,7,8

and λ a dominant weight in P . For (ν, J) ∈ RC∗(L;λ), let X(ν,J) be the graph generated
by (ν, J) and ea, fa for a ∈ I0. Then X(ν,J) is isomorphic to the crystal graph B(λ) as
Uq(g0)-crystals.

Remark 2.7. In [Sch06a], elements of X(ν,J) were called unrestricted rigged configurations.
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There is a natural statistic on rigged configurations called cocharge. We first define
cocharge on C(L, λ)-configurations by

cc(ν) :=
1

2

∑
(a,i)∈H0

(b,j)∈H0

(α̃a|α̃b) min(tbυai, taυbj)m
(a)
i m

(b)
j (2.12)

and then on rigged configurations by

cc(ν, J) := cc(ν) +
∑

(a,i)∈H0

t∨a |J
(a)
i |, (2.13)

where |J (a)
i | is the sum of the entries in J

(a)
i .

Example 2.8. Consider (ν∗, J∗) from Example 2.4. Let

f5f2f3f1f2f1(ν∗, J∗) = (ν, J) ∈ X(ν∗,J∗),

so

(ν, J) = 0 0
0 0
−1 −1

0 0
0 0 0 0 −1 −1 .

Then we have

e2(ν, J) = −1 −1
0 0
0 0

0 0
0 0 0 0 −1 −1 ,

f3(ν, J) = 0 0
0 0
0 0

0 0
−1 −1 0 0 −1 −1 .

Next we look at f2(ν, J), and after adding a box, we obtain

0 0
0 0
−3 −2

0 0
0 0 0 0 −1 −1 ,

and since p
(2)
4 = −3 < −2 = max J

(2)
4 , we have f2(ν, J) = 0. Additionally we have

wt(ν, J) = −Λ2 + Λ3 + Λ4 − Λ5, wt(ν, J) = −Λ2 + Λ3 + Λ4 − Λ5

wt
(
e2(ν, J)

)
= −Λ1 + Λ2 + Λ4 − Λ5, wt

(
e2(ν, J)

)
= −Λ0 − Λ1 + Λ2 + Λ4 − Λ5

wt
(
f3(ν, J)

)
= −Λ3 + 2Λ4, wt

(
f3(ν, J)

)
= −Λ3 + 2Λ4

cc(ν, J) = cc(ν∗, J∗) = 1.
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2.4 Kirillov-Reshetikhin crystals

Let g be an affine Kac–Moody algebra, g′ = [g, g] the derived subalgebra of g and U ′q(g) :=
Uq(g

′) the associated quantum group. We consider a particular class of finite-dimensional
irreducible representations called Kirillov-Reshetikhin (KR) modules which are indexed

by (r, s) ∈ H0 and denoted by W
(r)
s . It was shown in [OS08] that in all non-exceptional

types KR modules have crystal bases, which were described combinatorially in [FOS09].
We call these crystals Kirillov-Reshetikhin (KR) crystals and denote them by Br,s. As
classical crystals, they decompose as

Br,s ∼= B(sΛr)⊕
⊕
λ

B(λ).

Explicitly we have the following classical decompositions:

• In type A
(1)
n , we have Br,s ∼= B(sΛr) for all r ∈ I0.

• In type B
(1)
n , we obtain λ by removing vertical dominoes from an r× s rectangle for

r < n or an n× (s/2) rectangle for r = n.

• In type C
(1)
n , we obtain λ by removing horizontal dominoes from an r× s rectangle

for r < n and we have Br,s ∼= B(sΛr) for r = n.

• In type D
(1)
n , we obtain λ by removing vertical dominoes from an r× s rectangle for

r < n− 1 and we have Br,s ∼= B(sΛr) for r = n− 1, n.

• In type A
(2)
2n−1, we obtain λ by removing vertical dominoes from an r × s rectangle

for all r 6 n.

• In type A
(2)
2n , we obtain λ by removing boxes from an r × s rectangle for all r 6 n.

• In type D
(2)
n+1, we obtain λ by removing boxes from an r× s rectangle for r < n and

we have Br,s ∼= B(sΛr) for r = n.

• In type A
(2)†
2n , we obtain λ by removing horizontal dominoes from an r× s rectangle

for all r 6 n.

We note that the decomposition for general r depends only on how the affine node attaches
to the classical diagram. We let � denote the type of boxes removed in each decomposition
(that is a single box, a vertical domino, or a horizontal domino).

Definition 2.9. Consider a KR crystal Br,s. There exists a statistic called energy
D : Br,s → Z, which on the classical component B(λ) is equal to the number of � which
have been removed from the r × s rectangle in order to obtain λ [HKO+99]. Thus the
energy is constant on all classical components. If Br,s ∼= B(sΛr) (as classical crystals),
then D(v) = 0 for all v ∈ Br,s.
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Definition 2.9 can be extended to arbitrary tensor factors; see for example [ST12,
Section 4].

Next we consider a tensor product of KR crystals B =
⊗N

i=1B
ri,si . We define a mul-

tiplicity array L from B by L
(r)
s as the number of factors Br,s occurring in B. Alternative

to our notation RC(L), we also use the notation RC(B), where L is the multiplicity array
associated to B, in order to signify the ordering of the factors. In [OSS03a], it was shown
that for B =

⊗N
i=1B

1,1 there exists a bijection Φ: RC(B) → B for all non-exceptional
affine types. The bijection Φ is formed by repeatedly applying a map

δ : RC(B1,1 ⊗B∗)→ RC(B∗)×B1,1,

where B∗ is some tensor product of KR crystals (in [OSS03a], B∗ =
⊗N−1

i=1 B1,1). The
map δ generally is given by traversing the crystal B1,1 from classically highest weight
to classically lowest weight, and for every crystal edge labelled by a ∈ I0, the smallest
singular string from (ν, J)(a) of length bigger or equal to the previously selected singular
string is removed, if possible. If it is not possible, the process stops and determines the
element in B1,1. We say δ returns the element of B1,1. For brevity, we refer to [OSS03a]
for an explicit description of δ.

Remark 2.10. Since we are using a different convention for rigged configurations than
those described in [OSS03a] (see Remark 2.3), we must make appropriate modifications
here to the map δ.

In addition to the map δ, we require the following maps for defining Φ on arbitrary
tensor factors

ls : RC(Br,s ⊗B∗) ↪→ RC(Br,1 ⊗Br,s−1 ⊗B∗) if s > 1,

lt : RC(Br,1 ⊗B∗) ↪→ RC(B1,1 ⊗Br−1,1 ⊗B∗) if r > 1.

The map ls on a rigged configuration is the identity (perhaps with larger vacancy numbers;
so it is well-defined). The map lt adds a length 1 singular string to (ν, J)(a) for 1 6 a < r.
A straightforward computation shows that this preserves the vacancy numbers and hence
is well-defined.

When the left factor is a spinor column Br,1, which happens in type B
(1)
n when r = n

and D
(1)
n when r = n−1 or n, the application of lt needs to be modified. We must perform

a “doubling map” before applying lt, and then a “halving map” once we have completed
the column. The doubling map is generally given by

m̃
(a)
2i = m

(a)
i ,

J̃
(a)
2i = 2J

(a)
i ,

(2.14)

and the halving map is the inverse.
For Bn,s in type B

(1)
n , following [FOS09, Lemma 4.2] our doubling map also consists

of embedding this into type A
(2)
2n−1 with ν̃(r) = 2ν(r) and L̃

(r)
2s = L

(r)
s for r < n, with

ν̃(n) = ν(n) and L̃
(n)
s = L

(n)
s , and does not change the labels (our convention choice
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for rigged configurations can be seen here). We then perform the usual A
(2)
2n−1 bijection

algorithm on the leftmost factor, followed by the halving map.
For Br,s with r = n−1, n in type D

(1)
n , the doubling map on the rigged configuration is

given by Equation (2.14) with L̃
(r)
2s = L

(r)
s . We perform the doubling map after performing

ls. Next we must apply

δ(r) : RC(Br,2 ⊗B∗) ↪→ RC(Bn,1 ⊗Bn−1,1 ⊗B∗),

which is given by the usual algorithm for δ but starting with ν(r). We then apply

δ̃(r) : RC(Bn,1 ⊗Bn−1,1 ⊗B∗) ↪→ RC(Bn−2,1 ⊗B∗),

which is given by the usual algorithm for δ but starting with ν(n−2). We then proceed
with lt and δ as we normally would until we finish the column. After this, we perform
the halving map. For an alternative description of the map Φ for type D

(1)
n spinors,

see [Sch05].
For simplicity, we consider δ′ := δ ◦ lt, and it is straightforward to show that this is

equivalent to beginning at ν(r) (instead of ν(1)) and following the usual procedure of δ.
From now on, if there is no cause for confusion, we will write δ for δ′ in the remainder of
the paper. One of the main results in this paper will be the definition of the analogues of
lt and ls on B itself. Then, defining a map Φ: RC(B) → B that commutes with ls and
δ′, we have the following conjecture.

Conjecture 2.11. Let g be an affine Kac–Moody algebra and B =
⊗N

i=1B
ri,si a tensor

product of KR crystals of type g. The map Φ: RC(B) → B is a bijection. In addition,
Φ ◦ θ sends cocharge to energy, where θ maps each rigging x to its colabel.

Note that restricting Φ to classically highest weight elements implies the X = M
conjecture of [HKO+99, HKO+02].

Conjecture 2.11 is known on highest weight elements in the following cases.

• For type A
(1)
n [KSS02].

• For B =
⊗N

i=1 B
1,si in all non-exceptional types [OSS03a, SS06].

• For B =
⊗N

i=1 B
ri,1 in types D

(2)
n+1, A

(2)
2n and C

(1)
n [OSS03b] and type D

(1)
n [Sch05].

• For
⊗N

i=1B
1,1 in type E

(1)
6 [OS12].

Conjecture 2.11 was also verified by computer for tensor products for non-exceptional
types up to rank 4, up to 2 factors of the same level, and s 6 2. See [Scr15] for some
sample code.

We also have the following refinement of Conjecture 2.11.

Conjecture 2.12. Let g be an affine Kac–Moody algebra and B =
⊗N

i=1 B
ri,si a ten-

sor product of KR crystals of type g. The map Φ: RC(B) → B is an affine crystal
isomorphism.
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Given that Φ is a classical crystal isomorphism, we can in principle extend Φ to an
affine crystal isomorphism. Since Φ preserves the weights, it suffices to show that Φ is
a bijection that commutes with the classical crystal operators for Conjecture 2.12. For
type A

(1)
n , it was shown in [KSS02] that Φ is a bijection and in [DS06] that it intertwines

with the crystal operators. For type D
(1)
n commutativity with the crystal operators was

shown in [Sak14], however currently Φ is only known to be a bijection for single columns
and single rows [SS06, Sch05]. Conjecture 2.12 has been verified by computer for non-
exceptional affine types up to rank 4, up to 2 factors, and s 6 2.

The combinatorial R-matrix is the affine crystal isomorphism R : Br,s⊗Br′,s′ → Br′,s′⊗
Br,s mapping ur,s⊗ur′,s′ to ur′,s′⊗ur,s, where ur,s is the unique element in Br,s of classical
weight sΛr. In general, it is hard to give an explicit combinatorial description of this
map. Since R is conjectured to be the identity on rigged configurations (proven in certain
cases), the bijection Φ would give an explicit way to obtain the combinatorial R-matrix.

2.5 Virtual crystals

We now recall the notation of virtual crystals [OSS03b, OSS03c]. Let g be any non-
simply-laced affine Kac-Moody algebra, and consider the well-known natural embeddings
of algebras [JM85]:

C(1)
n , A

(2)
2n , A

(2)†
2n , D

(2)
n+1 ↪−→ A

(1)
2n−1

B(1)
n , A

(2)
2n−1 ↪−→ D

(1)
n+1

E
(2)
6 , F

(1)
4 ↪−→ E

(1)
6

G
(1)
2 , D

(3)
4 ↪−→ D

(1)
4 .

(2.15)

Let ĝ denote the simply-laced type under the image with index set Î. Let Γ and Γ̂ be
the Dynkin diagrams of g and ĝ, respectively. These embeddings arise from the diagram
foldings φ : Γ̂ ↘ Γ which fix the affine node. By abuse of notation, we will also denote
the corresponding map on the index sets by φ. In addition, we require scaling factors
γ = (γa)a∈I defined in the following way:

1. Suppose Γ has a unique arrow.

(a) Suppose the arrow points towards the component of the special node 0. Then
γa = 1 for all a ∈ I.

(b) Otherwise, γa is the order of φ for all a in the component of 0 after removing
the arrow and γa = 1 in all other components.

2. Otherwise Γ has 2 arrows and embeds in A
(1)
2n−1. Then γa = 1 for all 1 6 a 6 n− 1,

and for a ∈ {0, n}, we have γa = 2 if the arrow points away from a and γa = 1
otherwise.

Remark 2.13. Note that for the first set of embeddings in (2.15), we have |φ−1(a)| = 2,
γa = 1 for a 6= 0, n and |φ−1(a)| = 1, γa ∈ {1, 2} for a = 0, n. For the second set of
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embeddings in (2.15), we have |φ−1(a)| = 1 for a 6= n, |φ−1(n)| = 2, and γa = 1 except

for γa = 2 for 0 6 a < n and type B
(1)
n .

Overall (including the exceptional cases) note that all orbits under φ have either 1 or
the order of φ elements. Also for any fixed a ∈ I, we cannot have γa 6= 1 and |φ−1(a)| 6= 1
simultaneously. In addition, if γa 6= 1, then γa equals the order of φ.

The above embeddings of algebras yield natural embeddings Ψ: P −→ P̂ of weight
lattices as

Λa 7→ γa
∑

b∈φ−1(a)

Λ̂b,

αa 7→ γa
∑

b∈φ−1(a)

α̂b.

This implies that Ψ(δ) = c0γ0δ̂, where c0 is from Table Aff 2 in [Kac90] (denoted by a0)

and δ (resp. δ̂) is the minimal positive imaginary root in P (resp. P̂ ).

Definition 2.14. Let B̂ be a U ′q(ĝ)-crystal and V ⊆ B̂. Let φ and (γa)a∈I be the folding
and the scaling factors given above. The virtual crystal operators (of type g) are defined
as

eva :=
∏

b∈φ−1(a)

ê γab ,

f va :=
∏

b∈φ−1(a)

f̂ γa
b .

A virtual crystal is the pair (V, B̂) such that V has a U ′q(g)-crystal structure defined by

ea := eva fa := f va

εa := γ−1
a ε̂b ϕa := γ−1

a ϕ̂b

wt := Ψ−1 ◦ ŵt

(2.16)

for any b ∈ φ−1(a).

Remark 2.15. The order in which the operators in eva and f va are applied does not matter

since b, b′ are not connected in Γ̂ for all b 6= b′ ∈ φ−1(a). Also the fact that εa and ϕa
as defined in (2.16) are indeed the string lengths of the U ′q(g)-crystal is a property called
“aligned” in [OSS03b, OSS03c].

We say B virtualizes in B̂ if there exists a U ′q(g)-crystal isomorphism v : B → V for

some virtual crystal (V, B̂). The resulting isomorphism is called the virtualization map.

In subsequent sections, we will denote an object S associated with g by Ŝ for the
corresponding object in ĝ.
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We modify Definition 2.14 for classical types by using Uq(g0) in place of U ′q(g) and
restricting Equation (2.15) to the corresponding classical types:

Cn, Cn, Bn, Bn ↪−→ A2n−1

Bn, Cn ↪−→ Dn+1

F4, F4 ↪−→ E6

G2, G2 ↪−→ D4.

(2.17)

Note that for the exceptional types, there are different scaling factors (γa)a∈I0 in each of
the embeddings above. For the non-exceptional types, the classical embedding are the
same.

The following result is due to Baker [Bak00] when ĝ0 is of type A2n−1 and we show
the other cases in Appendix A.

Theorem 2.16. Let g0 be of classical type. The highest weight crystal B(λ) virtualizes in
B(Ψ(λ)) with the virtualization map v given by v(uλ) 7→ uΨ(λ) and extended by fa 7→ f va
(recall uλ is the unique highest weight element in B(λ)).

We note that Baker’s result is for the restriction of C
(1)
n , D

(2)
n+1 ↪−→ A

(1)
2n−1, but the

other cases of A
(2)
2n , A

(2)†
2n ↪−→ A

(1)
2n−1 considered in [OSS03b] gives the same classical virtu-

alization.
It is clear that if (V1, B̂1) and (V2, B̂2) are virtual crystals, then (V1 ⊕ V2, B̂1 ⊕ B̂2) is

a virtual crystal. Moreover, virtual crystals are closed under taking tensor products.

Proposition 2.17 ([OSS03b, Prop. 6.4]). Virtual crystals form a tensor category.

We note that the proof also holds for classical types since it is a statement about the
tensor product rule.

Next we restate a conjecture given in [OSS03c, Conj. 3.7].

Conjecture 2.18. The KR crystal Ba,s virtualizes into

B̂a,s =

{
Bn,s ⊗Bn,s if g = A

(2)
2n , A

(2)†
2n and a = n,⊗

b∈φ−1(a) B
b,γas otherwise.

This conjecture is known for Br,1 in types D
(2)
n+1, A

(2)
2n and C

(1)
n [OSS03b] and B1,s for

all non-exceptional types [OSS03c].

2.6 The (virtual) Kleber algorithm

Next we recall the Kleber algorithm [Kle98]. Let g be an affine type whose canonical
classical subalgebra is of simply-laced type.

Definition 2.19 (Kleber algorithm). Let B be a tensor product of KR crystals of type g
with multiplicity array L. We construct the Kleber tree T (B) whose nodes will be labelled

by weights in P
+

and edges are labelled by dxy = x − y ∈ Q+ \ {0} recursively starting
with T0 consisting of a single node of weight 0.
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(K1) Let T ′` be obtained from T`−1 by adding
∑n

a=1 Λa

∑
i>` L

(a)
i to the weight of each

node.

(K2) Construct T` from T ′` as follows. Let x be a node at depth ` − 1. Suppose there is

a weight y ∈ P+
such that x − y ∈ Q+ \ {0}. If x is not the root, then let w be

the parent of x. Then (w − x) is larger than (x − y) component-wise expressed as

a sum of the simple roots αi (equivalently we have dwx − dxy ∈ Q
+ \ {0}). For all

such y, attach y as a child of x.

(K3) If T` 6= T`−1, then repeat from (K1); otherwise terminate and return T (B) = T`.

Now we convert the tree to highest weight rigged configurations as follows. Let x be a
node at depth p in T (B), and x(0), x(1), . . . , x(p) = x be the weights of nodes on the path
from the root of T (B) to x. The resulting configuration ν is given by

m
(a)
i = (x(i−1) − 2x(i) + x(i+1) | Λa)

where we make the convention that x = x(k) for all k > p. In other words, there are j rows
of length i in ν(a) where j is the coefficient of αa in the difference of the corresponding
edge labels. We then take the riggings over all possible values between 0 and p

(a)
i .

For non-simply-laced types, we modify the algorithm by using virtual rigged configu-
rations. The resulting algorithm is known as the virtual Kleber algorithm [OSS03c].

Definition 2.20 (Virtual Kleber algorithm). The virtual Kleber tree is defined from the

Kleber tree of B̂ in the ambient type, but we only add a child in step (K2) if the following
conditions are satisfied:

(V1) (y | α̂b) = (y | α̂b′) for all b, b′ ∈ φ−1(a).

(V2) If `− 1 /∈ γaZ, then for w the parent of x, the a-th component of dwx and dxy must
be equal.

Let T̂ (B) be the resulting tree, which we will call the ambient tree, and let γ = maxa∈I γa.
We now select nodes which satisfy either:

(A1) y is at depth ` ∈ γZ, or

(A2) (dxy | Λ̂a) = 0 for every a such that 1 < γ = γa, where x is the parent of y.

To construct the rigged configurations from the selected nodes, we take the devirtualiza-
tion of the resulting virtual rigged configurations (with the appropriate riggings) obtained
from the usual Kleber algorithm.

3 Crystal operators for rigged configurations in non-simply-
laced types

In this section, we show using Theorem 2.16 that there exists a classical crystal structure
on rigged configurations given by Definition 2.5 for non-simply-laced finite types.
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3.1 Virtualization map

We define the virtualization map on rigged configurations as in [OSS03b, OSS03c, Sch06b,
SS06]. In order to do so, we must make a modification to the scaling factors (γa)a∈I by

γ̃a =


γa if a 6= n or g 6= A

(2)
2n , A

(2)†
2n ,

1 if a = n and g = A
(2)
2n ,

2 if a = n and g = A
(2)†
2n .

The reason for this modification is due to the fact that we use the virtual embedding
Bn,s ↪−→ Bn,s ⊗ Bn,s of the type A

(2)
2n or A

(2)†
2n KR crystal into type A

(1)
2n−1, rather than

Bn,γns of type A
(1)
2n−1. In light of Conjecture 2.18, we define

L̂
(b)
γai

= L
(a)
i for b ∈ φ−1(a),

L̂
(b)
j = 0 if j 6∈ γaZ,

except for g = A
(2)
2n , A

(2)†
2n and a = n in which case L̂

(n)
i = 2L

(n)
i .

The virtualization map v from rigged configurations of type g 6= A
(2)†
2n to rigged con-

figurations of type ĝ is given by [OSS03c, Thm. 4.2]

m̂
(b)
γ̃ai

= m
(a)
i ,

Ĵ
(b)
γ̃ai

= γaJ
(a)
i ,

(3.1)

for all b ∈ φ−1(a). For g = A
(2)†
2n , we use the virtualization map [SS06, Def. 7.1/Thm. 7.2]

m̂
(b)
i = m

(a)
i ,

Ĵ
(b)
i = γ̃aJ

(a)
i .

(3.2)

We note that this is the same as Equation (3.1) except for a = n. Let (ν̂, Ĵ) denote the
resulting virtual rigged configuration. Under the virtualization map, we have [OSS03c]

p̂
(b)
γ̃ai

= γap
(a)
i , (3.3)

cc(ν̂, Ĵ) = γ0 cc(ν, J), (3.4)

for all b ∈ φ−1(a), except for g = A
(2)†
2n and a = n, where we have

p̂
(n)
i = γ̃np

(n)
i .

3.2 Crystal operators

We begin by giving an explicit description of ea and fa for a ∈ I0 for non-simply-laced
rigged configurations.
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Definition 3.1. Define the crystal operators fa and ea for all types except A
(2)
2n and A

(2)†
2n

with a = n as in Definition 2.5. For A
(2)†
2n , the algorithm is modified for en by adding

1/2 to the new label and for fn by removing 1/2 from the new label or the added length

1 string is given a label of −1/2. For A
(2)
2n , the algorithm for en and fn for type A

(2)†
2n is

performed twice.
The maps εa and ϕa are defined by (2.1) and the weight is given by (2.10).

Example 3.2. Consider g of type A
(2)
6 and (ν, J) ∈ RC(B3,2) to be

∅ 0 0
0 0

0 .

The first application of the algorithm for f3 in type A
(2)†
6 results in

∅ 0 0
0 0
0 −1

2 ,

and so we have

f3(ν, J) = ∅ 0 0
0 0
−1 −1 .

Proposition 3.3. Let g be of affine type. Fix some a ∈ I0. Let x be the smallest label of
(ν, J)(a), s = min(0, x), and ka = 1 except kn = 2 for type A

(2)†
2n . Then we have

εa(ν, J) = −kas ϕa(ν, J) = ka(p
(a)
∞ − s).

Proof. We note that unless g = A
(2)
2n , A

(2)†
2n and a = n, we have ka = 1. The proof that

ϕa(ν, J) = p
(a)
∞ − s was originally given for simply-laced types in [Sch06a, Lemma 3.6],

whereas εa(ν, J) = −s for types A
(1)
n and D

(1)
n was given in [Sak14, Theorem 3.8]. For

non-simply-laced types, we separate the proof into cases depending on the value of ka.

Case ka = 1:

Let either a 6= n or g not be of type A
(2)
2n . The proofs for ϕa and εa hold verbatim

because the vacancy numbers for ν(a) change as in the simply-laced case and the proof
only involves ν(a).

Thus assume g is of type A
(2)
2n and a = n. The proof is the same as in [Sch06a, Sak14]

except everything is scaled by 1/2. Since we apply this algorithm twice, the claim follows.

Case ka = 2:

Therefore g = A
(2)†
2n and a = n. The proof that p

(n)
∞ − s changes by 1/2 is the same as

in [Sch06a] except everything is scaled by 1/2. Since we multiply this by kn = 2, the
claim follows. Similar changes apply to εa in comparison to [Sak14].

Remark 3.4. Proposition 3.3 immediately implies that 〈α∨a ,wt(ν, J)〉 = ϕa(ν, J)−εa(ν, J)
using Equation (2.11). This shows that Definition 3.1 defines an abstract crystal in the
sense of Definition 2.1.
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3.3 Crystal operators and virtualization

To show that the virtualization map v defines a virtual crystal, we must first prove a
lemma showing that applying fγaa and eγaa on the ambient rigged configurations gives us
another element in our image under v.

Lemma 3.5. Fix a ∈ I0 and γ ∈ Z>0. Consider a rigged configuration (ν, J) with m
(a)
i = 0

for all i /∈ γZ and x ∈ γZ for all x ∈ J (a)
i and i ∈ Z>0. Let 1 6 k 6 γ, and suppose ea

and fa act on the string (`, x`) in (ν, J)(a). Then eka(ν, J) and fka (ν, J) send (`, x`) to the

string (` ∓ k, x` ± k). Moreover, fγa (ν, J) and eγa(ν, J) both have m
(a)
i = 0 for all i /∈ γZ

and x ∈ γZ for all x ∈ J (a)
i and i ∈ Z>0.

Proof. We consider fka (ν, J). Let ` be the maximal length of all strings of the smallest
label x` in (ν, J)(a). Since ` is the largest such string, all strings of length at least ` have
labels x > x`+γ. Thus when we apply fa to (ν, J), the new string in (ν, J)(a) is (`+1, x′`)
with x′`+1 = x`−1 and all strings (i, x) ∈ (ν, J)(a) of length i > `+1 have labels x′ = x−2.
Thus we have x′ > x′`+γ−1. Therefore applying fa to (ν ′, J ′), we act on (`+1, x`−1) as

before. Also note that p
(a)
i does not change for any i < `, therefore J

(a)
i for i < ` does not

change either. Iterating this we obtain a new string (`+k, x`−k) and x > (x`−k)+γ−k
for any string (i, x) ∈ fka (ν, J)(a) with i > `+γ. Hence fa acts on the string (`+k, x`−k)
again. Taking k = γ we get our second claim. The proof for ea is similar.

In other words, given the conditions of Lemma 3.5, eka and fka act on the same string
for all 1 6 k 6 γ (see also [Sak14, Proposition 4.10]).

Remark 3.6. Consider type A
(2)
2n with fn. We note that since all riggings in (ν, J) are

integral and the first application of the type A
(2)†
2n algorithm changes the selected rigging

by 1/2, the second application of the algorithm will act on the same string similar to
Lemma 3.5. Thus all riggings in fn(ν, J) will be integral. A similar statement holds for
en.

We also need the following key fact.

Proposition 3.7. The crystal operators defined in Definition 3.1 commute with the virtu-
alization map v : RC(L)→ V ⊆ RC(L̂), where V is defined by Equations (3.1) and (3.2).

Before we give the proof, let us provide an example.

Example 3.8. Using the rigged configuration (ν, J) from Example 3.2, we have

(ν̂, Ĵ) = ∅ 0 0
0 0

0 0 0 ∅ ,

f̂3(ν̂, Ĵ) = ∅ 0 0
0 0
−1 −1 0 0 ∅ ,

f v3 (ν̂, Ĵ) = ∅ 0 0
0 0
−2 −2 0 0 ∅ .

The last line can be seen as the virtualization of f3(ν, J) in Example 3.2.
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Proof of Proposition 3.7. We will handle types A
(2)
2n and A

(2)†
2n separately, so we consider

the case when γ̃a = γa for all a ∈ I. If we write p
(a)
i =

∑
j>1 min(i, j)L

(a)
j − q

(a)
i ,

from [Sch06b, Eq. (3.2)] we can express

q
(a)
i =

∑
b∈I0

Aab
γb

∑
j∈Z

min(γai, γbj)m
(b)
j . (3.5)

For explicit expressions for q
(a)
i in all non-exceptional affine types, see [OSS03a] (for

example Equation (4.2)). From the definition of the (virtual) crystal operators, Equa-
tion (3.3), and Lemma 3.5, we have fa(ν, J) = 0 if and only if f va

(
v(ν, J)

)
= 0. Note

that in the virtualization map, we do not simultaneously have γa 6= 1 and |φ−1(a)| 6= 1
for any fixed a ∈ I0 by Remark 2.13. Thus we have the following 3 disjoint cases. Let
(ν̂, Ĵ) = v(ν, J).

Case γa = 1 and |φ−1(a)| 6= 1:

Since ν̂(b) = ν̂(b′) for all b, b′ ∈ φ−1(a), their images under f va agree, so we only need to
check the vacancy numbers on neighboring ν(k), that is k such that {k, a} is an edge in
the Dynkin diagram of g. If for any c ∈ φ−1(k) such that ν̂(c) is not a common neighbor
of ν̂(b) and ν̂(b′) (if it holds for some c ∈ φ−1(k), then it holds for all c ∈ φ−1(k)), we have

γk = 1 and so f va (ν̂, Ĵ) ∈ V . Also for all b ∈ φ−1(a) and c ∈ φ−1(k) adjacent to b, we have
Aak = Abc, and therefore v ◦ fa = f va ◦ v.

Now suppose c = φ−1(k) is a common neighbor (note that |φ−1(k)| = 1). This occurs

for a = n − 1 and k = n with g = C
(1)
n , D

(2)
n+1, A

(2)
2n , A

(2)†
2n , for a = n and k = n − 1 with

g = B
(1)
n , A

(2)
2n−1, for a = 2 and k = 3 with g = F

(1)
4 , E

(2)
6 , and a = 1 and k = 2 with g =

G
(1)
2 , D

(3)
4 . In this case p̂

(c)
j is increased by |φ−1(a)| for all j > γ−1

k γai, where i is the length
of string fa acts on (equivalently f va ). Thus the riggings are also increased by |φ−1(a)|.
Recall from Remark 2.13 that if γk 6= 1, then γk = |φ−1(a)|, so f va (ν̂, Ĵ) ∈ V . Looking at

fa(ν, J), from Equation (3.5) we see the change to p
(k)
j is −Aka for all j > γ−1

k γai. We

note that −Aka = γ−1
k |φ−1(a)|, which can be seen by direct computation. Therefore we

have v ◦ fa = f va ◦ v.

Case γa 6= 1 and |φ−1(a)| = 1:

By Equation (3.1) and Lemma 3.5, applying f va = f̂γaa adds boxes to the same string

and changes the rigging by −γa. Thus f va (ν̂, Ĵ) ∈ V , and from the definition of fa and
a straightforward check of the vacancy numbers similar to the previous case, we have
v ◦ fa = f va ◦ v.

Case γa = 1 and |φ−1(a)| = 1:

Trivially we have f va (ν̂, Ĵ) ∈ V , and a straightforward check of the vacancy numbers
similar to the first case implies v ◦ fa = f va ◦ v.

Now for type A
(2)
2n , we have γ̃a = 1 for all a ∈ I0. Furthermore because f vn = f̂ 2

n and
the algorithm for fn does the usual algorithm twice but the changes in the riggings and
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p
(n)
i are scaled by 1/2 = γ−1

n , we have v ◦ fa = f va ◦ v for all a ∈ I0. For type A
(2)†
2n , it has

the same virtualization map on the partitions as type A
(2)
2n , but with f vn = f̂n. Thus from

the definition of fa, we have v ◦ fa = f va ◦ v.
Similarly for all types/cases we have v ◦ ea = eva ◦ v for all a ∈ I0.

Lemma 3.9. Let g be of affine type. The crystal RC(L;λ) of type g0 virtualizes into

RC(L̂; Ψ(λ)) with virtualization map v given by Equations (3.1) and (3.2).

Proof. By the definition of v, condition (2.1) for a crystal morphism is satisfied. Con-
dition (2.1) is satisfied by Proposition 3.7. The condition that the weights agree is easy
to see from our definition of the virtualization map. The remainder of condition (2.1)
holds because of the computation of εa and ϕa in Proposition 3.3, Equation (3.1), and
Equation (3.3). By Lemma 3.5, Proposition 3.3, and the fact that we have defined these
as regular crystals, we have that v is a bijection. Therefore v is a crystal isomorphism.

We note that we can characterize the image of v by using Equations (3.1) and (3.2).
Moreover, by weight considerations this virtualization map is the unique virtualization
of RC(L) into RC(L̂) up to permutation of the classical components. Thus we have the
extension of Theorem 2.6 to all finite types (with possibly different rigged configurations
coming from the affine type).

Theorem 3.10. Let g be an affine Lie algebra. For (ν, J) ∈ RC∗(L;λ), let X(ν,J) be the
crystal generated by (ν, J) and ea, fa for a ∈ I0. Then X(ν,J) is isomorphic to the crystal
graph B(λ) as Uq(g0)-crystals.

Proof. This follows from Theorem 2.6, Theorem 2.16, and Lemma 3.9.

We also have that cocharge is invariant on each classical component.

Proposition 3.11. Consider a classical component X(ν,J) as in Theorem 3.10. The
cocharge cc is constant on X(ν,J).

Proof. In [Sch06a, Thm. 3.9], it was shown that cocharge is constant on classical compo-
nents in simply-laced types. From Equation (3.4), we have that cocharge is constant on
classical components.

We could also prove Proposition 3.11 directly by a similar argument to [Sch06a, The-
orem 3.9].

Corollary 3.12. The maps ls and lt are strict crystal embeddings.

Proof. Since ls is the identity map on the rigged configurations and preserves the weights,
it must be a strict crystal embedding by Theorem 3.10. Since lt adds singular strings
of length 1 to ν(a) for a < r and preserves the vacancy numbers, a straightforward
check shows the resulting rigged configuration also preserves the weight. Additionally
lt commutes with ea and fa by similar argument to [DS06, Lemma C.3]. Therefore by
Theorem 3.10, it must be a strict crystal embedding.
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4 The filling map

In this section we describe the filling map for all non-exceptional types on a case-by-
case basis, extending the results for type D

(1)
n in [OSS13]. Philosophically, the map Φ

between tensor products of KR crystals and rigged configurations consists of a sequence
of splitting maps and δ. For each factor Br,s in the tensor product, the map δ is applied
rs times and results in rs letters in B1,1. However, if an element b ∈ Br,s is in the
classical component B(λ) ⊆ Br,s, its KN tableaux representation has shape λ. The
filling map fill : Br,s → (B1,1)⊗rs makes the link between the KN tableaux and the map
Φ by effectively “filling in” the shape λ to an r × s rectangle. Here we describe the
explicit image of fill for the classically highest weight elements and then extend it as a
classical crystal morphism. We consider (B1,1)⊗rs as an r×s rectangle where the classical
crystal structure is given by the column reading word. We denote this (classical) crystal
by T r,s and call the resulting column-strict tableaux Kirillov-Reshetikhin (KR) tableaux
following [OSS13]. We will also show that the filling map corresponds to the exact image
of Φ on highest weight elements for a single factor Br,s.

Remark 4.1. In [KN94, HK02], the tableaux for the spin cases of B(Λn) in type Bn and
B(Λn−1) and B(Λn) in type Dn are given in terms of half-width columns of height n filled
with {+,−}. These tableaux can be identified with full-width columns where + (resp. −)
at height i goes to i (resp. i) sorted to be strictly increasing. This is a virtualization map

with γa = 2 for all a ∈ I0, so that in particular eva = ê2
a and f va = f̂ 2

a for all a ∈ I0. This

corresponds to the natural embedding of B(λ) in B(2λ) (with êa and f̂a as in [HK02]).

Note that for type A
(1)
n , the filling map is the identity since Br,s ∼= B(sΛr) classically

in this case. We begin in Section 4.1 by recalling the filling map in type D
(1)
n [OSS13] and

then proceed onto all other non-exceptional non-simply-laced types.

4.1 Filling map for type D(1)
n

We first recall from [Kle98] the structure of the Kleber tree for Br,s in type D
(1)
n as it will

be needed later. We begin by considering the spinor cases, i.e. r = n− 1, n, in which case
the Kleber tree is trivial – it consists only of the root. Thus the only highest weight rigged
configuration for both spinor cases is the empty rigged configuration (where ν(a) = ∅ for
all a ∈ I0). Hence the unique highest weight tableau is given by s columns of the form
[1, . . . , n− 1, n] for r = n − 1 and of the form [1, . . . , n] for r = n and the filling map is
the identity map (recall that we are using doubled spin columns, see Remark 4.1).

Next we consider the case r < n−1. The Kleber tree structure was originally described
in [Kle98, Sec. 3.5] and the resulting rigged configurations were given in [OSS13, Prop.
3.3]. We give a proof here for completeness as some of the details are used for other types.
Let λ denote the complement shape of λ in an r × s rectangle and let µ[m] denote the
partition µ but with the first m rows removed. Let µ1/2 be the partition with multiplicities
mi(µ)/2.
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Lemma 4.2. [OSS13, Prop. 3.3] Let Br,s be a KR crystal of type D
(1)
n with r < n. We

have
RC(Br,s) =

⊕
λ

RC(Br,s;λ),

where λ is obtained by removing vertical dominoes from an r× s rectangle. Moreover, the
highest weight rigged configuration in RC(Br,s;λ) is

ν(a) =


λ

[r−a]
1 6 a < r,

λ r 6 a < n− 1,

λ
1/2

a = n− 1, n,

(4.1)

with all riggings 0.

Proof. For T1 in Definition 2.19, we have one node t0 := Λr. Next, to obtain other
dominant weights, we can only subtract

α(k1) := αr−2k1+1 + 2αr−2k1+2 + · · ·+ 2k1αr + · · ·+ 2k1αn−2 + k1αn−1 + k1αn = Λr−Λr−2k1

by (K2) of Definition 2.19 where 1 6 k1 6 r/2, resulting in Λr−2k1 . Pictorially, this
removes k1 vertical dominoes from the single column of height r. This yields all possible
children of t0.

Next we add Λr to all nodes of T1 to get T ′2. We now consider a particular leaf x that
was obtained from its parent using α(k1). To obtain all children of x, we can only subtract
α(k2) where k1 > k2 > 0 by the additional conditions in Step (K2) of Definition 2.19.
Thus this changes the newly added Λr to Λr−2k2 , and this is the only possibility because
otherwise we would have to subtract αa for some a < r−2k1 +1, violating (K2). Ranging
over all leaves we obtain T2. We can iterate the above to see that for any leaf in T (Br,s),
we must have a sequence r/2 > k1 > k2 > · · · > ks > 0. Note that there are exactly s
steps needed to construct T (Br,s) since we can only change the newly added weight at
each step. Furthermore, each sequence gives rise to a unique dominant weight.

Fix a node x ∈ T (Br,s) at depth p and a sequence r/2 > k1 > k2 > · · · > kp > 0
which denotes the path to x and α(ki) = x(i−1) − x(i). Following the convention given
in Definition 2.19, we have kq = 0 for all q > p. Now fix some 1 6 i 6 p, and let
di = ki − ki+1. We have

α(ki) − α(ki+1) =αr−2ki+1 + 2αr−2ki+2 + · · ·+ 2diαr−2ki+1
+ · · ·+ 2diαn−2 + diαn−1 + diαn.

Therefore, we have

m
(a)
i =


0 1 6 a 6 r − 2ki

2
(
a− (r − 2ki)

)
r − 2ki < a 6 r − 2ki+1

2di r − 2ki+1 < a < n− 1,

di a = n− 1, n,
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since (αa | Λb) = δab. It is straightforward to see this is our desired ν (you can also
consider the term caαa in α(ki) corresponding to adding a column of height 2ca to ν(a)).
Since all of the resulting vacancy numbers are 0, the only possible riggings are all 0. Thus
we have the desired rigged configuration.

Note that since we remove vertical dominoes here, λ
1/2

is well-defined.

Example 4.3. Consider T (B12,8) in type D
(1)
25 and the sequence

k1 = 5 > k2 = 5 > k3 = 3 > k4 = 2 > k5 = 2 > k6 = 1.

Therefore λ = 2Λ12 + Λ10 + 2Λ8 + Λ6 + 2Λ2, and we have

ν(12) =

d1 = 0

d2 = 2

d3 = 1
d4 = 0
d5 = 1

d6 = 1

= λ,

where the grey shaded region corresponds to λ.

Consider the classical component B(λ) ⊆ Br,s corresponding to some shape λ =
krΛr + kr−2Λr−2 + · · · . We want to describe the image of the highest weight element of
highest weight λ under the map fill : B(λ) ↪→ T r,s. The resulting tableau t was described
in [OSS13] and is constructed as follows. Let kc be the first odd integer in the sequence
(kr−2, kr−4, . . .) and if kc does not exist, then set c = −1. The process proceeds by
induction on the columns of t from left to right.

(1) The first kr columns of t are filled with [1, 2, . . . , r − 1, r].

(2) For kh where r > h > c, add bkh/2c times the pair of columns
[
1, . . . , h, r, . . . , h+ 1

]
then [1, 2, . . . , r − 1, r].

(3) Let h be a column of λ and x = c+ 1. Add the column[
1, . . . , h− 1, h, r − (x− h− 2), . . . , r − 1, r, r, . . . , x+ 1, x

]
.

Now set x to be the (h+1)-th letter of the previously added column and repeat (4.1)
for all columns of height h < c.
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(4) If c > −1, let x be the final value we obtained from (4.1). The rightmost column is
filled with [

1, 2, . . . , (r + x− 1)/2, (r + x− 1)/2, . . . , x+ 1, x
]
.

Recall the (affine) crystal isomorphism ι : Br,s → RC(Br,s) given in [OSS13]. This map
is natural in the sense that it maps classically highest weight elements to their unique cor-
responding classically highest weight rigged configurations of the same (classical) weight.
The uniqueness comes from the fact that the classical decomposition is multiplicity free.

Definition 4.4. The (classical) crystal morphism fill : Br,s → T r,s is given by the filling
procedure above on highest weight elements and extending it as a crystal morphism.

Theorem 4.5 ([OSS13, Thm. 5.9]). Let Br,s be a KR crystal of type D
(1)
n . Then

Φ = fill ◦ι−1

on highest weight elements with fill as in Definition 4.4.

4.2 Filling map for type C(1)
n

4.2.1 r < n

Let 1
2
µ denote the partition by scaling each row by 1/2.

Lemma 4.6. Let Br,s be a KR crystal of type C
(1)
n with r < n. We have

RC(Br,s) =
⊕
λ

RC(Br,s;λ), (4.2)

where λ is obtained by removing horizontal dominoes from an r × s rectangle. Moreover,
the highest weight rigged configuration in RC(Br,s;λ) is given by

ν(a) =


λ

[r−a]
1 6 a < r,

λ r 6 a < n,
1
2
λ r = n,

with all riggings 0.

Proof. Recall that we realize Br,s of type C
(1)
n as a virtual crystal in Br,s⊗B2n−r,s of type

A
(1)
2n−1. We will prove the assertion by constructing the ambient Kleber tree, selecting the

virtual nodes, and then pulling back to the type C
(1)
n setting. Let us begin by constructing

the ambient Kleber tree. For T̂ ′1 in Definition 2.19 we have one node t0 := Λ̂r + Λ̂2n−r.
Next to obtain other dominant weights, we first consider moving to the “nearest” dominant

weight Λ̂r−1+Λ̂2n−r+1 by subtracting the root α̂r,2n−r := α̂r+α̂r+1+· · ·+α̂2n−r. Pictorially,
this is moving a box from the column of height r to the column of height 2n − r. Now
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to obtain the next sibling weight, we add α̂r−1,2n−r+1. In general, to get to all possible
children of t0, we add

α̂(k1) := α̂r−k1,2n−r+k1 + α̂r−k1+1,2n−r+k1−1 + · · ·+ α̂r,2n−r

= α̂r−k1 + 2α̂r−k1+1 + · · ·+ (k1 − 1)α̂r−1 + k1α̂r + k1α̂r+1

+ · · ·+ k1α̂2n−r + (k1 − 1)α̂2n−r+1 + · · ·+ α̂2n−r+k1

(4.3)

for some r > k1 > 0 to t0 to obtain the other weights in T̂1. Next we add Λ̂r +Λ̂2n−r to all
weights of T̂1 to get T̂ ′2. We consider a particular leaf x that was obtained from its parent
using α̂(k1). To obtain all children of x, we can only subtract α̂(k2) where k1 > k2 > 0 by
the additional conditions in Step (K2) of Definition 2.19. This is because from (K2), we

can only change the newly added Λ̂r and Λ̂2n−r to Λ̂r−k2 and Λ̂2n−r+k2 , respectively, as
otherwise we would subtract α̂a for some a 6 k1 and/or a > 2n−k1 (i.e. move boxes from
the recently added column of height r to the one of height 2n−r and keeping the partition
shape), violating (K2). Ranging over all leaves, we obtain T̂2. We can iterate the above

to see that for any leaf in T̂ (B), we must have a sequence r > k1 > k2 > · · · > ks > 0.

Note that there are exactly s steps needed to construct T̂ (B) since we can only change
the newly added weights at each step. Furthermore, each sequence gives rise to a unique
dominant weight.

For the virtual Kleber tree, condition (V1) of Definition 2.20 is satisfied by the sym-
metry of the α̂(ki) under the folding; namely by Equation (4.3) the coefficient of α̂a in α̂(ki)

is the same as the coefficient of α̂2n−a. In order to satisfy (V2) of Definition 2.20, we must
have ki = ki−1 for all i ∈ 2Z using the convention that kj = ks for all j > s. This comes
from the fact that γn = 2 and γa = 1 for 1 6 a < n, so that (V2) requires the coefficient
of α̂n in α̂(ki) to be equal to the same coefficient in α̂(ki−1), which means ki = ki−1. Thus
we can only select nodes at even depth and the selected weights after devirtualization
correspond to removing horizontal dominoes. We note that ki is the number of horizontal
dominoes removed from the (r − i)-th row of an r × s rectangle. From the description of
α̂(ki), we have the desired rigged configuration.

Recall that the classical decomposition of Br,s for r < n is given by weights obtained
from sΛr by removing horizontal dominoes. We note that Lemma 4.6 and Theorem 3.10
imply that there exists a natural (classical) crystal morphism ι, which maps the classical
component RC(Br,s;λ) to the unique corresponding classical component B(λ) ⊆ Br,s.

This morphism is a (classical) crystal isomorphism, in analogy to type D
(1)
n given in

Section 4.1. In subsequent sections, we prove lemmas analogous to Lemma 4.6 in other
types. Hence we obtain crystal isomorphisms ι in all such cases.

Definition 4.7 (Type C(1)
n filling map). Let r < n and consider a dominant weight

λ =
∑

i∈I0 kiΛi in the decomposition (4.2) (note that only kr can be odd since we are
removing horizontal dominoes and ki = 0 for i > r) and define k0 := s −

∑
i∈I0 ki.

The image under fill of the (unique) classically highest weight element uλ ∈ Br,s of
classical weight λ is given on columns from right to left by filling in [1, . . . , r] followed by
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[
1, . . . , h, r, . . . , h+ 1

]
, repeating this bkh/2c times, for h = 0, 1, . . . , r. If kr is odd, we

add a leftmost column of [1, . . . , r].

Note that Definition 4.7 is a special case of Definition 4.4; namely only cases (1) and
(2) occur. Alternatively, consider a classically highest weight element uλ ∈ B(λ) ⊆ Br,s

of classical weight λ. Then uλ can be regarded as a tableau of shape λ whose k-th row is
filled by the letter k. The filling map on uλ is obtained by adding pairs [k̄ | k] into the k-th
row of uλ (for each horizontal domino removed) and then sorting elements increasingly
from bottom to top within each column as necessary.

Example 4.8. Consider λ = 2Λ2 + Λ3 for type C
(1)
4 and B3,5. Then fill(uλ) is:

3 3 3 1 3
2 2 2 2 2
1 1 1 3 1

,

where the filled in portion is shaded in grey.

Example 4.9. Consider λ = 2Λ1 + 2Λ2 + 2Λ4 for type C
(1)
128 and B5,6. Then fill(uλ) is:

5 5 3 5 2 5
4 4 4 4 3 4
3 3 5 3 4 3
2 2 2 2 5 2
1 1 1 1 1 1

.

We recall the algorithm for δ given in [OSS03a] (with appropriate modifications due to
our convention, see Remark 2.3). Suppose the leftmost factor is Br,1. Set `(r−1) = 0 and
repeat the following process for a = r, r+ 1, . . . , n− 1 or until stopped. Find the minimal
index i > `(a−1) such that (ν, J)(a) has a singular string of length i. If no such i exists,
return a and stop. Otherwise set `(a) = i and continue. If the process has not terminated
at a = n − 1, find the minimal i > `(n−1)/2 such that (ν, J)(n) has a singular string of

length i. If no such i exists, return n and stop. Otherwise set `
(n)

= i and continue. Next

find the smallest index i > 2`
(n)

such that (ν, J)(n−1) has a singular string of length i and

set `
(n−1)

= i; if no such singular string exists return n and stop. If the process has not
stopped continue as follows for a = n− 2, n− 3, . . . , 1 or until stopped. Find the minimal

index i > `
(a+1)

such that (ν, J)(a) has a singular string of length i. If no such i exists,

return a+ 1 and stop. Otherwise set `
(a)

= i and continue. If the process does not stop
for a > 1 return 1.

Next we modify the rigged configuration by removing a box from the singular string

of length `(a) for a = r, . . . , n − 1 and `
(a)

for a = n, . . . , 1 if such values are defined (if

`(a) = `
(a)

, then we remove 2 boxes from the same string). We then make the affected
rows singular.
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Proposition 4.10. Let Br,s be a KR crystal of type C
(1)
n and r < n. Then

Φ = fill ◦ι−1

on highest weight elements with fill as in Definition 4.7.

Proof. We show the claim by induction on s by noting that removing the leftmost col-
umn gives a highest element in Br,s−1 (resp. RC(Br,s−1)) corresponding to the partition
obtained from λ by replacing all rows of length s (if they exist) by rows of length s− 2.

Consider a highest weight λ and the corresponding rigged configuration (ν, J) given
by Lemma 4.6. Suppose λ1 < s, so that the desired leftmost column of the filled tableau
is [1, . . . , r]. We now check that we obtain this after removing the leftmost column by
Φ. Note that all rows in ν(r) have length less than s, so after we split off the leftmost
column, all of the vacancy numbers for ν(r) are 1. However, all of the riggings are 0, so
we stop and δ returns r. We note that this implies that ν is unchanged and we are now
in RC(Br−1,1⊗Br,s−1). This implies that all vacancy numbers for ν(r−1), which again has
only rows of length less than s, are 1. We are in a similar case to before, so δ returns
r−1. We can repeat this for the entire column to obtain [1, . . . , r]. Note that the resulting
rigged configuration is what we started with.

Now suppose that λ1 = s, so our desired leftmost column is
[
1, . . . , h, r, . . . , h+ 1

]
for

h < r. Note that h is maximal such that kh 6= 0. Thus the shortest column in λ has
height r − h and

m(a)
s =


r − h a > r,

a− h r > a > h,

0 h > a,

by Lemma 4.6. Now splitting off the leftmost column increases p
(r)
i for i < s by 1 and

leaves all other vacancy numbers unchanged. Hence after applying δ, we remove 2 boxes
from the same row in each of the longest rows of ν(a) for a > r and 1 box from ν(a) for
h < a < r. Thus the algorithm returns h+ 1. The resulting riggings on the selected rows
will be 0. Next we are in RC(Br−1,1⊗Br,s−1), and now δ removes a box from the (unique)
row of length s − 1 in ν(r−1), two boxes from the same row of length s in ν(a) for a > r,
and a single box from a row of length s in ν(a) for h + 1 < a < r. Hence δ returns h+ 2
and the riggings on the selected rows will be 0. Therefore by using a similar procedure, we
can continue until we return r, in which case all strings in (ν, J)(h) are now non-singular
because there are no rows of length (at least) λ1 = s in (ν, J)(a) for all a ∈ I0 (and we
are in RC(Bh,1⊗Br,s−1)). Then we fall back into the case when the column was [1, . . . , r]
since there are no singular strings. Thus we have removed two boxes from all strings of
length s in (ν, J)(a) (if they exist), specifically from ν(r) = λ to obtain the desired highest
weight element.

4.2.2 r = n

Recall that Bn,s = B(sΛn).
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Proposition 4.11. Let Bn,s be a KR crystal of type C
(1)
n . Then

Φ = fill ◦ι−1

on highest weight elements with fill the trivial filling map (i.e. the identity map on the
unique highest weight tableau) and ι : Br,s → RC(Br,s) is the natural crystal isomorphism.

Proof. The ambient Kleber tree is T̂ (Bn,2s) in type A
(1)
2n−1 and consists of a single node

of weight 2sΛn. Thus the only highest weight rigged configuration is the empty rigged
configuration. Hence all columns of the highest weight tableau are filled with [1, . . . , n],
and the filling map is trivial on the highest weight tableau.

Remark 4.12. The filling map is actually the identity on all elements of Bn,s.

4.3 Filling map for type A
(2)
2n−1

The analysis of this type is similar to type D
(1)
n .

Lemma 4.13. Let Br,s be a KR crystal of type A
(2)
2n−1. We have

RC(Br,s) =
⊕
λ

RC(Br,s;λ),

where λ is obtained by removing vertical dominoes from an r× s rectangle. Moreover, the
highest weight rigged configuration in RC(Br,s;λ) is given by

ν(a) =


λ

[r−a]
1 6 a < r,

λ r 6 a < n,

λ
1/2

a = n,

with all riggings 0.

Proof. We split the proof into two cases: r < n and r = n. We note that the virtualization
of type A

(2)
2n−1 is into type D

(1)
n+1 and γa = 1 for all a.

Case r < n:

In this case we have B̂r,s = Br,s of type D
(1)
n+1. Hence the ambient Kleber tree is exactly

the same as the usual type D
(1)
n+1 Kleber tree, and we select all of the nodes for the virtual

Kleber tree. The only modification needed to Lemma 4.2 is that ν(n) = ν̂(n) = ν̂(n+1) =

λ
1/2

. Therefore we have the desired rigged configurations.

Case r = n:

We note that in this case we have B̂n,s = Bn,s ⊗ Bn+1,s of type D
(1)
n+1. The roots we can

subtract in the Kleber tree are of the form

α(k) = kαn+1 + kαn + (2k − 1)αn−1 + (2k − 2)αn−2 + · · ·+ αn+1−2k
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by condition (K2) of Definition 2.19. This sends the weight Λn + Λn+1 to Λn−2k We note

that this corresponds to removing k vertical dominoes. Now in building T̂ (Bn,s), we get a
sequence bn/2c > k1 > k2 > · · · > kn > 0 and this determines a unique dominant weight.
(We note that this is the same as in Lemma 4.2 where we consider Λn + Λn+1 as a full
column of height n.)

It is easy to see that α(k) satisfies the conditions of Definition 2.20. Therefore all
nodes of T̂ (Br,s) are constructed and selected, and from the description of α(k), we have
the desired rigged configurations.

Proposition 4.14. Let Br,s be a KR crystal of type A
(2)
2n−1. Then

Φ = fill ◦ι−1

on highest weight elements with fill being the same as given in Definition 4.4 and ι : Br,s →
RC(Br,s) is the natural crystal isomorphism.

Proof. From Lemma 4.13, we have the same highest weight rigged configurations given
by Equation (4.1) except with ν(n) = ν̂(n) = ν̂(n+1). Now in type D

(1)
n+1, the map δD

selects the same singular string in ν̂(n) and ν̂(n+1) as δ (in type A
(2)
2n−1) for ν(n). Therefore

the return value of δ agrees with δD and the resulting rigged partitions agree (up to the
equivalence of the spinor rigged partitions). Hence the proof of [OSS13, Thm. 5.9] holds

for type A
(2)
2n−1, and so Φ = fill ◦ι−1.

4.4 Filling map for type B(1)
n

4.4.1 r < n

We note that this is similar to type D
(1)
n .

Lemma 4.15. Let Br,s be a KR crystal of type B
(1)
n with r < n. We have

RC(Br,s) =
⊕
λ

RC(Br,s;λ),

where λ is obtained by removing vertical dominoes from the r × s rectangle. Moreover,
the highest weight rigged configuration in RC(Br,s;λ) is given by

ν(a) =


λ

[r−a]
1 6 a < r,

λ r 6 a < n,

2λ
1/2

a = n,

with all riggings 0.

Proof. Recall that the KR crystal of type B
(1)
n can be modeled by a virtual crystal of type

D
(1)
n+1. Note that as a virtual D

(1)
n+1 crystal, we have γa = 2 and so ν̂(a) = 2ν(a) for all a < n.

Additionally γn = 1 and ν̂(n) = ν̂(n+1) = ν(n) under v. Now from the proof of Lemma 4.2
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and condition (V2) of the virtual Kleber tree, we must remove another vertical domino
at each even step, so 2Λk goes to 2Λk−2 for all k. Next since γa = γ = 2 for all a 6= n by
conditions (A1) and (A2) of Definition 2.20 we only select nodes at even levels, so this
corresponds to selecting nodes by removing 2× 2 boxes. Therefore when converting back
to a B

(1)
n rigged configuration, we get a removal of vertical dominoes. Hence the resulting

highest weight rigged configuration is as desired after devirtualization.

Proposition 4.16. Let Br,s be a KR crystal of type B
(1)
n and r < n. Then

Φ = fill ◦ι−1

on highest weight elements with fill being the same as given in Definition 4.4 and ι : Br,s →
RC(Br,s) is the natural crystal isomorphism.

Proof. From Lemma 4.15, we have ν̂(a) = 2ν(a) for all 1 6 a < n and ν(n) = ν̂(n) = ν̂(n+1),
so (ν̂, Ĵ) is a highest weight rigged configuration in type D

(1)
n+1. Now in type D

(1)
n+1, the

map δD selects the same singular strings in ν̂(n) and ν̂(n+1), and in type B
(1)
n , we only have

even length strings and δB selects the corresponding single singular string. Therefore the
return value of δB agrees with δD and the resulting rigged partitions agree (up to the
equivalence of the spinor rigged partitions). Hence the proof of [OSS13, Thm. 5.9] holds

for type B
(1)
n , and so Φ = fill ◦ι−1.

4.4.2 r = n

We are representing the spinor in this case with doubled columns as well. As such, the
classical decomposition corresponding to removing 2 × 2 boxes as opposed to a vertical
domino. Thus the proof is similar to type C

(1)
n , but by removing 2× 2 boxes.

Lemma 4.17. Let Bn,s be a KR crystal type B
(1)
n . We have

RC(Bn,s) =
⊕
λ

RC(Bn,s;λ)

where λ is obtained by removing vertical dominoes from an n× (s/2) rectangle. Moreover,
the highest weight rigged configuration in RC(Bn,s;λ) is given by

ν(a) =

{
λ

[r−a]
1 6 a < n,

2λ
1/2

a = n,

with all riggings 0.

Proof. Recall the construction of the ambient Kleber tree, which is of type D
(1)
n+1, from

Lemma 4.13 for r = n. However, here we must have ki = ki+1 for all i ∈ 2Z since γa = 2

for a 6= n (for reasons similar to the type C
(1)
n case given in Lemma 4.6). Moreover we

only select nodes in T̂ (Br,s) in the even levels. Therefore after devirtualization (note that
γn = 1, which implies the factor of 2 for ν(n)), we get the desired rigged configurations.
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Proposition 4.18. Let Bn,s be a KR crystal of type B
(1)
n . Then

Φ = fill ◦ι−1

on highest weight elements with fill the same as given in Definition 4.7 for double columns
and ι : Bn,s → RC(Bn,s) is the natural crystal isomorphism.

Proof. We first recall the doubling map for Bn,s in the paragraph after Equation (2.14),

which is a virtualization map into Bn,s of type A
(2)
2n−1 with γa = 2 for all a 6= n and γn = 1,

so

ν̂(a) =

{
2ν(a) a < n,

ν(a) a = n,

and similarly for the riggings. Thus the removal of vertical dominoes translates into
removing 2 × 2 boxes. Recall that the bijection for Bn,s of type B

(1)
n is given by first

applying the doubling map, then following the algorithm given in Definition 4.4, and then
taking the halving map, which on the KR tableaux is the identity map. Since we are
removing 2× 2 boxes, we must have c = −1. Thus from Proposition 4.14 (or the proof of
Theorem 5.9 in [OSS13]), we see that Φ = fill ◦ι−1.

We note that our convention choice is visible here. Specifically, if we used half width

boxes then we would have ν(n) = λ
1/2

and ν̂(n) = 2ν(n).

4.5 Filling map for type A
(2)
2n

Lemma 4.19. Consider type A
(2)
2n and Br,s be a KR crystal. We have

RC(Br,s) =
⊕
λ

RC(Br,s;λ),

where λ is obtained by removing single boxes from an r×s rectangle. Moreover, the highest
weight rigged configuration in RC(Br,s;λ) is given by

ν(a) =

{
λ

[r−a]
1 6 a < r,

λ r 6 a 6 n,

with all riggings 0.

Proof. Similar to Lemma 4.6 except we select all nodes in the ambient Kleber tree.

Definition 4.20. The crystal morphism fill : Br,s → T r,s is as in Definition 4.4 except the
final column for step (4.1) (when c > −1) is [1, . . . , x− 1, ∅, . . . , ∅] (recall ∅ is the unique
element in B(0) ⊆ B1,1).
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Example 4.21. Consider λ = 2Λ1 + Λ2 + 2Λ3 + Λ4 for type A
(2)
20 and B4,6. Then we have

fill(uλ) =

4 4 4 3 4 ∅
3 3 3 4 4 ∅
2 2 2 4 3 2
1 1 1 1 1 1

.

We recall some pertinent facts about δ in type A
(2)
2n . Specifically for ν(n), if the selected

singular string has length 1, we terminate and return ∅, otherwise we remove 2 boxes from
the selected string. In all other cases, it behaves as in type C

(1)
n .

Proposition 4.22. Let Br,s be a KR crystal of type A
(2)
2n . Then

Φ = fill ◦ι−1

on highest weight elements with fill as in Definition 4.20 and ι : Br,s → RC(Br,s) is the
natural crystal isomorphism.

Proof. This is the similar to the proof as type D
(1)
n given in [OSS13], but we must make the

following changes. When we remove pairs of columns (Step 1 in [OSS13]), this behaves as

in the proof of Proposition 4.10 (type C
(1)
n case). When there is a single column remaining

(i.e. we are in the final step, Step 3, and kc = 1 with all other ki = 0), the resulting rigged
configuration is given by Lemma 4.19 with λ = Λx and s = 1, where x in given by the
algorithm for Definition 4.4. Here δ starts at ν(r) and goes to ν(n). Since ν(n) consists
only of a single column with a singular string, the map δ returns ∅. Thus we remove a
single box from each ν(k) for r 6 k 6 n. This can be repeated this r − x times, at which
point we obtain the empty rigged configuration. Hence we obtain the final column as
[1, . . . , x− 1, ∅, . . . , ∅].

4.6 Filling map for type A
(2)†
2n

This is the same as type C
(1)
n except at r = n, in which case we have v : Bn,s → Bn,s⊗Bn,s

under the virtualization map into type A
(1)
2n−1. However this makes the behavior uniform

with the proof for type C
(1)
n for r < n.

Lemma 4.23. Let Br,s be a KR crystal of type A
(2)†
2n . We have

RC(Br,s) =
⊕
λ

RC(Br,s;λ),

where λ is obtained by removing horizontal dominoes from an r × s rectangle. Moreover,
the highest weight rigged configuration in RC(Br,s;λ) is given by

ν(a) =

{
λ

[r−a]
1 6 a < r,

λ r 6 a 6 n,

with all riggings 0.
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Proof. Same as Lemma 4.6 for r < n. For r = n, we have B̂n,s = Bn,s ⊗ Bn,s in type
A

(1)
2n−1. So a similar proof as Lemma 4.6 holds here.

Proposition 4.24. Let Br,s be a KR crystal of type A
(2)†
2n . Then

Φ = fill ◦ι−1

on highest weight elements with fill is the same as given in Definition 4.7 and ι : Br,s →
RC(Br,s) is the natural crystal isomorphism.

Proof. The proof is similar to Proposition 4.10.

4.7 Filling map for type D
(2)
n+1

We note that in this case, the filling map is similar to type A
(2)
2n except for r = n.

4.7.1 r < n

Lemma 4.25. Let Br,s be a KR crystal type D
(2)
n+1 for r < n. We have

RC(Br,s) =
⊕
λ

RC(Br,s;λ),

where λ is obtained by removing single boxes from an r×s rectangle. Moreover, the highest
weight rigged configuration in RC(Br,s;λ) is given by

ν(a) =

{
λ

[r−a]
1 6 a < r,

λ r 6 a 6 n,

with all riggings 0.

Proof. Similar to Lemma 4.6 except we select all nodes in the ambient Kleber tree.

Proposition 4.26. Let Br,s be a KR crystal of type D
(2)
n+1 and r < n. Then

Φ = fill ◦ι−1

on highest weight elements with fill as in Definition 4.20 and ι : Br,s → RC(Br,s) is the
natural crystal isomorphism.

Proof. Similar to Proposition 4.22 as all vacancy numbers and riggings of ν(n) are 0
(i.e. there are no quasisingular strings so we cannot go into case (Q) when performing
δ [OSS03a]).
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4.7.2 r = n

This is similar to C
(1)
n when r = n.

Proposition 4.27. Let Bn,s be a KR crystal of type D
(2)
n+1. Then

Φ = fill ◦ι−1

on highest weight elements with fill the trivial filling map (i.e. the identity map on the
unique highest weight tableau) and ι : Br,s → RC(Br,s) is the natural crystal isomorphism.

Proof. This is the same as Proposition 4.11.

Moreover fill is the identity map on the tableaux as noted in Remark 4.12.

4.8 Summary

We have given an explicit description of the highest weight rigged configurations in all
(non-exceptional) types for single tensor factors. Furthermore, we have shown the follow-
ing.

Theorem 4.28. Let g be a non-exceptional affine type. We have

Φ = fill ◦ι−1

on highest weight elements in RC(Br,s) and ι : Br,s → RC(Br,s) is the natural crystal
isomorphism.

In other words, as classical crystals (and hence as sets) RC(Br,s) ∼= T r,s ∼= Br,s and
classically highest weight elements are mapped by Φ and fill, respectively. We also note
that the filling map for general r depends only on how the affine node attaches to the
classical type, analogous to the classical decompositions.

We can define ls and lt on (a tensor product of) T r,s by splitting off the left column
(of the leftmost factor) and the top box (of the leftmost factor), respectively.

Moreover we can show that ι sends cocharge to energy.

Theorem 4.29. Let Br,s be a KR crystal of non-exceptional type with s > 1 and 1 6 r 6
n. For all b ∈ Br,s we have

D(b) = cc
(
θ ◦ ι(b)

)
.

Proof. Our proof is similar to [OSS13, Thm. 4.10]. Since the energy function is constant
on classical components, and by Proposition 3.11, cocharge is as well, it suffices to prove
the statement for highest weight elements b ∈ Br,s with the unique weight λb. Since all
riggings and vacancy numbers are 0 for highest weight elements in RC(Br,s), the map θ
is the identity. We rewrite the cocharge in terms of the vacancy numbers:

cc(ν) =
1

2

∑
(a,i)∈H0

t∨ap
(a)
i m

(a)
i +

1

2

∑
a∈I0

i,j∈Z>0

t∨a min(i, j)L
(a)
i m

(a)
j . (4.4)
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Since the vacancy numbers are zero, the first term of Equation (4.4) is 0. Also in our case

L
(a)
i = δa,rδi,s, and so for the unique highest weight rigged configuration (ν, J) of weight

λb, we have

cc(ν, J) = cc(ν) =
1

2

∑
j∈Z>0

t∨r min(s, j)m
(r)
j =

t∨r
2

∣∣ν(r)
∣∣ . (4.5)

We note that for r 6= n, we have ν(r) = λ by Lemma 4.6 and equivalent lemmas in
Section 4 (depending on the type). Furthermore, t∨r = 2 in types A

(2)
2n and D

(2)
n+1, both of

which have a classical decomposition given by removing single boxes. In all other types
we have t∨r = 1 and we are removing dominoes (or no boxes are removed) to obtain the
classical decomposition. By Definition 2.9, this shows the desired claim.

Now consider r = n. We have t∨n = 2 in types A
(2)
2n and A

(2)
2n−1, and t∨n = 1 in all

other types. For type A
(2)
2n , we are removing single boxes and ν(n) = λ. For type A

(2)†
2n , we

are removing horizontal dominoes and ν(n) = λ. For type B
(1)
n , we are removing vertical

dominoes and ν(n) = 2λ, in particular
∣∣λ∣∣ = 2

∣∣ν(n)
∣∣. For type A

(2)
2n−1, we are removing

vertical dominoes and ν(n) = λ
1/2

, in particular
∣∣λ∣∣ = 1

2

∣∣ν(n)
∣∣. In all other types the

classical decomposition is trivial (i.e., no boxes are removed). From Equation (4.5) and
Definition 2.9, this shows the desired claim.

From Theorem 4.28, we can give an affine crystal structure on rigged configurations
and KR tableaux. We do so by mapping to the KN tableaux model, where we know how to
explicitly compute e0 and f0 by [FOS09], under the natural (classical) crystal isomorphism
ι and mapping back. Together with Theorem 4.29, this implies that Conjecture 2.11 holds
for Br,s in non-exceptional types on classically highest weight elements.

However this definition of the affine crystal structure is somewhat unsatisfactory as it
is not a direct description of e0 and f0 on rigged configurations nor on KR tableaux in
general. In the next section, we will give an explicit description of e0 and f0 on rigged
configurations of types B

(1)
n and A

(2)
2n−1 for Br,s where r < n. For type A

(1)
n this was done

in [SW10] (for general factors) and for type D
(1)
n in [OSS13].

We also have the following conjecture related to Conjecture 2.11 about the filling map
for arbitrary number of factors.

Conjecture 4.30. Let B =
⊗N

i=1B
ri,si and let T =

⊗N
i=1(B1,1)⊗risi (organized into a

ri × si rectangle as with T ri,si), then the filling map fill : B → T is given by

fill(B) =
N⊗
i=1

fill(Bri,si).

In other words, we have T =
⊗N

i=1 T
ri,si . This has been verified by computer for

tensor products for non-exceptional types up to rank 4, up to 2 factors, and s 6 2.
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5 Affine crystal strucutre

In this section we give the explicit affine crystal structure for RC(Br,s) for all 1 6 r 6 n of

type B
(1)
n and A

(2)
2n−1. In addition, we show that Br,s of type B

(1)
n and A

(2)
2n−1 virtualizes into

B̂r,s of type D
(1)
n+1 for r < n. This proves [OSS03c, Conj. 3.7] (see also Conjecture 2.18)

in these cases.

5.1 Affine crystal operators

Here we give an explicit description of the affine crystal operators e0 and f0 on rigged
configurations for types B

(1)
n and A

(2)
2n−1. In general for types D

(1)
n , B

(1)
n , and A

(2)
2n−1, we

define the affine crystal operators by

e0 = σ ◦ e1 ◦ σ , (5.1a)

f0 = σ ◦ f1 ◦ σ , (5.1b)

where σ is the crystal involution that is induced by the Dynkin diagram automorhpism
which interchanges node 0 and node 1. Therefore to describe e0 and f0, we need to define
the crystal automorphism σ. This is done by first defining the map on {2, 3, . . . , n}-highest
weight elements, which are in bijection with so-called ±-diagrams and then extending to
all crystal elements.

A ±-diagram is a sequence of shapes τ ⊆ µ ⊆ λ such that λ/µ and µ/τ are horizontal
strips (i.e. every column contains at most one box). We depict this as a skew shape λ/τ
in which the cells of µ/τ are filled with a + and λ/µ are filled with a −. The partitions
λ and τ are called the outer and inner shapes, respectively. In type Bn, the ±-diagrams
with columns of height n can also contain at most one 0 between a + and − at height n,
can have at most one half-width spin column of height n with either a + or a −, and must
have all columns of height n being non-empty. In type Cn, there are no empty columns
of height n. We will only consider ±-diagrams in type Dn whose outer shape does not
contain any columns of height n− 1 nor n.

Proposition 5.1 ([Sch08], [FOS09, Sec. 3.2]). Let g0 be of type Bn, Cn, or Dn. There is
a bijection ζ from ±-diagrams of outer shape λ to {2, . . . , n}-highest weight elements in
the highest weight crystal B(λ) of type g0. The ±-diagram which has a + in every column
and no − corresponds to the highest weight vector. Given a ±-diagram P , we obtain the
{2, . . . , n}-highest weight element ζ(P ) = b inductively as follows:

Case 1 :
P has a column where a + can be added. Let P ′ be the ±-diagram obtained from P by
adding a + in the rightmost possible column at height h. If there is a column of height
n containing 0, then b = f1f2 · · · fhf1f2 · · · fnζ(P ′), otherwise b = f1f2 · · · fhζ(P ′).
Note that we cannot add a + to a spin column.

Case 2 :
P has no column where a + can be added and at least one −. Let P ′ be the ±-diagram
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obtained from P by removing the leftmost − at height h and either moving the + in
the same column up if h > 1 or adding a + if h = 1. Then

b =


f1f2 · · · fnfn−2fn−3 · · · fhζ(P ′) g0 = Dn,

f1f2 · · · fn−1fnζ(P ′) g0 = Bn and − is in the spin column,

f1f2 · · · fn−1fnfnfn−1 · · · fhζ(P ′) g0 = Bn otherwise,

f1f2 · · · fn−1fnfn−1fn−2 · · · fhζ(P ′) g0 = Cn.

Next we recall the bijection ζrc from ±-diagrams to rigged configurations for type D
(1)
n

given in [OSS13]. Consider the classically highest weight component RC(Br,s;λ). We
construct all {2, . . . , n}-highest weight rigged configurations in RC(Br,s;λ) from the ±-
diagrams of outer shape λ as follows (note they are in bijection). Consider a single column
±-diagram P of height x, and let y = r − x (this will always be even). We describe the
rigged configuration based on which type of column P is:

• P does not contain any sign:

ν =
( x︷ ︸︸ ︷

(1), (1), . . . , (1),

y︷ ︸︸ ︷
(1), (12), . . . , (1y), (1y), . . . , (1y), (1

y
2 ), (1

y
2 )
)
,

J =
( x︷ ︸︸ ︷
(−1), (0), . . . , (0),

y︷ ︸︸ ︷
(1), (02), . . . , (0y), (0y), . . . , (0y), (0

y
2 ), (0

y
2 )
)
.

(5.2)

• P contains +:

ν =
( x︷ ︸︸ ︷
∅, ∅, . . . , ∅,

y︷ ︸︸ ︷
(1), (12), . . . , (1y), (1y), . . . , (1y), (1

y
2 ), (1

y
2 )
)
,

J =
( x︷ ︸︸ ︷
∅, ∅, . . . , ∅,

y︷ ︸︸ ︷
(0), (02), . . . , (0y), (0y), . . . , (0y), (0

y
2 ), (0

y
2 )
)
.

(5.3)

• P contains −:

ν =
( x−1︷ ︸︸ ︷

(2), (2), . . . , (2),

y+1︷ ︸︸ ︷
(12), (13), . . . , (1y+2), (1y+2), . . . , (1y+2), (1

y+2
2 ), (1

y+2
2 )
)
,

J =
( x−1︷ ︸︸ ︷
(−2), (0), . . . , (0),

y+1︷ ︸︸ ︷
(02), (03), . . . , (0y+2), (0y+2), . . . , (0y+2), (0

y+2
2 ), (0

y+2
2 )
)
,

(5.4)

except when x = 1, where we take (ν, J)(1) =
(
(1, 1), (−1,−1)

)
.

• P contains ±:

ν =
( x−1︷ ︸︸ ︷

(1), (1), . . . , (1),

y+1︷ ︸︸ ︷
(12), (13), . . . , (1y+2), (1y+2), . . . , (1y+2), (1

y+2
2 ), (1

y+2
2 )
)
,

J =
( x−1︷ ︸︸ ︷
(−1), (0), . . . , (0),

y+1︷ ︸︸ ︷
(02), (03), . . . , (0y+2), (0y+2), . . . , (0y+2), (0

y+2
2 ), (0

y+2
2 )
)
.

(5.5)
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An arbitrary ±-diagram P is the concatenation of columns described above. The cor-
responding rigged configurations is obtained by summing together all partitions (padding
with 0 as necessary) and riggings over all columns of P . We can invert this map as follows.
Fix a ±-diagram P . Let c•(h), c+(h), c−(h), and c±(h) denote the number of columns
of P with outer height h with no sign, +, −, and ± respectively. These values uniquely
determine the ±-diagram and can be computed (inductively) from h = 0 (r even) or h = 1
(r odd) to h = r as follows:

c•(h) =

{
J

(h+1)
1 + δh0ν

(1)
1 0 6 h < r

ν
(r)
1 − ν

(r+1)
1 h = r

c+(h) = ν
(h+1)
1 − ν(h)

1 1 6 h < r

c−(h) =

{
ν

(1)
2 h = 1

ν
(h−1)
1 − ν(h)

1 1 < h 6 r

c±(h) =
2∑
j=1

(
ν

(h)
j − ν

(h−1)
j

)
−
(
c•(h− 2) + c+(h− 2)

)
where we set c+(0) = 0 and δh0 is the Kronecker delta. Note that c+(r) is not determined
by the above formula, but rather by the fat that the total number of columns is s.

Proposition 5.2 ([OSS13] Proposition 4.3). Let ζ be the map from ±-diagrams to set of

{2, . . . , n}-highest weight elements in Br,s in type D
(1)
n . Then we have

ζrc = ι ◦ ζ.

In order to define the diagram involution map, we now need an involution on ±-
diagrams.

Definition 5.3 ([Sch08]). Let P be a ±-diagram of outer shape Λ, where the columns of
Λ are either all even or all odd height. Then S(P ) is the ±-diagram, where compared to
P the values c+(h) and c−(h) are interchanged for r > h > 1, and the values of c•(h− 2)
and c±(h) are interchanged for r > h > 2.

We can now define the diagram involution on RC(Br,s).

Definition 5.4. Let (ν, J) ∈ RC(Br,s) with Br,s a KR crystal of type D
(1)
n with 1 6 r 6

n − 2. Choose a sequence b = (b1, b2, . . . , bk) with bi ∈ {2, . . . , n} such that eb(ν, J) :=
eb1 · · · ebk(ν, J) is {2, . . . , n}-highest weight. Then define

σrc(ν, J) = fbr ◦ ζrc ◦S ◦ ζ−1
rc ◦ eb, (5.6)

where br is the reverse of b.
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Theorem 5.5 ([OSS13, Thm. 4.9]). Let Br,s be a KR crystal of type D
(1)
n with 1 6 r 6

n− 2. Then RC(Br,s) is a U ′q(g)-crystal with

e0 = σrc ◦ e1 ◦ σrc,
f0 = σrc ◦ f1 ◦ σrc.

Moreover the natural classical crystal isomorphism ι is an affine crystal isomorphism.

Now we show an analogous result to Proposition 5.2 for types B
(1)
n with r < n and

A
(2)
2n−1 for all r 6 n. We will use this to show the analogous result to Theorem 5.5 for

r < n.
Consider RC(Br,s) of type B

(1)
n for r < n or type A

(2)
2n−1 for r 6 n. We begin by showing

that ±-diagrams are in bijection with {2, . . . , n}-highest weight rigged configurations. By
inspection of (5.2)–(5.5) observe that the n-th and (n + 1)-th rigged partition in the

{2, 3, . . . , n + 1}-highest weight rigged configurations of type D
(1)
n+1 are equal. Hence we

can define ζrc in type A
(2)
2n−1 similar to type D

(1)
n+1 except we identify the last two rigged

partitions (which in effect drops ν(n+1)). For type B
(1)
n , we define ζrc by also identifying

the last two rigged partitions of type D
(1)
n+1 (which in effect drops ν(n+1)) in addition to

doubling ν(n) to keep with our convention. For example, if a column in the ±-diagram
does not contain any sign, in type A

(2)
2n−1 we add

ν =
( x︷ ︸︸ ︷

(1), (1), . . . , (1),

y︷ ︸︸ ︷
(1), (12), . . . , (1y), (1y), . . . , (1y), (1

y
2 )
)
,

J =
( x︷ ︸︸ ︷
(−1), (0), . . . , (0),

y︷ ︸︸ ︷
(1), (02), . . . , (0y), (0y), . . . , (0y), (0

y
2 )
)
,

and in type B
(1)
n we add

ν =
( x︷ ︸︸ ︷

(1), (1), . . . , (1),

y︷ ︸︸ ︷
(1), (12), . . . , (1y), (1y), . . . , (1y), (2

y
2 )
)
,

J =
( x︷ ︸︸ ︷
(−1), (0), . . . , (0),

y︷ ︸︸ ︷
(1), (02), . . . , (0y), (0y), . . . , (0y), (0

y
2 )
)
.

Proposition 5.6. Let ζ be the map from ±-diagrams to {2, . . . , n}-highest weight elements

in Br,s in type A
(2)
2n−1 for all r or type B

(1)
n for r < n. Then we have

ζrc = ι ◦ ζ.

Proof. The proof is similar to [OSS13, Prop. 4.3]. We note that in type B
(1)
n from

Lemma 3.5, f 2
n acts on the same string and keeps m

(n)
i = 0 for all i /∈ 2Z.

Next to extend this to r = n for B
(1)
n , we need the following lemma and need to

reformulate the doubling map given in the definition of Φ in Section 2 (in the paragraph

after Equation (2.14)) from type B
(1)
n to A

(2)
2n−1 as a classical virtualization map with

γr = 2− δrn and the trivial folding φ(r) = r for all r ∈ I0.
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Lemma 5.7 ([FOS09, Lemma 3.5]). Let d : Bn,s → B̂n,s denote the doubling map from

B
(1)
n → A

(2)
2n−1. Let λ =

∑n
i=1 kiΛi be a classical weight of type Bn, let b ∈ B(λ) ⊆ Bn,s

be a {2, . . . , n}-highest weight element, and P be the corresponding ±-diagram. The ±-

diagram corresponding to b̂ in B
(
Ψ(λ)

)
⊆ B̂n,s is obtained by doubling each column of

P together with its signs for non-spin columns. For a spin column, it becomes a usual
full width column with the same sign. For a column with 0, we replace it with a column
containing a + and a column containing a −.

We recall that the ±-diagrams fit inside a n× (s/2) box with possibly one half-width
spin column. Therefore we need to describe a map from a column of height n containing
a 0 or a spin column to rigged configurations. If it is a spin column with a − or a full
column containing a 0, we add

ν =
(

(1), (1), (1), . . . , (1)
)
,

J =
(
(−1), (0), (0), . . . , (0)

)
.

For a spin column with a +, we do not add anything. Thus we have the following.

Proposition 5.8. Let drc : RC(Bn,s)→ RC(Bn,s) be the doubling map from type B
(1)
n to

type A
(2)
2n−1 defined in Section 2 (equivalently by Equation (3.1) with the scaling factors

given above). Let d± denote the doubling map defined on ±-digrams given by Lemma 5.7.
Then we have

ζrc ◦ d± = drc ◦ ζrc.

Proof. This follows from the definition of drc, d±, and ζrc.

We therefore can extend Proposition 5.6 to r = n.

Proposition 5.9. Let ζ be the bijection from {2, . . . , n}-highest weight elements in Bn,s

to ±-diagrams in type B
(1)
n . Then we have

ζrc = ι ◦ ζ.

Proof. This follows from the fact that the doubling map is a virtualization map [FOS09,
Lemma 4.2], Proposition 5.6, and Proposition 5.8.

Theorem 5.10. Consider RC(Br,s) in type B
(1)
n or A

(2)
2n−1. The natural classical crystal

isomorphism ι : RC(Br,s)→ Br,s is an affine crystal isomorphism.

Proof. The classical crystal isomorphism ι intertwines with σ and σrc by construction.
Therefore Proposition 5.6 implies that ι is an affine crystal isomorphism.
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5.2 Virtualization as affine crystals

By constructing the virtualization map on ±-diagrams, we can show Conjecture 2.18 for
Br,s of types B

(1)
n and A

(2)
2n−1 (i.e., those that virtualize in D

(1)
n+1) for r < n (which we

assume in this subsection). We first must describe the action of e0 and f0 on ±-diagrams.
Define a virtualization map v on ±-diagrams of outer shape λ to ±-diagrams of outer

shape Ψ(λ) by c∗(r) 7→ γrc∗(r) where ∗ = •,−,+,±.

Lemma 5.11. Consider Br,s of type B
(1)
n or type A

(2)
2n−1. The virtualization map v re-

stricted to {2, . . . , n}-highest weight elements in RC(Br,s) commutes with ζrc and ζ.

Proof. It is clear that ζ̂−1
rc ◦ v = v ◦ ζ−1

rc from the definition of ζrc, which proves our first

claim. Next since ζrc = ι ◦ ζ, ζ̂rc = ι̂ ◦ ζ̂ and the fact that Theorem 2.16 implies that
v ◦ ι = ι̂ ◦ v, we have

v ◦ ζ = v ◦ ι−1 ◦ ζrc = ι̂−1 ◦ v ◦ ζrc = ι̂−1 ◦ ζ̂rc ◦ v = ζ̂ ◦ v.

Lemma 5.12. The virtualization map v commutes with S.

Proof. Since S can be reformulated as acting column by column and γa = γb for all
a, b < n, it is clear that Ŝ ◦ v = v ◦S.

Proposition 5.13. The virtualization map on ±-diagrams commutes with σrc and σ.

Proof. This follows from Theorem 2.16, Lemma 5.11, and Lemma 5.12.

Thus we can show the following case of Conjecture 2.18.

Theorem 5.14. Let Br,s be a KR crystal of type B
(1)
n or A

(2)
2n−1. Then Br,s virtualizes in

Br,γrs of type D
(1)
n+1 as U ′q(g)-crystals.

Proof. This follows from Equation (5.1), Proposition 5.13, and Theorem 2.16.

Remark 5.15. Theorem 5.14 implies that the doubling map for Bn,s in type B
(1)
n into type

A
(2)
2n−1 can be extended to a virtualization map given by Equation (2.14) for any Br,s with

r < n into Br,γrs in type A
(2)
2n−1 with γr = 2 for all r < n and γn = 1. This can be seen by

the composition of virtualization maps

B(1)
n

v−−−−→ D
(1)
n+1

v−1

−−−−→ A
(2)
2n−1.

We note that the result of this section cannot be easily extended to types g =
C

(1)
n , D

(2)
n+1, A

(2)
2n because the construction of e0 and f0 in type g as given in [FOS09, Sec. 4]

use a different virtual construction than the one discussed here, and this other virtual
construction is not well-behaved with respect to rigged configurations because the folding
does not preserve the affine node 0.
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5.3 Extension to r = n

Recall that in type Dn+1, we can represent B(Λn) ⊗ B(Λn+1) as a usual KN column of
height n. From the construction of the ambient Kleber tree for r = n in the proof of
Lemma 4.13, we know that Bn,s⊗Bn+1,s of type D

(1)
n+1 has a classical decomposition given

by removing vertical dominoes from an n× s rectangle, analogous to the usual type D
(1)
n+1

case of r < n. We note that there is also an extension of Proposition 5.1 to spin columns
in type D

(1)
n+1.

Thus we can define an affine crystal B̃n,s of type D
(1)
n+1 by having a classical decomposi-

tion
⊕

λB(λ), where λ is obtained by removing vertical dominoes from an n×s rectangle
and the affine structure by Equation 5.1. From this definition and the preceeding para-
graph, we have B̃n,s ∼= Bn,s⊗Bn+1,s as classical crystals. Moreover, we can define a filling
map fill : B̃n,s → T̃ n,s as in the usual type D

(1)
n+1 case and can extend Theorem 4.28 to this

case as well by extending Φ in a natural way by using δ̃(n), see [Sch05].

Additionally, we can extend the virtualization map v : Bn,s → B̃n,s from type A
(2)
2n−1 to

type D
(1)
n+1 as the identity map (on rigged configurations, it is almost the identity except

for ν(n) = ν̂(n) = ν̂(n+1)). From this we can see that Conjecture 2.18 in type A
(2)
2n−1 for

Bn,s is equivalent to the following conjecture.

Conjecture 5.16. Let g be of type D
(1)
n+1. We have B̃n,s ∼= Bn,s⊗Bn+1,s as affine crystals.

This conjecture was proven for s = 1 in [Sch05, Thm. 3.3].

6 The virtualization map and Φ

In this section, we show that the virtualization map commutes with the bijection Φ on
highest weight elements of a single tensor factor for g of non-exceptional affine type. In
addition, for type A

(2)
2n−1 we prove that the virtualization map in general (multiple tensor

factors and not necessarily highest weight) commutes with Φ.

6.1 Single tensor factors

In this subsection g is of non-exceptional type. Recall that Br,s ∼= T r,s are related by
the filling map and are isomorphic as crystals. Hence the virtualization maps on Br,s

of Section 2.5 can be lifted to T r,s. We define the crystal morphism v : T r,s → T̂ r,s by
sending uλ ∈ B(λ) ⊆ T r,s to uΨ(λ) ∈ B(Ψ(λ)) ⊆ T̂ r,s and extending as a virtual classical

crystal. It is not a priori clear that B(Ψ(λ)) is indeed a component in T̂ r,s, so it needs to
be shown that v is well-defined.

Lemma 6.1. The map v is well-defined and virtualizes T r,s in T̂ r,s as a classical virtual
crystal.

Proof. When ĝ is of type D
(1)
n+1 with r < n, the claim follows from Theorem 5.14. For

r = n, this follows from the proofs of Lemma 4.13 and Lemma 4.17.

the electronic journal of combinatorics 22(1) (2015), #P1.73 44



Now assume that ĝ is of type A
(1)
2n−1. We note that the decomposition of a KR crystal

of non-exceptional type into classical crystals is multiplicity free. The tensor product
of two rectangles in type A

(1)
2n−1 is multiplicity free [Ste01] (we have also shown this in

the proof of Lemma 4.6 during the construction of the ambient Kleber tree). From the
construction of the ambient Kleber tree in the proof of Lemma 4.6, we have shown that for
every shape λ in a r × s rectangle, the crystal B(λ) virtualizes into the decomposition of

T r,s ⊗ T 2n−r,s. Thus there exists a unique classical crystal B(Ψ(λ)) ⊆ T̂ r,s corresponding
to B(λ) ⊆ T r,s. Hence the map v is well-defined. That T r,s virtualizes (as a classical

crystal) in T̂ r,s under v follows from Theorem 2.16.

Consider a weight λ =
∑

i∈I0 kiΛi of type g. Suppose ĝ is of type D
(1)
n+1. For T r,s with

r < n, the corresponding classically highest weight element is uΨ(λ) ∈ T̂ r,s = T r,γrs given

in Section 4. For T n,s, the classically highest weight element uΨ(λ) ∈ T̂ n,s = T n,s⊗T n+1,s is
given by filling the right tableau by trivial columns of [1, . . . , n, n+ 1] and the left tableau
with

[
1, . . . , k, n+ 1, . . . , k + 1

]
, where k is the height of the corresponding column in λ.

Now suppose ĝ is of type A
(1)
2n−1. For T r,s with r < n, the classically highest weight element

uΨ(λ) ∈ T̂ r,s = T r,s ⊗ T 2n−r,s is given by filling the right tableau with trivial columns of
[1, 2, . . . , 2n− r] and the left tableau with [1, . . . , k, 2n− r + 1, . . . , 2n− k], where k is the

height of the corresponding column in λ. For r = n in types A
(2)
2n and A

(2)†
2n , the image

uΨ(λ) ∈ T̂ n,s is the same as above. For r = n in types C
(1)
n and D

(2)
n+1, the corresponding

uΨ(λ) ∈ T̂ n,s = T n,γns is the tableau with trivial columns [1, 2, . . . , n].
Now we can prove the main result of this section.

Theorem 6.2. Consider a single Kirillov-Reshetikhin crystal Br,s. The virtualization
map v commutes with the bijection Φ on highest weight elements.

Proof. We consider a highest weight λ in the classical decomposition of T r,s ∼= Br,s. The
corresponding type g rigged configuration is generally ν(a) = λ for all r 6 a < n and

ν(a) = λ
[r−a]

for all a < r (recall that λ is the complement of λ in an r × s box and λ[i]

denotes λ with the first i rows removed) with all riggings and vacancy numbers are 0 from
the results in Section 4. Let k be the largest index such that 〈α∨k , λ〉 6= 0 (i.e., the height
of λ).

ĝ of type D
(1)
n+1 and r < n:

Note that we double λ under the virtualization map if γr = 2. Hence by weight consider-
ations (recall Φ is a bijection on classical highest weight elements in T r,s and the classical
decomposition is multiplicity free) and the fact that the virtual rigged configuration cor-
responds to the highest weight in ĝ for Ψ(λ), the bijection Φ must commute with v (on
classically highest weight elements).

ĝ of type D
(1)
n+1 and r = n:

We note that in type B
(1)
n , the spinor lifts to the type A

(2)
2n−1 case (albeit with T n,2s).

Thus without loss of generality, assume g is of type A
(2)
2n−1. We begin by splitting off the
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leftmost column, which increases the vacancy numbers of rows smaller than 2λ1 in ν(n−1).
Therefore when we apply the doubling map, it keeps the strings of length smaller than
2λ1 non-singular. Thus δ(n) (recall δ(n) and δ̃(n) were defined as slightly modified versions
of δ in Section 2) selects the row corresponding to 2λ1 and must terminate at k since ν(k)

does not have any rows of length 2λ1, and thus δ returns k + 1. Next applying δ̃(n) selects
2λ1 from ν(n+1), skips ν(n), and proceeds down until ν(k+1) and returns a k + 2.

Now we are applying the usual δ where we select a string of length 2λ1 − 1 from
ν(n−1), ν(n), ν(n+1), and then another string of length 2λ1−1 down until ν(k+2) and returns
a k + 3. A similar process holds for each of the remaining k−3 rows of length 2λ1−1. At
this point, all the strings in ν(k) are not singular, thus δ returns k. This process repeats
until we remove the entire column. A similar process occurs for the remaining columns
in the left factor until it is completely removed. Once we are at the right factor of T n,s,
we have the empty rigged configuration. Therefore Φ returns the letter a for each entry
at height a and we have the desired filling.

ĝ of type A
(1)
2n−1:

To see that the image under v of the KR tableaux corresponds to the virtual rigged
configuration, we first split off the leftmost column. This increases vacancy numbers of
rows smaller than λ1 in ν(r). Therefore δ selects the row corresponding to λ1 and must
terminate at 2n− k since ν(2n−k) does not have any rows of length λ1 since k corresponds
to the number of rightmost columns. A similar procedure occurs except using k′ = k + 1
and repeating until all rows of length λ1 are removed. At this point, all the strings in
ν(k) are not singular, thus δ returns k. This process repeats until we remove the entire
column. We then repeat this for the next column, and a similar situation holds. This
process is repeated until the left factor is removed, and we are left with the empty rigged
configuration. Hence the right tableau must by filled by [1, . . . , 2n− k].

6.2 General case

Now we consider the general case. We begin by giving an extended version of [OSS03b,
Conj. 7.2].

Conjecture 6.3. Let g be of affine type and B =
⊗N

i=1B
ri,si with virtualization map v

into type ĝ. Then we have
v ◦ Φ = Φ̂ ◦ v.

Conjecture 6.3 was shown for
⊗N

i=1B
ri,1 in types C

(1)
n , D

(2)
n+1, and A

(2)
2n in [OSS03b]

and for
⊗N

i=1B
1,si in all non-exceptional affine types in [SS06]. Also Theorem 6.2 is

Conjecture 6.3 for classically highest weight elements for B = Br,s of non-exceptional
affine type. We show that this reduces Conjecture 2.12 to showing it holds in simply-
laced types.

Proposition 6.4. Let g be of affine type. Suppose Conjecture 6.3 holds and Conjec-
ture 2.12 holds in type ĝ, then Conjecture 2.12 holds in type g.
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Proof. Let V ∗ be the set of classically highest weight rigged configurations in RC(B̂) that
satisfy Equation (3.1). From Equation (3.3), it is easy to see that V ∗ is in bijection with
RC∗(B). We have

v ◦ Φ ◦ fa = Φ̂ ◦ v ◦ fa = Φ̂ ◦ f va ◦ v = f va ◦ Φ̂ ◦ v = f va ◦ v ◦ Φ = v ◦ fa ◦ Φ,

so fa ◦ Φ = Φ ◦ fa and similarly for ea. Therefore Φ is a crystal isomorphism.

Theorem 6.5. Conjecture 6.3 holds for g of type A
(2)
2n−1.

Proof. Let b, b̂ be the elements returned under δ, δ̂, respectively. It was shown in [SS06]

that δ̂ ◦ v = v ◦ δ and v(b) = b̂. Since v is the identity map on tableaux and is essentially
the identity map on rigged configurations (recall that ν(n) 7→ ν̂(n) = ν̂(n+1)), we have

l̂s ◦ v = v ◦ ls and l̂t ◦ v = v ◦ lt on both RC(B) and B. Therefore by the definition of Φ,
we have

Φ̂ ◦ v = v ◦ Φ.

Therefore Conjecture 2.12 holds for type A
(2)
2n−1 any time Φ is known to be a bijection

in type D
(1)
n . Alternatively, recall that the algorithm Φ for the A

(2)
2n−1 case is essentially

identical to the type D
(1)
n case. Thus the property that Φ is a classical crystal isomorphism

is an immediate consequence of [Sak14]. If we use the argument after Conjecture 2.12, we
are not necessarily to use Theorem 6.5.

A Proof of Theorem 2.16

Theorem 2.16 was proved by Baker [Bak00] when ĝ0 is of type A2n−1. We provide details
for the other cases here. Our proof follows the proof of Baker [Bak00], in that we show
that B(Λa) virtualizes in B

(∑
b∈φ−1(a) γaΛb

)
and then use Proposition 2.17 to extend this

to general shapes λ.

g B̂1,1 B̂2,1 B̂3,1 B̂4,1

E
(2)
6 B2,1 B4,1 B3,1 ⊗B5,1 B1,1 ⊗B6,1

F
(1)
4 B2,2 B4,2 B3,1 ⊗B5,1 B1,1 ⊗B6,1

G
(1)
2 B1,1 ⊗B3,1 ⊗B4,1 B2,3

D
(3)
4 B2,1 B1,1 ⊗B3,1 ⊗B4,1

Table A.1: Virtualizations given in Proposition A.1.

Proposition A.1. Consider one of the foldings

E
(2)
6 , F

(1)
4 ↪−→ E

(1)
6 ,

G
(1)
2 , D

(3)
4 ↪−→ D

(1)
4 .
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Unless a = 2 and g is of type F
(1)
4 , Ba,1 virtualizes in B̂a,1 =

⊗
b∈φ−1(a) B

b,γa as affine
crystals.

Proof. This was be done by (computer) computation in Sage [S+14] using the results
from [JS10, LNS+14a, LNS+14b]. The algorithm is to start from any node in the image
of v (usually this is the unique node of (classical) weight Ψ(λ)), apply all possible f vi to
build the crystal graph of the virtual crystal inside of B(Ψ(λ)), and compare it to the
crystal graph of B(λ).

We note that the results from [LNS+14a, LNS+14b] only give a model for the single
column KR crystal Br,1. In the remaining cases, the resulting KR crystal is not a single
column (for example in type G

(1)
2 , the virtualization of B2,1 is B2,3), but other models

exist for these cases [FOS09, JS10].

A similar check could be made for B2,1 in type F
(1)
4 once the crystal graph for B4,2 in

type E
(1)
6 is computed.

Lemma A.2. Consider the folding F4 ↪−→ E6. Then B(Λ2) virtualizes in B(2Λ4).

Proof. This was done by (computer) computation using well-known models for type F4

and E6 crystals (for example, LS paths or Nakajima monomials) following the algorithm
in Proposition A.1.

Combining Proposition A.1 and Lemma A.2 using the (virtual) Kleber algorithm shows

that B2,1 of type F
(1)
4 classically virtualizes in B4,2 of type E

(1)
6 (as opposed to as affine

crystals).

Lemma A.3. Consider the folding Cn ↪−→ Dn+1. Then B(Λr) virtualizes in B(Λr) for
all r 6= n and B(Λn + Λn+1) for r = n.

Proof. Recall that in type Dn+1 that B(Λn + Λn+1) is represented by a single column of
height n. We claim that the virtualization map v in both cases is given by the identity
map on tableaux. That v commutes with fa for all a 6= n is clear since γa = 1. For
a = n, we have that f vn = fnfn+1 sends n to n. Therefore if we start with something
that does not contain an n + 1 or an n+ 1, we cannot obtain an n + 1 or n+ 1. Hence
neither n+ 1 nor n+ 1 can appear in the image and all properties of Definition 2.14 can
be checked.

Lemma A.4. Consider the folding Bn ↪−→ Dn+1. Then B(Λr) virtualizes in B(2Λr) for
all r 6= n and B(Λn + Λn+1) for r = n.

Proof. Consider first r = n. Recall that B(Λn) virtualizes in B(2Λn) (both of these are
type Bn crystals) by taking γa = 2 for all a ∈ I0 as mentioned in Remark 4.1. Thus we
can represent the elements of B(2Λn) by single column tableaux, and we claim that the
desired virtualization map is the composition

v : B(Λn)
d−−−−→ B(2Λn)

v′−−−−→ B(Λn + Λn+1),
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where the second map is the identity map on tableaux. For a 6= n, we have f va = f̂ 2
a and

so v ◦ fa = f va ◦ v since the embedding d doubles everything (in particular we apply f̂a
twice) and v′ is the identity map. For r = n in B(2Λn) of type Bn, the crystal operator

fdn = f̂ 2
n sends n 7→ 0 7→ n and in type Dn+1, we have f vn = f̂nf̂n+1 sending n 7→ n+1 7→ n

(alternatively going through n+ 1). Therefore v is the desired virtualization map.

Next assume r < n and let t be a single column tableau in B(Λr) of type B
(1)
n . Let

t+ = {a | a ∈ t, a 6= 0} and t− = {a | a ∈ t, a 6= 0} denote the set of non-zero unbarred
and barred letters in t, respectively. Let

K := t+ ∩ t−,
J0 := max{A ⊆ (t+ ∪ t−)c | |A| = k0},
J := max{A ⊆ (t+ ∪ t− ∪ J0)c | |A| = |K| , and A < K},

where k0 is the number of times 0 appears in t, the maxima are taken with respect to
lexicographic order <, and pc = {1, . . . , n} \ p. We note that J is well-defined from the
one column condition on Bn tableaux (see [KN94, HK02]). Let v± := t± \K. We claim
that the image of t under the virtualization map v is

v(t) =

t− v−
J J0

J0 J
v+ t+

,

where L denotes the set L but with barred letters and reordering within each column as
necessary.

Since f vn = f̂nf̂n+1, we have by similar arguments to the proof of Lemma A.3 that
neither n+1 nor n+ 1 can appear in the image. Also note that v+, v−, J0, J,K are pairwise
disjoint. From the construction, it is clear that the image has the correct weight. Next
we let t′ = fat and t̂ = v(t), We also let K ′, J ′0, J ′, and v′± denote the above constructions
with t′. We proceed by doing a case-by-case analysis to show that v ◦ fa = f va ◦ v. The
main cases split according to which of these disjoint sets a belongs to. Within each case,
we also have to consider whether a < n or a = n and what set a+ 1 belongs to.

Case a ∈ v+:

We split this into two subcases, when a < n and when a = n. Note that a /∈ t, t̂ and
a appears in both columns of t̂ by construction.

Subcase a < n:
We begin by assuming a+ 1 /∈ J0, J . Now for the next two (sub)subcases, we assume

that a+1 /∈ t. If a+ 1 /∈ t, then t′ differs from t by replacing a with a+1 and f va t̂ replaces
both instances of a with a+1. Diagrammatically, writing only the entries that contribute

the electronic journal of combinatorics 22(1) (2015), #P1.73 49



to the computation of fa (i.e., all of the other entries do not change under fa), we have

t̂ =

...
...

a a
...

...

f̂a−−−−→

...
...

a a+ 1
...

...

f̂a−−−−→

...
...

a+ 1 a+ 1
...

...

= f va t̂ = v(t′).

If a+ 1 ∈ t, then we have

t̂ =

a+ 1 a+ 1
...

...
a a

f̂a−−−−→
a+ 1 a+ 1

...
...

a a+ 1

f̂a−−−−→
a+ 1 a

...
...

a a+ 1

= f va t̂.

As before, we replaced a with a + 1 in t′, but now we have a + 1 ∈ K ′. Thus either
a ∈ J ′0 or a ∈ J ′ by the one column condition and the construction of J ′0 and J ′, and
hence f va t̂ = v(t′).

Now we assume a + 1 ∈ t (note that by construction a + 1 /∈ J0, J). So if a+ 1 /∈ t,
then fat = 0 and f va t̂ = 0. Otherwise if a+ 1 ∈ t, then we replace a+ 1 7→ a to obtain t′,
and we have

t̂ =
a+ 1

...
... a+ 1
a a

fva−−−−−−−→
a

...
... a+ 1

a+ 1 a

= f va t̂.

Note that |K| = |K ′|, and so a ∈ K ′. Additionally a + 1 ∈ v′+, and hence we have

f va t̂ = v(t′).
Next we consider the case when a+ 1 ∈ J . Therefore we have

t̂ =

... a+ 1

a+ 1
...

a a

fva−−−−−−−→

... a

a+ 1
...

a a+ 1

= f va t̂,

and fa sends the (unique) a 7→ a + 1 to obtain t′. Thus since a /∈ t′+ ∪ t′−, we have that

a ∈ J ′. Hence v(t′) = f va t̂. The case a+ 1 ∈ J0 is similar to the case a+ 1 ∈ J .

Subcase a = n:
By our assumption of a ∈ v+, we note that applying fn sends the n 7→ 0 to obtain t′.

Recall that f vn = f̂nf̂n+1, and so we have

t̂ =
...

...
n n

fvn−−−−−−−→
... n

n
...

= f va t̂.

Since n /∈ t′±, we must have n ∈ J ′0, and therefore we have f vn t̂ = v(t′).

Case a ∈ v−:

We must have fat = 0 and f va t̂ = 0 since a /∈ t, t̂ and any a+ 1 (resp. n, 0 if a = n)
would pair with a (resp. n).
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Case a ∈ J0:
We recall that a, a /∈ t from the construction of J0. We now proceed into subcases.

Subcase a < n:
By construction of J0 and J , we must have that a + 1 is in v+, v−, K, or J0. So we

start by assuming a+ 1 ∈ v+. Then we have fat = 0 and

t̂ =

... a

a+ 1
...

a a+ 1

,

and so f va t̂ = 0.
If a+ 1 ∈ v−, then t′ is obtained by sending the a+ 1 7→ a. Thus we have

t̂ =

a+ 1 a
... a+ 1

a
...

fva−−−−−−−→
a a
... a+ 1

a+ 1
...

= f va t̂.

Note that a ∈ v′−, and we have a+ 1 ∈ J ′0 because |J ′0| = |J0| with a+ 1 ∈ (t′+ ∪ t′−)c and

a was the previous maximum. Therefore f va t̂ = v(t′).
If a+ 1 ∈ K, then we have

t̂ =

a+ 1 a
...

...
a a+ 1

fva−−−−−−−→
a a
...

...
a+ 1 a+ 1

= f va t̂.

t′ is given by sending the a+ 1 7→ a, so that a ∈ v′− and a+ 1 ∈ v′+. Now since |J ′0| = |J0|
but |K ′| = |K| − 1, we have moved a letter b ∈ J into J ′0 (i.e., b /∈ J ′). Hence f va t̂ = v(t′).

If a+ 1 ∈ J , then we have fat = 0 and

t̂ =

... a

... a+ 1

a+ 1
...

a
...

,

and hence f va t̂ = 0.

Subcase a = n:
We obtain t′ from mapping 0 7→ n, and hence n ∈ v′−. So we have

t̂ =

... n

n
...

fvn−−−−−−−→
n n
...

...
= f va t̂ = v(t′)
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since |J ′0| = 0 and J0 = {n}.

Case a ∈ J :
Unlike in the previous cases, we cannot have n ∈ J , so we only need to consider a < n.

From the construction of J , we have that a, a /∈ t.

Subcase a+ 1 ∈ J0 or J : In this case a + 1, a+ 1 6∈ t, so that we have fat = 0. On the
other hand

t̂ =

... a

... a+ 1
a+ 1 . . .

a
...

,

and hence f va t̂ = 0.

Subcase a+ 1 ∈ v+:
We have fat = 0 and

t̂ =

... a
a+ 1 a+ 1

a
...

,

so that f va t̂ = 0.

Subcase a+ 1 ∈ v−:

t′ = fat is obtained by a+ 1 7→ a, and so we have

t̂ =

a+ 1 a
... a+ 1

a
...

fva−−−−−−−→
a a
... a+ 1

a+ 1
...

= f va t̂ = v(t′)

since a ∈ v′− and a+ 1 ∈ J ′.

Subcase a+ 1 ∈ K:
We obtain t′ by sending a+ 1 7→ a and

t̂ =

a+ 1 a
...

...
a a+ 1

fva−−−−−−−→
a a
...

...
a+ 1 a+ 1

= f va t̂ = v(t′)

since a ∈ v′− and a+ 1 ∈ v′+.

Case a ∈ K:
We break this into subcases. We generally assume that a < n since a = n is the same

as the first subcase below.
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Subcase a+ 1 /∈ t±, J0, J :
We have fat = 0 and

t̂ =
a

...
... a

,

and so f va t̂ = 0.

Subcase a+ 1 ∈ v+:
We have fat = 0 and

t̂ =
a

...
... a+ 1

a+ 1 a

,

which implies f va t̂ = 0.

Subcase a+ 1 ∈ v−:
Here fa sends the a 7→ a+ 1, and so we have

t̂ =

a a+ 1

a+ 1
...

... a

fva−−−−−−−→
a a

a+ 1
...

... a+ 1

= f va t̂ = v(t′)

since a ∈ v′− and a+ 1 ∈ K ′.

Subcase a+ 1 ∈ K:
We have fat = 0 and

t̂ =

a
...

a+ 1
...

... a+ 1

... a

,

which implies f va t̂ = 0.

Subcase a+ 1 ∈ J0 or J :
We have fat = 0 and

t̂ =

a a+ 1
...

...
a+ 1 a

,

which implies f va t̂ = 0.
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Therefore from the cases above, we have v ◦ fa = f va ◦ v. Similarly, one can show that
v ◦ ea = eva ◦ v. The cases also all show that

γaεa = ε̂b and γaϕa = ϕ̂b

for any b ∈ φ−1(a). Therefore the map v is a virtualization map.

Proposition A.5. Let g0 be of classical type with foldings given by Equation (2.17). The
highest weight crystal B(λ) virtualizes in B(Ψ(λ)) with the virtualization map v given by
v(uλ) 7→ uΨ(λ) (recall uλ is the unique highest weight element in B(λ)).

Proof. Let λ =
∑

a∈I0 caΛa. From Proposition A.1 restricted to the (unique) classical

component B(Λa) ⊆ Ba,1, Lemma A.2, Lemma A.3, Lemma A.4, and Proposition 2.17,
we know that there exists a virtualization map

v :
⊗
a∈I0

B(Λa)
⊗ca ↪−→

⊗
a∈I0

B
(
Ψ(Λa)

)⊗ca
.

If we restrict v to the unique classical component v′ : B(λ) → B
(
Ψ(λ)

)
, then v′ is the

desired virtualization map.
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