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Abstract

Let I C K[x1,...,zy] be a zero-dimensional monomial ideal, and A(I) be the
simplicial complex whose Stanley—Reisner ideal is the polarization of I. It follows
from a result of Soleyman Jahan that A([7) is shellable. We give a new short proof
of this fact by providing an explicit shelling. Moreover, we show that A(I) is even
vertex decomposable. The ideal L(I), which is defined to be the Stanley—Reisner
ideal of the Alexander dual of A(T), has a linear resolution which is cellular and
supported on a regular CW-complex. All powers of L(I) have a linear resolution.
We compute depth L(I)* and show that depth L(I)* = n for all k > n.

Keywords: depth function; linear quotients; vertex decomposable; whisker com-
plexes; zero-dimensional ideals

1 Introduction

Graphs with whiskers have first been considered by Villarreal in [19]. They all share
the nice property that they are Cohen-Macaulay. Various extensions of this concept and
generalizations of his result have been considered in the literature, see [2, 8, 13, 18]. The
edge ideal of a whisker graph is obtained as the polarization of a monomial ideal I C S,
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where S = K[y, ...,x,] is the polynomial ring over a field K, I is generated in degree 2
and dim S/I = 0. In particular, I contains the squares z?%, ..., z2. More generally, given
a simplicial complex I'; the whisker complex W(I') is studied in [15]. Its facet ideal is
the polarization of a monomial ideal in S which contains all the z7. In [15], Loiskekoski
shows that the Stanley—Reisner ideal of the Alexander dual of the independence complex
of W(I') has a linear resolution, as well as its powers.

In the present paper we generalize the above mentioned results by considering the
polarization of any monomial ideal I C S with dim S/I = 0. The simplicial complex
©(1I), whose facet ideal coincides with the polarization I% of I, is called of whisker type
— the whiskers being the simplices corresponding to the polarization of the pure powers
contained in /. The independence complex of ©(I), denoted A(I), is characterized by the
property that the Stanley—Reisner ideal Iy coincides with I®. Note that F' € A(I) if
and only if F' does not contain any facet of ©(7).

Given an arbitrary monomial ideal I C S, a multicomplex is associated with I, as
defined by Popescu and the second author in [11]. Soleyman Jahan defines in [17, Propo-
sition 3.8] a bijection between the facets of the multicomplex given by I and the facets
of the simplicial complex associated with I¥. In Theorem 1 we present a short proof of
this bijection when dim S/ = 0, by using multiplicity theory. This result allows us to
describe in Corollary 2 the facets of A(I). By applying the Eagon-Reiner Theorem it
is then shown in Corollary 3 that the ideal L(I) has a linear resolution, where L(I) is
generated by the monomials #1 4,41+ - - p g, +1 for which 27" - - - 2% is a monomial in S not
belonging to I.

In the case that dim .S/I = 0, the case we consider here, the corresponding multicom-
plex is pretty clean, see [11]. Soleyman Jahan showed in [17, Theorem 4.3] that if I de-
fines a pretty clean multicomplex, then the simplicial complex associated with I® is clean,
which, by a theorem of Dress [5], implies that the simplicial complex attached to I® is
shellable. Applied to our situation it follows that A([7) is shellable. We give a direct proof
of this fact by showing that L(I) has linear quotients. This provides an explicit shelling
of A(I), and as a side result we obtain a formula for the Betti numbers of L(I) in terms
of the h-vector of S/I, see Corollary 6. We conclude Section 2 with Corollary 8, where
it is shown that the minimal graded free resolution of L([I) is cellular and supported on
a regular CW-complex. The proof is based on a result of Dochtermann and Mohammadi
[4, Theorem 3.10], who showed that the minimal graded free resolution of any ideal with
regular decomposition function, as defined in [12], have such nice cellular structure.

In Section 3 we show that A(I) is not only shellable but even vertex decomposable.
This was already known for whisker graphs (see [3, Theorem 4.4]). Finally in Section 4 we
prove that all powers of L(I) have linear quotients, see Theorem 10. Analyzing the linear
quotients, the depth function f(k) = depth S/L(I)* can be computed. In Corollary 11 a
formula for the depth function is given and limy, o, depth S/L(I)* is determined.
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2 Independence complex of a whisker type simplicial complex

Throughout this paper S denotes the polynomial ring K|z, ..., z,] and I C S a monomial
ideal with dim S/I = 0, unless otherwise stated. The (finite) set of monomials in S which
belong to S but not to I will be denoted by Mon(S \ I). For an arbitrary monomial
ideal I, we denote by G(I) the unique minimal set of monomial generators of /. We will
consider the polarization of I, denoted I¥. The polynomial ring in which /¥ is defined
will be denoted by S¥.

In the following theorem (cf. [17, Proposition 3.8]) we determine the set Min(/¥) of
minimal prime ideals of I¥.

Theorem 1. Let I C S be a monomial ideal with dim S/I = 0. The map ¢ which
assigns to each monomial v = z{'---z¢» € S\ I the monomial prime ideal ¢p(u) =
(T1 1415 - - > Tnjant1) C S¥, establishes a bijection between Mon(S \ I) and Min(I¥).

Proof. We first observe that ¢(Mon(S \ 1)) C S®. Indeed, since dim S/l = 0, there
exists for each 1 < ¢ < n an integer b; > 0 such that xfl € I and xf"_l ¢ I. Tt follows
that S¥ is the polynomial ring in the variables x;1,...,x;p, with 1 < ¢ < n. Now let
u=2x7"---2% € Mon(S \ I). Then a; < b; for all i, and this implies that ¢(u) € S¥.

Next we show that ¢(Mon(S\ 7)) C Min(7¥). In fact, let uw = x7* - - - 2% be an element
in Mon(S'\ I), and let v € G(I). We claim that there exists an integer i such that x; 11
divides v¥, where v¥ is the polarization of v. From this claim it follows that I C ¢(u).
Since height I¥ = height I = n and since height ¢(u) = n, we then see that ¢(u) is in
fact a minimal prime ideal of I¥.

Let v = 2% - .- 2P, In order to prove the claim, note that v¥ = Hle(l_[?zl x; ;). Since
v does not divide u, there exists an integer 7 such that b; > a;. Therefore, x; 4,41 divides
v¥, as desired.

Clearly, ¢ is injective. We will show that |[Mon(S \ I)| = |[Min(/#)|. This will then
imply that ¢ : Mon(S \ I) — Min(/¥) is bijective. In order to see that these two sets
have the same cardinality we observe that the multiplicity e(S/I) of S/I is equal to the
length ¢(S/I) of S/I, because dim S/I = 0, see [1, Corollary 4.7.11(b)]. Since ¢(S/I) =
dimg S/I and since the elements of Mon(S \ I) form a K-basis of S/I, we see that
e(S/I) = dimg S/I = |[Mon(S\ I)|. On the other hand, since S/I is isomorphic to S¥/I%
modulo a regular sequence of linear forms [9, Proposition 1.6.2], and since S% /I is reduced
and equidimensional, [1, Corollary 4.7.8] implies that e(S/I) = e(S¥/I®) = [Min(I%)|. O

We denote by A(I) the simplicial complex whose Stanley-Reisner ideal is I¥. We view
the variables z; ; € S¥ as the vertices of A(/). As an immediate consequence of Theorem 1
we obtain

Corollary 2. Let S be the set of variables of S®. Then ' C S is a facet of A(I) if and
only if there exists x{* - - - 2% € Mon(S \ I) such that

F=8\{Z1a11,- -, Tnapt1}-
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Since A(I) is Cohen—Macaulay, the Eagon—Reiner Theorem [6] (see also [9, Theo-
rem 8.1.9]) implies that Ja(y)v has a linear resolution. Here A(7)" denotes the Alexander
dual of A(I). Recall that, if A is an arbitrary simplicial complex on the vertex set
n] ={1,...,n} and In =\ Pr where Pr = (x; : i € F'), then Iav is generated by the
monomials urp where up = Hie ;. These facts applied to our case yield

Corollary 3. The ideal L(I) generated by the monomials i 41+ Tnayt1, With
it -t € Mon(S'\ I), has a linear resolution.

In the following we consider the special case that z? € I for all i. In that case all
other generators of I are square-free. In simplified notation, the polarization I of I is
generated by the square-free monomials in I and by the monomials z;y; for e =1,... n.

Let T" be the simplicial complex with I(I') = J and W(I") be the simplicial complex
with I(W(T')) = (J, 2191, ..., ZnYn). The edges of W(I') corresponding to the x;y; are
called the whiskers of W(I') and W (T") is called the whisker complex of T

Given a simplicial complex 3, the independence complex A of X is the simplicial
complex such that Iy = I(X). Notice that F' € A if and only if no face of ¥ is contained
in F.

Corollary 4. Let T be a simplicial complex on the vertex set [n|, I' = I(T") the facet
ideal of T and W (T') its whisker complex. Let I = (I',2% x3,...,2%). Then A(I) is the

independence complex of W(I') and L(I) is generated by the monomials [ [;cip r @i [ Licr i
with ' € A, where A is the independence complex of T'.

3 Linear quotients

Let I C S be a monomial ideal with dim S/I = 0. The main purpose of this section is to
show that L(I) not only has a linear resolution, but even has linear quotients.

Theorem 5. The ideal L(I) has linear quotients.

Proof. Let u,v € G(L(I)), u = T14y41 " Tnap+1 A0 U = X1 py 41 * Tpp,+1- We set u < v
if a; < b; for all i, and extend this partial order to a total order on G(L(I)). We claim
that, with respect to this total order of the monomial generators of L([), the ideal L(I)
has linear quotients. Indeed, let @y 4,41 %Tna,+1 be the largest element in G(L([)).
Then u = xf* -+ 2% € Mon(S \ I) and z;u € I for all . Set I’ = I 4+ (u). Then the
polarization (I')? of I' is equal to Ia(;). Notice that L(I") C L(I) and £(S/I") < £(S/1).
In particular, L(I) = (L(I'), 214,41 ** Tna,+1). Arguing by induction on the length, we
may assume that L(I’) has linear quotients. Thus we just need to compute the colon ideal
Q=L(I'): 14,41 Tna,+1- We claim that

Q - <x1,17‘r1,27 ) 7'T1,a17x2,17 s JxZ,a27 s 7xn,17 ] 7xn,an)- (1)

Suppose that j € {1,...,a;} for some i. Then 2% --- 2~ ... 2% & Mon(S \ I) and

7

o(xit - -xg_l XY =y g1 T Ty € L(I).
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It follows that z; ; € Q.

On the other hand, the elements v/ ged(v, £1,4,41 - - - Tnoan+1) With v € G(L(I")) gen-
erate (), see for example [9, Proposition 1.2.2]. In fact, let v € G(L(I’)). Then v =
Tlep41 Tneptr and xf' - --2& € Mon(S '\ I’). There exists ¢ such that ¢; < a; because
x;u € I for all i. Hence ;.41 does not divide 1 4,41 Tpnqa,+1, and therefore z; ., 11
divides v/ ged(v, 14,41 * * Tnoa,+1)- Since ¢; + 1 < a;, the desured conclusion follows. [

Corollary 6. For every i > 0,
B(S°/L(I) =S hy ( J )
j=0

where h; = h;(S/I) is the j-th component of the h-vector of S/I. In particular,
projdim S¥/L(I) = max{degu : u € Mon(S'\ I)} + 1.

Proof. As in the previous proof, let v = z{* --- 2% € Mon(S \ I) with z;u € I for all i.
Set I' = I + (u), and consider the short exact sequence

0 — L(I)/L(I') — S°/L(I") — S°/L(I) — 0.

Notice that L(I)/L(I") = S¢/Q(—n) with @ as in (1). Hence its minimal free resolution
is the Koszul complex K on the variables z; ; with z;; € G(Q). Thus the minimal free
resolution of S¥/L(I) can be obtained as a mapping cone of K and the minimal free
resolution of S¥/L(1"). Therefore 5y(S¥/L(1)) = Bo(S¥/L(I")), and for i > 1 we obtain

Bi(SP/L(D)) = Bi(S°/L(I") + rank (Kioa) = Bi(S”/L(I')) + (d_gD
= UGMOZH(S\I) (?e_g ?) = ;hj (Z i 1)'
[

It is easily seen that the geometric realization of A([) is a sphere if I is a complete
intersection, and a ball otherwise. Both topological spaces admit shellable triangulations,
though in general not all triangulations of these spaces are shellable, see [16] and [14].
However, due to Theorem 5 we have

Corollary 7. The simplicial complex A(I) is shellable.
As a further consequence of Theorem 5 we have

Corollary 8. The graded minimal free resolution of L(I) is cellular and supported on a
reqular CW-complez.
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Proof. Since L(I) has linear quotients we may apply [4, Theorem 3.10] and only need
to show that L(I) admits a regular decomposition function. In order to explain this,
let J = (uq,...,uy,) be an ideal with linear quotients with respect to the given order of
the generators. The decomposition function of J (with respect to the given order of the
generators of J) is the map b : Mon(J) — G(J) with b(u) = u;, where j is the smallest
number such that u € (uq,...,u;). For each u; € G(J), let set(u;) be the set of all z;
such that z;u; € (uy,...,u;_1). According to [12], the decomposition function b is called
regular, if set(b(x;u;)) C set(u;) for all u; € G(J) and all z; € set(u;).
Now let uw € G(L(I)), u = Z14y41 " * Tnoan+1- By (1) we have

set(u) = {T11,T19, - s Tlay, X215+ s T2aps - -3 Tnly -+ s Tray -
Let x;; € set(u). Then b(z; ju) = ; j(u/2;q,41), and so
set(b(z;u)) = set(w) \ {zij+1,. .., Tia } C set(u),

as desired. ]

4 Vertex decomposability

In [3, Theorem 4.4] it was shown that for any graph, the independence complex of its
whisker graph is vertex decomposable. Here we extend this result by showing that A(7) is
vertex decomposable for any monomial ideal I with dim S/I = 0. Recall that a simplicial
complex A is called vertexr decomposable if A is a simplex, or A contains a vertex v such
that

(i) any facet of dela(v) is a facet of A, and

(ii) both dela(v) and linka (v) are vertex decomposable.

Here linka(v) = {G € A :v & G and G U {v} € A} is the link of v in A and dela(v) =
{G € A:v ¢ G} is the deletion of v from A.

A vertex v which satisfies condition (i) is called a shedding vertex of A.

For the proof of the next result we observe the following fact: let A be a simplicial
complex, F(A) the set of its facets and v a vertex not belonging to A. The cone of v over
A, denoted by v* A, is the simplicial complex whose set of facets is F(v+xA) = {{v} UF :
F e F(A)}. If A is vertex decomposable, then v x A is again vertex decomposable (with
respect to the same shedding vertex).

Theorem 9. Let I be a monomial ideal in S = K|xy,...,xz,| with dim S/I = 0. Then
A(T) is vertex decomposable.

Proof. By assumption, for each 1 < i < n there exists b; > 1 such that xf € G(I). Then
A(I) is a simplicial complex on & = {Z11,...,Z1py,---,Tn1,s---,Tnp, }- We proceed by
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induction on y ;b If > b, = n, then I = (x1,...,2,), which is a trivial case.
Suppose that >  b; > n. Hence we may assume b,, > 1.
We first show that the vertex z,,; is a shedding vertex of A(I). Clearly,

delay(@ny) ={F : F e A(I),xp1 ¢ F}U{F\{2n:1}: F e A(l),z,1 € F}.

Obviously, any facet of delay(wn1) with .1 ¢ F is a facet of A(Z). On the other
hand, if we consider F'\ {z,} with F' € F(A(I)) and z,; € F, then F'\ {z,1} is
not a facet of dela(yy(wn,1). Indeed, since F' € F(A([)), there exists u € Mon(S \ I)
such that ¢(u) = Ps\p. Let ¢ be the largest integer such that !, divides w. Then
Tni+1 € Ps\p and so @, ; € F for all j # t+ 1. Since x,; € F, we have t + 1 #
1. Let o = wu/xl. Then ' € Mon(S \ I) and ¢(v') = P(s\F)\{znir1){zni}- Lhus
G = (F\{zn1}) U{zpi1} € F(AU)). Since G € delay(2n;1), the claim follows.
Consequently, F(dela(y(2p1)) = {F : F € F(A(I)),zn1 ¢ F'} which implies that x,,, is
a shedding vertex of A(I).

We now prove that dela(p(@n,1) and linkas)(2,,1) are vertex decomposable.

First we consider dela(r)(z,,1). Let Ji be the ideal in S with Mon(S \ J;) = {u :
u € Mon(S \ I),z, does not divide u}. Then A(J;) is a simplicial complex on S \
{Zn1,...,Tnp, }- By using Corollary 2 we see that

delay(n1) = Tpp, * (Xnp,—1 % (- % (Tn2 ¥ A(J1)))).

Our induction hypothesis implies that A(J;) is vertex decomposable, hence dela(py(2n,1)
is vertex decomposable.

As for linka(ry(2n,1), let I be the simplicial complex whose faces are obtained from the
faces of linka(p)(2n,1) as follows: for every F' € linka(py(2n,1), we replace each x,,; € F by
Tpj—1. Hence I' is a simplicial complex on S\ {,p, } and I' = linka ) (2,,1). Let J5 be
the monomial ideal in S such that Mon(S'\ J2) = {u/z, : v € Mon(S'\ I), z,, divides u}.
Then Corollary 2 implies that I' = A(J3), which is vertex decomposable by induction
hypothesis. It follows that linka(py(2,,1) is vertex decomposable, as desired. O]

5 Powers

In this section we study the powers of L([). The main result is

Theorem 10. Let I C S be a monomial ideal with dim S/I = 0. Then L(I)* has linear
quotients for all k. In particular, all powers of L(I) have a linear resolution.

Proof. Any w € L(I)* can be written in the form u = wjub---u,

Tij(in Tij(i)e " Tij(i), for @ = 1,...,n with j(¢); < j(i)2 < --- < j(i)r. We define a
partial order on G(L(I)*) by setting v < u, if, with respect to the lexicographical order,
w; < v, for all i, and we extend this partial order to a total order on the set of monomial
generators of L(I)F.

Now let v,u € L(I)* with v < u. We need to show that there exists w € L(I)*
with w < wu such that w/ged(w,u) is of degree 1 and such that w/ ged(w,u) divides

where u, =
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v/ ged(v,u). Indeed, since v < u, there exists ¢ such that u, < v} in the lexicographical
order. Thus if v] = @; jii), T j (i), -+ Tijray, With j'(2)1 < 7'(4)2 < -+ < j'(¢)g, then there
exists ¢ such that j'(i)s = j(i)s for s < € and j'(i)y < j(i)e. We let w = wiw) - --w!, with
wy = uy for t # 1 and w; = x; jiw), (Ui /2 j),)-

It is clear that w < w. Furthermore, w € G(L(I)*). In fact, u = uy - - - uy with u; €
L(I), and z; j(;), divides one of these factors, say it divides u,. Then u, = ; j.4), (Ur /5 ),)
belongs to L(I) since j'(i); < j(i)¢, and hence w = uy - - -, - - - ug, belongs to G(L(I)¥).
Note further that w/ged(w,u) = x; j1(;), and that x; ji;), divides v/ ged(v,u). This com-
pletes the proof. n

Corollary 11. Fori=1,...,n, let b; be the smallest integer such that xf € I. Then

n

depth S¥/L(I)* = Zbi — max{deg(lem(uy, ..., ux)) : uy,...,u € Mon(S\ I)} — 1.

i=1

In particular, depth S®/L(I)¥ =n —1 for all k > n, and
depth S¥/L(I)F > depth S¥/L(I)*",

as long as depth S¢/L(I)* >n — 1.

Proof. In general, let J C Klzy,...,x,] be a graded ideal generated by a sequence
fi, ..., fs with linear quotients, and denote by ¢;(J/) the minimal number of linear forms
generating the ideal (f1, fo,..., fj—1) : f;- Then depth K{zy,...,2,]/J =n —q(J) — 1,
where ¢(J) = max{q;(J) : 2 < j < s}, see [10, Formula (1)].

We apply this formula to S¢/L(I)*. Since the Krull dimension of S¢ is equal to
> i, bi, it remains to be shown that

q(L(1)*) = max{deg(lem(uy, ug, . . ., ug)) : w1, ug, . .., u; € Mon(S\ 1)}. (2)

To see this, let uy,ug, ..., ux € Mon(S \ I) where u; = m‘fl(j) o) for j=1,... k.
Then v = wjuf - - - ul, with u] = Hle Tias(j)+1 1S & generator of L(I)*. We may assume
that u is the j-th element in the given total order of the elements of G(L(I)*). As shown

in the proof of Theorem 10, ¢;(L(I)¥) is the cardinality of the set

{xl,b Ce ,1'1701733271, C. 7372,r:27 Ce ,:cml, C.e ,Z'mcn},

where ¢; = max{a;(1),...,a;(k)} for i = 1,... n. If follows that

qj(L(I)k) = deg(lem(uq, ug, . .., ug)),

and hence equation (2) follows.

Suppose now that £ > n. Then we may choose u; = xfi_l for i = 1,...,n and
u; € Mon(S'\ I) arbitrary for i > n, and obtain deg(lem(uy, ug, ... ug)) = > 0 (b — 1) =
> bi —n. Since this is the largest possible least common multiple of sequences of

elements of Mon(S \ I), it follows that depth S¢/L(I)* =n — 1 for all k > n.
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Finally, suppose that depth S¢/L(I)* > n — 1. Then the formula for depth S¥/L(I)*
implies that max{deg(lem(us, ..., ug)) : ..., u, € Mon(S\ 1)} < >0 (b; —1).

Let x{'-- 2% = lem(uq,...,u;) attain this maximal degree. Since Y .  a; <
> ow (b — 1), there exists an index ¢ such that a; < b; — 1. Let upyq = :cl;i_l. Then
deg(lem(uy, . .., up, ugs1)) > deg(lem(uy,...,ug)). Consequently, depth S¢/L(I)k >
depth S¥/L(I)**1 as desired. O
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