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Abstract

A Heffter array is an m× n matrix with nonzero entries from Z2mn+1 such that
i) every row and column sum to 0, and ii) exactly one of each pair {x,−x} of
nonzero elements appears in the array. We construct some Heffter arrays. These
arrays are used to build current graphs used in topological graph theory. In turn,
the current graphs are used to embed the complete graph K2mn+1 so that the faces
can be 2-colored, called a biembedding. Under certain conditions each color class
forms a cycle system. These generalize biembeddings of Steiner triple systems. We
discuss some variations including Heffter arrays with empty cells, embeddings on
nonorientable surfaces, complete multigraphs, and using integer arithmetic in place
of modular arithmetic.

1 Introduction

We study a relation between design theory, graph theory, and maps on surfaces. From
design theory a Heffter system is used to construct a cyclic k-cycle system. We introduce
orthogonal Heffter systems and represent them as a Heffter array. The array is related
to a current assignment on the complete bipartite graph Km,n. The current graph with
certain conditions is then used to construct an orientable embedding of the complete
graph K2mn+1 that is face 2-colorable, the boundaries of each color class forming a cycle
system. A similar theorem is given for embeddings in nonorientable surfaces.

Heffter’s First Difference Problem [16] asks if the numbers from 1 to (m−1)/2 can be
partitioned into (m−1)/6 triples (x, y, z) such that either x+y = z or x+y+z = m. Heffter
used this partition to construct a Steiner triple system, STS(m), a collection of triples
from an m-set that collectively contain every pair exactly once [8]. This corresponds to
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a set of 3-cycles whose edges partition E(Km). An s-cycle system partitions E(Km) into
s-cycles. Buratti and Del Fra [6] proved the existence of k-cycle systems of Km having a
cyclic action on the parts whenever m ≡ 1 (mod 2k). Further information on Heffter’s
difference problem, Steiner triple systems and k-cycle systems can be found in [7].

A Heffter array is an m × n array with non-zero entries from Z2mn+1 such that the
entries are all distinct up to sign and such that each row and column sum to 0. We explore
Heffter arrays in Section 2. We also define two properties of orderings ωr and ωc on the
cells of a Heffter array.

A current graph is an embedded graph where each directed edge has been assigned an
element from a fixed current group. Under some special conditions current graphs can be
used to construct embeddings of a complete graph. These embeddings were first used in
the solution of the Map Color Theorem [20]. Details of this relation are given in [15]; we
give a brief explanation in Section 3. The relationship between Heffter arrays and current
graphs is described in Section 4. One main result is the following whose proof is given in
Section 4.

Theorem 1.1 Given a Heffter array H(m,n; s, t) with compatible orderings ωr on D(m, s)
and ωc on D(n, t), there exists an orientable embedding of K2ms+1 such that every edge is
on a face of size s and a face of size t. Moreover, if ωr and ωc are both simple, then all
faces are simple cycles.

A biembedding of the complete graph Km is one that is face 2-colorable. We are
particularly interested when the face boundaries of the first color class form an s-cycle
system and those of the other color class form a t-cycle system. These have most commonly
been studied in the case s = t = 3, that is, both color classes are STS(m)’s. Triangular
biembeddings on orientable surfaces were shown to exist in [20] for all n ≡ 3 (mod 12)
and in [23] for all n ≡ 7 (mod 12), the two necessary cases. For nonorientable surfaces,
the necessary conditions are (i) n ≡ 1 (mod 6) and (ii) n ≡ 3 (mod 6). The first of these
cases was solved in [12] while the second was solved in [20]. Biembeddings of Steiner triple
systems have been widely studied [12, 13] particularly for small values [11]. Grannell and
Griggs [10] give a very nice survey. McCourt [18] has studied biembeddings where one
color class gives an STS and the other half give a decomposition of E(Km) into Hamilton
cycles. Brown [5] has a class of biembeddings where one color class contains triangles and
the other contains quadrilaterals.

Section 5 discusses weak Heffter arrays and their use to construct biembeddings on
nonorientable surfaces. Section 6 closes with some directions for future research, several
of which will be the subject of subsequent papers.

2 Heffter systems and Heffter arrays

Let Zm be the cyclic group of odd order m whose elements are denoted 0 and ±i where
i = 1, . . . , (m− 1)/2. A half-set L is a subset of (m− 1)/2 nonzero elements that contains
exactly one of each pair {x,−x}. A Heffter system, D(m, k), is a partition of L into
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parts of size k such that the elements in each part sum to 0 modulo m. Heffter’s First
Difference Problem [16] asks if the numbers from 1 to (m− 1)/2 can be partitioned into
(m− 1)/6 triples (x, y, z) such that either x+ y = z or x+ y + z = m. This is equivalent
to finding a D(m, 3).

Two Heffter systems Dm = D(2mn + 1,m) and Dn = D(2mn + 1, n) on the same
half-set L are orthogonal if each m-set of Dm intersects each n-set of Dn in a single
element. A Heffter array H(m,n) is an m × n array whose rows form a D(2mn + 1, n)
and whose columns form a D(2mn + 1,m); we call these the row and column Heffter
systems respectively. A Heffter array H(m,n) is equivalent to a pair of orthogonal Heffter
systems: cell ai,j contains the common element in the ith part of the row system and the
jth part of the column system. Figure 1 shows a Heffter array H(3, 4).

1 −2 −10 11
−8 6 −3 5
7 −4 −12 9

Figure 1: A Heffter array H(3, 4) over Z25

Let A be a subset of Zm with
∑

a∈A a ≡ 0 (mod m) such that no pair {x,−x} is a
subset of A. Consider a cyclic ordering (a1, . . . , ak) of the elements in A and let si =∑i

j=1 aj. The ordering is simple if si 6= sj for i 6= j. Equivalently, the cyclic ordering is
simple if there is no consecutive subsequence of elements that sum to 0. A Heffter system
D(m, k) has a simple ordering if and only if each part has a simple ordering.

Proposition 2.1 An ordered Heffter system D(m, k) forms a decomposition of E(Km)
into closed trails of length k. Moreover, if the ordering is simple, then its corresponding
decomposition is a k-cycle system.

Proof: Let {a1, . . . , ak} be a part of D(m, k) under any ordering. Form a closed trail
(0, s1, s2, . . . , sk) in a complete graph Km with vertex set Zm. Develop this trail modulo
m and do the same for all other parts of D(m, k). Since each pair {x,−x} has exactly
one element in D(m, k), each difference appears once. Hence these closed trails partition
E(Km). If the ordering on D(m, k) is simple, then each of these trails are simple cycles.

Let D1 = D(2mn+ 1, s), D2 = D(2mn+ 1, t) be two orthogonal Heffter systems with
orderings ω1, ω2 respectively. The orderings are compatible if their composition ω1 ◦ ω2

is a cyclic permutation on the half-set. The importance of compatible orderings will be
examined in Section 4 when we relate Heffter arrays and current graphs.

A variation of Heffter arrays allows for some cells to be empty. Two Heffter systems
D(2ms+1, s) and D(2nt+1, t) on the same half-set of order ms = nt are sub-orthogonal if
each s-set of D(2ms+1, s) intersects each t-set of D(2nt+1, t) in at most one element. As
before, form an m×n array H(m,n; s, t) where ai,j is the common element in the ith part
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of D(2ms+ 1, s) and the jth part of D(2nt+ 1, t), if any, and the cell is empty otherwise.
Necessary conditions for the existence of an H(m,n; s, t) are ms = nt, 3 6 s 6 m, and
3 6 t 6 n. Figure 2 gives an example of a H(6, 12; 8, 4).

−1 2 5 −6 −25 26 29 −30
3 −4 −7 8 27 −28 −31 32

9 −10 −13 14 33 −34 −37 38
−11 12 15 −16 −35 36 39 −40
−17 18 21 −22 −41 42 45 −46
19 −20 −23 24 43 −44 −47 48

Figure 2: A Heffter array H(6, 12; 8, 4)

If a Heffter array H(m,n; s, t) is square, i.e., m = n, then necessarily s = t. In this case
we denote the square by H(n; k). The commonality in the notation is that parameters
before the semicolon refer to sides of the squares, those after to the number of filled cells
in a row or column. Figure 3 gives a H(5; 4). Square arrays with empty cells are studied
in [2].

17 −8 −14 5
1 18 −9 −10
−6 2 19 −15
−11 −12 3 20
16 −7 −13 4

Figure 3: A Heffter array H(5; 4)

Let H(m1 + m2, n1 + n2; s, t) be a Heffter array. Suppose that the rows and columns
of H can be permuted such that each nonempty cell ai,j has either i 6 m1 and j 6 n1,
or it has i > m1 and j > n1. Then the array is called block diagonal. Constructing block
diagonal arrays is convenient and powerful, but they are not suited for the application to
graph embeddings and so are sometimes avoided.

3 Orientable embeddings and current graphs

In this section we describe the use of rotations to describe a cellular embedding of a
graph on a fixed orientable surface. We also define current graphs and their usefulness in
embedding complete graphs.
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3.1 Orientable embeddings

Consider a graph G and for every edge e let e+ and e− denote its two possible directions.
Let D(G) be the set of all directed edges, so |D(G)| = 2|E(G)|, and define τ as the
involution swapping e+ and e− for every e. Let Dv = {(v, u) ∈ D(G)} denoted the edges
directed out of v. A local rotation ρv is a cyclic permutation of Dv. If we select a local
rotation for each vertex, then collectively they form a rotation ρ of D(G). The orbits of
ρ correspond bijectively to the set of local rotations on V (G). The proof of the following
is omitted; see [15, 19] for details.

Theorem 3.1 A rotation on G is equivalent to a cellular embedding of G in an oriented
surface. The face boundaries of the embedding corresponding to ρ are the orbits of ρ ◦ τ .

Calculating ρ◦τ is called the face-tracing algorithm. Knowing the number of faces lets
you calculate the genus g of the surface using Euler’s formula |V | − |E|+ |F | = 2− 2g.

We are especially interested in monofacial embeddings, those with a single face. By
Euler’s formula if a graph has a monofacial embedding, then |V | 6≡ |E| (mod 2). However,
this necessary condition is not sufficient. The following is a special case of Xuong’s
Theorem [22]. The proof provides an algorithm for calculating a rotation yielding the
monofacial embedding.

Theorem 3.2 A graph G has a monofacial embedding on an orientable surface if and
only if there is a spanning tree T such that every component of G−T has an even number
of edges.

Kundu [17] showed that every 4-edge-connected graph has two disjoint spanning trees.
This combined with Theorem 3.2 gives:

Corollary 3.3 If G is 4-edge-connected and |V | 6≡ |E| (mod 2), then G has a monofacial
embedding.

3.2 Current graphs

Current graphs [14] were originally developed as quotients of surface embeddings. In
particular, a monofacial embedding of a graph with currents added to the edges are used
to construct a rotation on a derived graph, usually complete. We briefly describe this
construction.

A current assignment on G with currents from Zm is a function κ : D(G)→ Zm such
that κ(e−) = −κ(e+). We frequently require the following conditions:

1. (Kirchoff’s Current Law - KCL) For every vertex v,
∑

e∈Dv
κ(e) ≡ 0 (mod m),

2. (Unique Currents) κ is a bijection between D(G) and Zm \ {0},

3. (Monofacial) G is embedded on a surface with a single face (this property of G is
independent of κ).
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Figure 4: A current graph

Figure 4 shows a unique-current assignment that satisfies KCL in Z25. Here, as else-
where, we denote a directed edge ē by its unique current κ(ē). We read each local rotation
anticlockwise as the edges emanate from the vertices; for example, around vertex C4 the
directed edges with currents (−9,−11,−5) appear in that cyclic order. This gives the
rotation:

ρ = (1,−2,−10, 11)(7,−4,−12, 9)(−8, 6,−3, 5)

(−1, 8,−7)(2,−6, 4)(10, 3, 12)(−11,−5,−9).
(1)

The face tracing algorithm gives a single face:

ρ ◦ τ = (1, 8, 6, 4,−12, 10, 11,−5,−8,−7,−4, 2,

−10, 3, 5,−9, 7,−1,−2,−6,−3, 12, 9,−11).
(2)

A rotation ρ on a current graph induces a local rotation on Dv for each vertex v, say
(e1, . . . , ek). This local rotation is simple with respect to κ if the corresponding partial
sums si =

∑i
j=1 κ(ej) are all distinct, similar to the definition of a simple ordering for a

subset of a group.
An (s, t)-biregular graph with biorder (m,n) is a bipartite graph with one part having

m vertices of degree s and the other part having n vertices of degree t.

Theorem 3.4 Let G be an (s, t)-biregular graph of biorder (m,n). Suppose that G has a
rotation ρ giving a monofacial embedding and a unique-current assignment κ from Z2ms+1

satisfying KCL. Then there is an embedding of K2ms+1 on an orientable surface such that
each edge lies on a face of size s and a face of size t. Moreover, if each local rotation on
G is simple with respect to κ, then the faces of K2ms+1 are simple cycles.
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Proof: This is the standard construction of a derived embedding from a current graph
[15, 20]; a careful analysis is given in [14]. The vertex set of K2ms+1 will be the elements
of Z2ms+1. Let e1, . . . , e2ms denote the directed edges traversed in the single face of the
embedding of G. Define the local rotation at vertex 0 ∈ Z2ms+1 as (κ(e1), . . . , κ(e2ms)).
Develop this rotation in Z2ms+1 by defining the rotation at vertex i ∈ Z2ms+1 as (κ(e1) +
i, . . . , κ(e2ms) + i).

We use the face-tracing algorithm to show that a vertex of degree d in G satisfying
KCL corresponds to 2ms+ 1 faces of size d in the embedding of K2ms+1. Since the graph
is (s, t)-biregular, each edge of K2ms+1 lies on faces of size s and t. Likewise, if each local
rotation is simple, then the corresponding faces of the embedding of K2ms+1 are simple
cycles.

The rotation ρ on the current graph G plays two independent roles in this construction:
i) ρ generates a monofacial embedding, and ii) each local rotation ρv is simple with respect
to the current assignment κ. Any rotation on a vertex of degree d 6 5 is simple.

There is a quick way to find the faces of the derived embedding arising from an
embedded current graph. Let v be a vertex of the current graph G with degree k. The
rotation ρ giving the monofacial embedding determines a local rotation ρv = (e1, . . . , ek)
on Dv. Consider si =

∑i
j=1 κ(ej). By KCL sk ≡ 0 (mod 2ms + 1). The faces of the

embedding of K2ms+1 are precisely the cyclic shifts of (0, s1, . . . , sk−1). Describing the
faces is enough to determine the embedding. A full proof of Theorem 3.4 shows that the
monofacial condition guarantees that these faces meet in a cyclic manner at each vertex,
i.e., we have a surface without pinch points.

4 Relating Heffter arrays and current graphs

We have described two seemingly different objects: Heffter arrays and current graphs on
biregular graphs. We show they are closely related.

Proposition 4.1 A Heffter array H = H(m,n; s, t) is equivalent to a unique-current
assignment κ on a (s, t)-biregular graph G of biorder (m,n). This graph is connected if
and only if H is not block diagonal.

Two compatible orderings ωr and ωc on the row and column Heffter systems of H are
equivalent to a monofacial rotation ρ on G. Moreover, if ωr and ωc are both simple, then
ρ is simple with respect to κ.

Proof: Given a Heffter array H(m,n; s, t), form a bipartite graph G whose vertex set is
the rows of H together with its columns. For each non-empty ai,j in H add an edge in
G labeled with current ai,j directed from the ith row of H to its jth column; as usual the
reverse edge receives the negative current. Since H has s entries per row and t per column,
the resulting graph is (s, t)-biregular graph of biorder (m,n). Each row and column of
H sums to 0, so G satisfies KCL. The entries of H form a half-set L, so G has unique
currents. If G is disconnected, then the components give a partition of rows and columns
showing that H is block diagonal.

the electronic journal of combinatorics 22(1) (2015), #P1.74 7



Relating the orderings ωr and ωc on H to the rotation ρ on G is more difficult. We use
the unique currents to describe ρ not as a permutation of directed edges but rather as a
permutation of their nonzero currents. We use τ(a) for −a, reflecting oppositely directed
edges receive inverse group elements. Define ρ : Z2ms+1 \ {0} → Z2ms+1 \ {0} by:

ρ(a) =
{ ωr(a) a ∈ L
τ ◦ ωc ◦ τ(a) a /∈ L .

Note that if a ∈ L, then (ρ ◦ τ)2(a) = ωr ◦ ωc(a). Since ωr is compatible with ωc,
(ρ ◦ τ)2 acts cyclically on L. Also ρ ◦ τ : L↔ −L. Hence ρ acts cyclically on Z2ms+1 \ {0}
and the embedding is monofacial as desired.

The reverse of the construction above shows that a current assignment corresponds to
a Heffter array, hence the equivalence.

We combine our results for the following:

Proof: (of Theorem 1.1) Apply Theorem 4.1 to a Heffter array to build a current graph.
Theorem 3.4 then gives the desired embedding.

We illustrate the relation with an example. Figure 1 gives a Heffter array H(3, 4)
with entries from Z25. We simply order the parts of the row system ωr = (1,−2,−10, 11)
(−8, 6,−3, 5)(7,−4,−12, 9) and simply order the column system ωc =(1,−8, 7)(−2, 6,−4)
(−10,−3,−12)(11, 5, 9). Together these give the rotation ρ given in Equation 1, agreeing
with the projected rotation on the K3,4 of Figure 4. In turn this gives the monofacial face
ρ ◦ τ of Equation 2.

This current graph gives an embedding of K25 on an orientable surface with every
edge on the boundary of a triangle and a quadrilateral, i.e., a biembedding of a 3-cycle
system with a 4-cycle system. Euler’s formula implies this surface is of genus 51.

5 Weak Heffter arrays and nonorientable embeddings

A variation of Heffter arrays corresponds to signed current graphs embedded on nonori-
entable surfaces. In turn, this can be used to construct nonorientable {s, t}-biembeddings
of complete graphs. In this section we describe this relationship beginning with embed-
dings of signed graphs.

5.1 Signed current graphs

A signed graph G± is a graph G together with a signature σ : E(G) → {+,−}. The
signature of a cycle in G is the product of the signatures on its edges. A local switch
at v toggles the sign of each edge incident with v. Two signatures are equivalent if and
only if they are related by a sequence of local switches. A signature is equivalent to the
all-positive signature if and only if the negative edges form a co-cycle, i.e., if there is no
odd-length negative cycle. In this case the signature is called balanced, otherwise it is
unbalanced.
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We describe signed-embeddings of signed graphs. As before, for each vertex we give a
cyclic permutation ρv of Dv. We keep track of the local sense of the orientation, one of two
states anticlockwise or clockwise. When the local sense is anticlockwise, a face boundary
entering a vertex v on a directed edge e+ leaves along ρv(e

−). When it is clockwise we exit
v along the directed edge ρ−1v (e−). When traversing a negative edge we reverse our local
sense of orientation. The face boundary closes when we reach a directed edge previously
traversed in the same local sense. This process of tracing the orbits of ρ ◦ τ while keeping
sense of the local sense of orientation is called the modified face-tracing algorithm. The
resulting surface is orientable if and only if the signature is balanced.

A signed current assignment is a function κ : E(G±)→ Zm such that κ(e−) = −κ(e+)
when σ(e) is positive, and κ(e−) = κ(e+) when σ(e) is negative. In analogy with unsigned
current assignments we frequently require the following:

1. (Kirchoff’s Current Law - KCL) For every vertex v,
∑

e∈Dv
κ(e) ≡ 0 (mod m),

2. (Signed-Unique Currents) A current κ occurs on a unique directed edge unless that
edge is signed negatively, where one of κ or −κ appears twice and the other not at
all, and

3. (Monofacial) G± is signed-embedded on a surface with a single face (this property
of G± is independent of κ).
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−11
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Figure 5: A signed current graph

For example, a signed current graph on K3,4 is shown in Figure 5. Using the notation
of Youngs [23] the negatively signed edges are indicated with an × in the middle; they
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receive currents -8,9,10,-11. The current assignment in the figure satisfies KCL and has
signed-unique currents. A local rotation at each vertex is read off anticlockwise in this
projection diagram. Using this rotation and signature the modified face-tracing algorithm
gives the single face:

(1, 3,−11, 7, 1,−2,−8,−5,−3,−2,−4, 7,−6, 10,−4,−11, 9, 10,−8,−12,−6, 9, 5,−12).

The restriction of ρ to Dv gives a cyclic permutation of the currents κ(e+), e+ ∈ D(v).
As before, define ρ to be simple at v if the corresponding partial sums on Dv are all
distinct, and to be simple if ρ is simple at each vertex v.

The following is analogous to Theorem 3.4.

Theorem 5.1 Let G± be an (s, t)-biregular unbalanced signed graph of biorder (m,n).
Suppose that G± has a monofacial nonorientable embedding and a signed unique-current
assignment from Z2ms+1 satisfying KCL. Then there is an embedding of K2ms+1 on a
nonorientable surface such that each edge lies on a face of size s and a face of size t.
Moreover, if each local rotation on G is simple, then the faces of K2ms+1 are simple
cycles.

Proof: This is again a standard construction of a derived embedding from a current
graph, see [15, 20] for the full proof. The vertex set of K2ms+1 is the elements of Z2ms+1.
The monofacial signed embedding of the current graph is used to determine the rotation
at a vertex of the derived graph. A lift of the signature on the current graph determines
the signature on the derived complete graph.

Since the embedding underlying the current graph is unbalanced, it is in a nonori-
entable surface. Hence there is a negatively signed cycle. This in turn implies a negatively
signed cycle in the derived embedding, i.e., it also is nonorientable. Finally, simple local
rotations in the current graph correspond to simple cycles for faces in the derived graph
as before.

Using the modified face-tracing algorithm there is a quick way to find the faces of the
derived embedding arising from a embedded signed-current graph. Let v be a vertex of
the current graph G± with degree k. The rotation ρ gives determines a local rotation
ρv = (e1, . . . , ek) on Dv. Consider si =

∑i
j=1 κ(ej). By KCL sk ≡ 0 (mod 2ms + 1).

The faces of the embedding of K2ms+1 are precisely the cyclic shifts of (0, s1, . . . , sk−1).
Describing the faces is enough to determine the embedding. A full proof of Theorem 5.1
shows that the monofacial condition guarantees that these faces again meet in a cyclic
manner at each vertex.

A key feature in the above construction is a monofacial embedding of a signed graph
G. The following theorem addresses when such embeddings exist. Let T be a positively
signed spanning tree of G. A cotree component is odd if it has an odd number of edges
and every negative edge is a bridge separating that component into two parts each having
an odd number of edges.

Theorem 5.2 [21] A signed graph has a monofacial signed embedding if and only if there
is a spanning tree with no odd cotree components.
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To apply Theorem 5.1 this monofacial embedding need also induce a simple ordering
at each vertex. We have no general theory for this and it remains a project for future
research.

5.2 Weak Heffter arrays

Two Heffter systems D1(2ms + 1, s) and D2(2nt + 1, t) with ms = nt are weakly sub-
orthogonal if the ith part of D1 has at most one element ai,j such that either ai,j or −ai,j
is in the jth part of D2. Form a weak Heffter array H(m,n; s, t) by placing ai,j in row i
column j. The upper sign on ± or ∓ is the row sign corresponding to its sign on ai,j in
D1, the lower sign is the column sign used in D2. Using the row signs we get row sums 0
and the column signs give column sums 0. Figure 6 shows a weak Heffter array.

1 −7 −6 12
2 −4 ±10 ∓8
−3 ∓11 ±9 5

Figure 6: A weak Heffter array H(3, 4) over Z25

We relate a weak Heffter array H(m,n; s, t) to a signed current assignment. Form
a bipartite G of order (m,n) whose vertices are the rows and columns of H. For each
nonempty cell add an edge e labeled with the row-signed current ai,j directed from the
ith row of H to its jth column. The same edge in the opposite direction is assigned −ai,j
and signed positively unless the entry is signed ± or ∓, in which case it’s assigned ai,j
and is signed negatively. Figure 5 shows the signed current graph corresponding to the
weak Heffter array of Figure 6; the negatively signed edges are marked with an ×.

6 Conclusion

We have introduced Heffter arrays and their relation with current graphs and with biem-
beddings. The following table summarizes these relations.

Heffter array current graph biembedding

group current group vertex set
rows and columns bipartition of vertices face-2-colorable
# entries row/col biregular graph biregular face
zero row/col sums satisfying KCL sizes s, t
simple order rotation at a vertex faces are simple cycles
compatible orders monofacial embedding no pinch points at vertices

In our definition of a Heffter array H(m,n; s, t) we required the row and column sums
to be 0 modulo 2ms+ 1. The following tighter requirement is useful in constructions. Let
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L be a halfset of {±k | k = 1, . . . ,ms}. An integer Heffter array H(m,n; s, t) is an m×n
array with entries from L such that each row and each column sum to 0 over the integers.

Lemma 6.1 If an integer Heffter array H(m,n; s, t) exists, then ms ≡ 0, 3 (mod 4).

Proof: For a row to sum to 0 there must be an even number of odds. Hence the set of
ms entries must have an even number of odds, implying the congruence.

A third condition is also helpful in constructions. An integer Heffter array H(m,n; s, t)
is shiftable if each row and column contain the same number of positive as negative entries.
The array of Figure 2 is integer and shiftable. Given a shiftable H(m,n; s, t) with entries
ai,j, define bi,j = ai,j + k if ai,j > 0, and bi,j = ai,j − k otherwise. The matrix H ± k whose
entries are bi,j still has row and column sums 0 over the integers. Define the support of
a matrix A = {ai,j} as support(A) = {|ai,j|}. If the support of the original matrix is
{1, . . . ,ms}, then the support of the new matrix is {1 + k, . . . ,ms+ k}.

Lemma 6.2 If a shiftable Heffter array H(m,n; s, t) exists, then s and t are even both
even, at least 4, and ms ≡ 0 (mod 4).

Proof: Since the number of positive and negative entries are the same in each row and
column, s and t are both even. By Lemma 6.1 ms ≡ 0, 3 (mod 4), so ms ≡ 0 (mod 4).

A natural question is the following, which we believe to be true.

Conjecture 6.3 There exists a Heffter array H(m,n; s, t) for all m,n, s, t with s, t > 3
and ms = nt. If the conditions of Lemma 6.1 are satisfied, then there is an integer Heffter
array. If the conditions of Lemma 6.2 are satisfied, then there is a shiftable array.

This conjecture is extensive since there are four parameters related by a single equation
ms = nt. It is natural to examine special cases, such as i) when H has no empty cells
(n = t and m = s), ii) squares (n = m), or iii) fixing s and t.

In the case the array has no empty cells Conjecture 6.3 simplifies to the following.

Conjecture 6.4 There exist Heffter arrays H(m,n) for all m,n > 3. Moreover, they are
integer Heffter arrays when mn ≡ 0, 3 (mod 4), and are shiftable when m and n are both
even and at least 4.

The author with Tom Boothby and Jeff Dinitz believe we have a proof of Conjecture
6.4. We are writing up the details for publication in [1] and have a computer program for
their construction. Another subsequent paper [2] examines square (n× n) integer Heffter
arrays including a complete characterization of shiftable arrays.

In our definition of a Heffter array we require at most one appearance of elements in
{x,−x}. What if we allowed two appearances either the same or different, or a multiset
of λ such elements? Using the difference-set construction this gives rise to λ-fold cycle
systems. Let Kλ

n be the complete multigraph on n vertices where every pair of edges is

the electronic journal of combinatorics 22(1) (2015), #P1.74 12



jointed by λ edges in parallel. The analogue of a Heffter square with higher λ gives an
embedding of Kλ

n into a surface that is face 2-colorable, each color class being a λ-fold
cycle system. For example, [9] uses current graphs to construct 2-fold embeddings with
all faces triangles.

Recall that we need a simple ordering on the rows and one on the columns to ensure
the resulting face boundaries are simple cycles. Moreover these two orderings should be
compatible. These seem easy to find in practice, but hard to prove their existence in
general. Alspach conjectures:

Conjecture 6.5 Every A ⊂ Zn \{0} has a simple ordering, i.e., A can be ordered so that
the partial sums are all distinct.

The author together with Jeff Dinitz, and Doug Stinson have made some progress [3],
including verifying Conjecture 6.5 for n 6 25. Bode and Harborth showed it was true for
|A| = n− 1. The general conjecture remains open.

Acknowledgements: The author thanks Tom Boothby, Melanie Brown, Jeff Dinitz,
Diane Donovan, Mike Grannell, Terry Griggs, Thomas McCourt, Doug Stinson, Greg
Warrington, Şule Yazıcı, and others for helpful discussions.
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