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Abstract

We prove that connected vertex-transitive digraphs of order p5 (where p is a
prime) are Hamiltonian, and a connected digraph whose automorphism group con-
tains a finite vertex-transitive subgroup G of prime power order such that G′ is
generated by two elements or elementary abelian is Hamiltonian.

Keywords: vertex-transitive digraphs; Hamilton cycles; coset digraphs

1 Introduction

One of the most famous problems in vertex-transitive graphs theory is the problem of
existence of Hamilton paths/cycles (that is, simple paths/cycles going through all vertices)
in finite connected vertex-transitive graphs (or digraphs). Graphs (or digraphs) which
have Hamilton cycles are called Hamiltonian. The interest in this problem grew out of a
question posed byLovász [13], who asked whether every finite connected vertex-transitive
graph has a Hamilton path. In fact, there are only four known nontrivial connected
vertex-transitive graph that do not possess Hamilton cycles. These four graphs are the
Petersen graph, the Coxeter graph and the two graphs obtained from them by replacing
each vertex by a triangle. The fact that none of these four graphs is a Cayley graph has
led to a folklore conjecture that every connected Cayley graph with order greater than
2 has a Hamilton cycle. A large number of articles directly or indirectly related to this
problem (for the list of relevant references and a detailed description of the status of this
problem see [8]), have appeared in the literature, affirming the existence of such paths in
some special vertex-transitive graphs and, in some cases, also the existence of Hamilton
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cycles. Since the publication of the survey paper [8], some recent improvements on this
subject appeared, see [23, 4, 9, 6, 5, 22] and so forth.

Let p be a prime number. It is known that connected vertex-transitive graphs of
order kp, where k 6 4, and pi, where i 6 4, and 2p2 (except for the Petersen graph
and the Coxeter graph) contain a Hamilton cycle; see [1, 17, 7, 14, 3, 15]. A Hamilton
path is known to exist in connected vertex-transitive graphs of order 5p, 6p and order 10p
removing some special cases; see [16, 11, 10]. As for Cayley graphs, perhaps the biggest
achievement on this subject is due to Witte (now Morris) who proved that a connected
Cayley digraph of any p-group has a Hamilton cycle [21].

It seems to be quite a challenge to generalize Witte’s theorem on Hamilton cycles in
Cayley digraphs of p-groups to arbitrary vertex-transitive digraphs of prime power order.
The first successful attempt using this approach is due to Chen [3], who proved that vertex-
transitive digraphs of order p4 are Hamiltonian. In this paper, we give some conditions
under which one can obtain Hamilton cycles of vertex-transitive digraphs of prime power
order by lifting Hamilton cycles from their quotient graphs. Using our methods, one can
affirm the existence of Hamilton cycles of many connected vertex-transitive digraphs of
prime power order. In particular, we obtain the following two theorems:

Theorem 1.1. Connected vertex-transitive digraphs of order p5 are Hamiltonian.

Theorem 1.2. Let Γ be a connected digraph of which the automorphism group contains
a finite vertex-transitive subgroup G of prime power order. Let G′ be the derived subgroup
of G. Then Γ is Hamiltonian if one of the following two conditions hold:

(i) G′ is generated by two elements;

(ii) G′ is elementary abelian.

The paper is organized as follows. In Section 2, notations and lemmas in group theory
for later use are introduced. In section 3, we review the concept of coset digraphs and the
representations of paths and cycles in coset digraphs. In section 4, the main theorems of
this paper are proved.

2 Notations and preliminary lemmas in group theory

In this section, we fix some notations and introduce some lemmas for later use. The
following standard group-theoretic notations will be used throughout the rest of the paper.

H 6 G, H < G H is a subgroup, a proper subgroup of the group G

H CG H is a normal subgroup of G

〈X〉 Subgroup generated by the subset X of a group

[x, y] x−1y−1xy, commutator of two elements x and y of a group

[X, Y ] Subgroup of G generated by all the commutators [x, y]
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where x ∈ X, y ∈ Y and X, Y ⊆ G

G′ [G,G], derived subgroup of G

CG(g) Centralizer of g in G

G/H {gH | g ∈ G}, set of left cosets of H in G, and particularly

the quotient group of N in G if N CG

|G : H| Index of the subgroup H in the group G

H\G/H {HgH | g ∈ G}, set of double cosets of H in G

HG 〈gHg−1 | g ∈ G〉, normal closure of H in G

HG

⋂
g∈G

gHg−1, core of H in G

Z(G) Center of G

Φ(G) Frattini subgroup of G

Remark. The Frattini subgroup Φ(G) of G is defined to be the intersection of all max-
imum subgroups of G. An element g of G is said to be a non-generator if G = 〈X〉
whenever G = 〈g,X〉, where X is a subset of G. It is well known that Φ(G) is the set of
non-generators of G.

Below we introduce four lemmas that will be needed in the proof of our main results.

Lemma 2.1 ([19]). Let G be a finite p-group and N be a normal subgroup of G. Then
N ∩ Z(G) = {1} if and only if N = {1}.

Lemma 2.2. Let G be a finite p-group and w be an element of G with centralizer CG(w) <
G. Let X be a generating set of G. Then [G, 〈w〉] = [G,w]. Furthermore, there exists
a minimal generating set {[x,w], [g1, w], . . . , [gd−1, w]} of [G,w] where x ∈ X and gi ∈
G− [G,w]CG(w) for all i = 1, . . . , d− 1.

Proof. For any g ∈ G and any i > 1, since

[g, wi] = [g, w][g, wi−1]w = [g, w][gw, wi−1] = [g, w][g, wi−1][[g, wi−1], w]

we have [g, wi] = [g, w][gw, w] · · · [gwi−1
, w] and [[g, w], w] = [g, w]−1[gw, w]. It follows that

[G, 〈w〉] = [G,w] = 〈[g, w] | g ∈ G− [G,w]CG(w)〉. (1)

Set K = [G,w]. Then K CG. Since Φ(K) is a characteristic subgroup of K, we have
Φ(K)CG. From G = 〈X〉, we have [G,w] = 〈[x,w]g | x ∈ X, g ∈ G〉. Then, since Φ(K) is
a proper subgroup of K, there exists x ∈ X such that [x,w] /∈ Φ(K). Let |K : Φ(K)| = d.
Then, by the Basis theorem of Burnside (see [19, Theorem 1.16 of Chapter 2] for example),
there exists a minimal generating set {[x,w], y1, . . . , yd−1} of K. Furthermore, by (1), we
can choose yi = [gi, w] with gi ∈ G− [G,w]CG(w) for all i = 1, . . . , d− 1.

Lemma 2.3. Let G be a finite p-group and H be a proper subgroup of G. If H ∩Z(G) =
{1}, then Z(H) contains an element w of order p such that [G,w] ∩H = {1}.
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Proof. Set H0 = H and Hi = [G,Hi−1] for all i > 1. Then there is a positive integer j
such that {1} < Hj 6 Z(G). Since H ∩ Z(G) = {1}, we have H ∩ Hj = {1}. Let k be
the minimum positive integer such that H ∩Hk = {1}. Then H ∩Hk−1 > {1}. Take an
element w of H ∩Hk−1 with order p. Then [G,w] ∩H = {1}. Sine [H,w] 6 [G,w] ∩H,
we have [H,w] = {1}, namely w ∈ Z(H).

The following lemma is a direct corollary of [2, Theorem 1].

Lemma 2.4. Let G be a finite p-group for which G′ is generated by two elements. Then
any subgroup of G′ can be generated by at most two elements.

3 Coset digraphs and cycles

The digraphs considered in this paper are finite, connected, with no loops or multiple
edges. For a vertex-transitive digraphs Γ, the following proposition gives a nice way to
represent it by using subgroups of its automorphism group. For proof and comments of
this proposition, see [12] and [3] respectively.

Proposition 3.1. Let G be a finite group, H a subgroup of G, and Ω ⊆ H\G/H − {H}.
Define a digraph Γ = Cos(G,H,Ω) as follows: the vertices set of Γ is G/H; the arcs set
of Γ is {(g1H, g2H) | Hg−1

1 g2H ∈ Ω}. Then we have

(i) Γ is a well defined vertex-transitive digraph on which G/HG acts vertex-transitively
by left multiplication: gHGxH = gxH for any gHG ∈ G/HG and xH ∈ G/H,

(ii) every vertex-transitive digraph can be represented as Cos(G,H,Ω) for some G, H,
Ω,

(iii) Cos(G,H,Ω) is connected if and only if G =
〈 ⋃
HgH∈Ω

HgH
〉
.

As for the vertex-transitive digraph of prime power order, we have the following propo-
sition.

Proposition 3.2 ([3]). If Γ is a vertex-transitive digraph of order pn where p is a prime
and n is a positive integer, then Γ admits a representation Cos(G,H,Ω) such that G is a
p-group, H

⋂
Z(G) = {1} and H < Φ(G).

Remark. By Lemma 2.1, the subgroup H of G in Proposition 3.2 is core-free, that is,
HG = {1}. Therefore, G acts vertex-transitively on Γ by left multiplication. In fact, G
can be chosen as a minimum vertex-transitive p-subgroup of Aut(Γ).

The digraph Γ = Cos(G,H,Ω) defined in Proposition 3.1 is usually called a coset
digraph on G/H, which is actually a generalized orbital graph of G acting on G/H (the
definition of generalized orbital graph can be found in many publications, see [18] for
example). Particularly, if H = {1}, then Γ = Cos(G,H,Ω) is a Cayley digraph and
denoted by Cay(G,Ω). Consider the action of G/HG on G/H by left multiplication. If K
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is a subgroup of G which contains H, then K/H is coincident with a block for G/HG. It
follows that K induces a quotient digraph ΓK of Γ: the vertices set of ΓK is the system
of blocks containing K/H, and for any two such blocks ∆1 and ∆2, (∆1,∆2) is an arc of
ΓK if and only if there exist g1H ∈ ∆1 and g2H ∈ ∆2 such that (g1H, g2H) is an arc of
Γ. The following proposition gives a representation of ΓK .

Proposition 3.3. Let G be a finite group, H a subgroup of G, and Γ = Cos(G,H,Ω) a
coset digraph on G/H. Let K be a subgroup of G which contains H, and ΓK the quotient
digraph of Γ induced by K. Then ΓK ∼= Cos(G,K,Λ) where Λ = {KxK | HxH ∈ Ω}.

Proof. Set gK/H = {gxH | x ∈ K} for all g ∈ G. Then the vertices set of ΓK is
{gK/H | g ∈ G}. Since

g1K = g2K ⇔ g−1
1 g2 ∈ K ⇔ g1K/H = g2K/H

for all g1, g2 ∈ G, we obtain a one to one mapping

σ : G/K → {gK/H | g ∈ G}, gK 7→ gK/H for all gK ∈ G/K.

If (g1K, g2K) is an arc of Cos(G,K,Λ), then Kg−1
1 g2K ∈ Λ. Therefore there exist

x1, x2 ∈ K such that Hx1g
−1
1 g2x2H ∈ Ω. It follows that (g1x

−1
1 H, g2x2H) is an arc of Γ,

and then (g1K/H, g2K/H) is an arc of ΓK .

On the other hand, if (g1K/H, g2K/H) is an arc of ΓK , then there exist x1, x2 ∈ K
such that (g1x1H, g2x2H) is an arc of Γ. It follows that Hx−1

1 g−1
1 g2x2H ∈ Ω and then

Kg−1
1 g2K ∈ Λ. Therefore (g1K, g2K) is an arc of Cos(G,K,Λ).

By the above discussions, we get ΓK ∼= Cos(G,K,Λ).

For a finite group G and a subgroup H of G, we use (x1, x2, . . . , xn) ·H to denote the
sequence of cosets

H, x1H, x1x2H, . . . , x1x2 · · ·xnH

in G/H, and we call (xi, . . . , xj) ·H a section of (x1, x2, . . . , xn) ·H for any 1 6 i 6 j 6 n.
For two sequences (x1, x2, . . . , xn) ·H and (y1, y2, . . . , ym) ·H, define

(x1, x2, . . . , xn)(xi+1, . . . , xn)−1 ·H = (x1, x2, . . . , xi) ·H for any 1 6 i < n

and
(x1, x2, . . . , xn)(y1, y2, . . . , ym) ·H = (x1, x2, . . . , xn, y1, y2, . . . , ym) ·H.

In particular, if Γ = Cos(G,H,Ω) is a coset digraph on G/H and HxiH ∈ Ω for all
i = 1, 2, . . . , n, then (x1, x2, . . . , xn) ·H is a walk visiting the vertices of Γ in the order

H, x1H, x1x2H, . . . , x1x2 · · ·xnH.

The following proposition is apparent and we omit the proof.
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Proposition 3.4. Let (x1, x2, . . . , xn) · H be a cycle in the coset digraph Cos(G,H,Ω),
and let h, h′ be two elements of H. Then,

(i) (hx1, x2, . . . , xnh
′) ·H is a cycle in Cos(G,H,Ω).

(ii) (x1, . . . , xi−1h
−1, hxi, xi+1, . . . , xn) ·H is a cycle in Cos(G,H,Ω) for any 1 6 i 6 n.

(iii) (x1, . . . , xi−1, xih, xi+1, . . . , xn) · H is a cycle in Cos(G,H,Ω) for any 1 6 i < n if
h ∈ HG.

(iv) (xi+1, . . . , xn, x1, . . . , xi) ·H is a cycle in Cos(G,H,Ω) if x1x2 · · ·xn = 1.

Now we give a lemma for later use.

Lemma 3.5 ([3]). Let Cos(G,H,Ω) be a vertex-transitive digraph and N be a normal
subgroup of G with N

⋂
H = {1}. Set K = NH and Λ = {KxK | HxH ∈ Ω}. Suppose

there are m directed Hamilton cycles (x1, . . . , xn−1, y1) · H , . . . , (x1, . . . , xn−1, ym) · H in
Cos(G,K,Λ) such that HxiH,HyjH ∈ Ω for i = 1, . . . , n − 1 and j = 1, . . . ,m, and
K = 〈S〉 where S = {x1 . . . xn−1yj | j = 1, . . . ,m}. Then Cos(G,H,Ω) is Hamiltonian if
the Cayley digraph Cay(K,S) is.

4 Main results

Throughout this section, we assume p is a prime. Let Γ be a connected vertex-transitive
digraph of order a power of p. Then, by Proposition 3.2, Γ is isomorphic to a coset
digraph Cos(G,H,Ω) on G/H where G is a p-group, H ∩ Z(G) = {1} and H < Φ(G).
By Lemma 2.3, Z(H) contains an element w of order p such that [G,w] ∩ H = {1}.
Since [G,w] C G, K := [G,w]H is a subgroup of G. By Proposition 3.3, K induces a
quotient digraph of Cos(G,H,Ω) which is isomorphic to the coset digraph Cos(G,K,Λ)
with Λ = {KxK | HxH ∈ Ω}. First, we prove a lemma which gives some sufficient
conditions such that a Hamilton cycle of Cos(G,K,Λ) can be lifted to a Hamilton cycle
of Cos(G,H,Ω). Then, using this lemma, we give the proofs of Theorem 1.1 and 1.2.

Lemma 4.1. Let G be a finite p-group, H be a proper subgroup of G such that H
⋂
Z(G) =

{1} and H < Φ(G), and Γ = Cos(G,H,Ω) be a coset digraph on G/H. Let w be an
element of order p in the center of H such that [G,w] ∩ H = {1}. Set K = [G,w]H
and Λ = {KxK | HxH ∈ Ω}. Suppose that Σ = Cos(G,K,Λ) is Hamiltonian. Then
Γ = Cos(G,H,Ω) is Hamiltonian if one of the following three holds:

(i) [G,w] is generated by one or two elements;

(ii) [G,w] is an elementary abelian group;

(iii) [G,w] is of order p3.
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Proof. Let (x1, x2, . . . , xu) · K be a Hamilton cycle of Σ. Note that [G,w] < KG. By
Proposition 3.4, we can assume that HxiH ∈ Ω for all i = 1, . . . , u, and furthermore
x1x2 · · ·xu ∈ [G,w]. By the hamiltonicity of (x1, x2, . . . , xu) ·K, for any g ∈ G−K, there
exists a positive integer i < u such that x1 · · ·xiH = g−1H. Moreover, we can just set
x1 · · ·xi = g−1 by Proposition 3.4 (ii). Then, by Proposition 3.4 (i) and (iii), we get a
Hamilton cycle

(x1, . . . , xi−1, xiw
−1, xi+1, . . . , xuw) ·K

of Σ with
x1 · · ·xi−1xiw

−1xi+1 · · · xuw = x1 · · ·xu[g, w].

By the proof of Lemma 2.2, [G,w] = 〈[g, w] | g ∈ G − [〈w〉, G]CG(w)〉. Then, since K 6
[G,w]CG(w), we can eliminate all the factors of x1 · · ·xu by finite steps of replacements.
It follows that we can assume x1x2 · · ·xu = 1.

In the following discussions, we always assume that (x1, x2, . . . , xu) ·K is a Hamilton
cycle of Σ such that x1x2 · · ·xu = 1 and HxiH ∈ Ω for all i = 1, . . . , u.

Proof of (i).

For the case that [G,w] is generated by only one element. Set [G,w] = 〈y〉 where y =
[g, w] for some g ∈ G−K. As in the above paragraph, set g−1 = x1, . . . , xi for some positive
integer i < u. Then we get a Hamilton cycle (x1, . . . , xi−1, xiw

−1, xi+1, . . . , xuw) ·K of Σ
with x1 · · · xi−1xiw

−1xi+1 · · ·xuw = y. Set |〈y〉| = v. It is straightforward to check that
(x1, . . . , xi−1, xiw

−1, xi+1, . . . , xuw)v ·H is a Hamilton cycle of Γ = Cos(G,H,Ω).

Now we deal with the case when [G,w] is generated by two elements. By Lemma 2.2,
let [G,w] = 〈y, z〉 where y = [g, w] and z = [xj, w] for some g ∈ G −K and 1 6 j 6 u.
Since x1 · · ·xu = 1, by Proposition 3.4 (iv), we have that (xj+1, . . . , xu, x1, . . . , xj) ·K is
also a Hamilton cycle of Σ. Therefore we can assume j = u without loss of generality.
Since g ∈ G \ K, again we set g−1 = x1 · · ·xi for some 1 6 i < u. Now we have
[G,w] = 〈y, z〉 = 〈y, yz−1〉 and get two Hamilton cycles of Σ:

(x1, . . . , xi−1, xiw
−1, xi+1, . . . , xu−1, xuw) ·K

with
x1 · · ·xi−1xiw

−1xi+1 · · ·xu−1xuw = y,

and
(x1, . . . , xi−1, xiw

−1, xi+1, . . . , xu−1, wxu) ·K

with
x1 · · ·xi−1xiw

−1xi+1 · · ·xu−1wxu = yz−1.

By the main result of Witte [21], the Cayley digraph Cay([G,w], {y, yz−1}) is Hamiltonian.
Then, by Lemma 3.5, Γ is Hamiltonian.
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Proof of (ii).

Assume [G,w] is an elementary abelian group of order pd for some integer d. Recall that
(x1, x2, . . . , xu)·K is a Hamilton cycle of Σ such that x1x2 · · ·xu = 1 and HxiH ∈ Ω for all
i = 1, . . . , u. Set g−1

i = x1 · · ·xi for all i = 1, . . . , u. Let u1 be the smallest integer such that
[gu1 , w] 6= 1, and let ui be the smallest integer such that [gui , w] /∈ 〈[gu1 , w], . . . , [gui−1

, w]〉
for any i > 2. Then 1 6 u1 < u2 < · · · < ud < u and we get a minimal generating set{

[gu1 , w], [gu2 , w], . . . , [gud , w]
}

of [G,w]. Set yi = [gui , w] for all i = 1, . . . , d. Then [G,w] = 〈y1〉 × · · · × 〈yd〉. Set

(ai,1, . . . , ai,u) = (x1, . . . , xuiw
−1, xui+1, . . . , xuw)

for all i = 1, . . . , d. Then we get d Hamilton cycles (ai,1, . . . , ai,u) · K of the digraph Σ
with ai,1 · · · ai,u = yi for all 1 6 i 6 d. Set

(b0,1, . . . , b0,u) ·H = (a1,1, . . . , a1,u) ·H

and

(bi,1, . . . , bi,piu) ·H = (bi−1,1, . . . , bi−1,pi−1u)
p(ai,1, . . . , ai,u)

−1(ai+1,1, . . . , ai+1,u) ·H

for all i = 1, . . . , d− 1. It is straightforward to check that the following conditions hold:

(a) b0,1 · · · b0,u = y1 and bi,1 · · · bi,piu = y−1
i yi+1 for all i = 1, . . . , d− 1;

(b) (b0,1, . . . , b0,u)
p ·H is a cycle of Γ;

(c) for any 0 6 i 6 d− 1, bi,1 · · · bi,j ∈ 〈y1, . . . , yi〉 if u | j and j < piu;

(d) for any 0 6 i 6 d− 1, bi,1 · · · bi,jK = bi,1 · · · bi,lK if and only if j ≡ l (mod u);

(e) for any 0 6 i 6 d− 1 and 1 6 λ 6 pi, bi,1 · · · bi,λu 6= 1.

(f) for any 0 6 i 6 d − 1 and 1 6 λ, µ 6 pi, bi,1 · · · bi,λu = bi,1 · · · bi,µu if and only if
λ = µ.

To complete the proof, we need to prove that (bi,1, . . . , bi,piu)
p · H are cycles of Γ for all

i = 0, 1, . . . , d− 1.

Suppose to the contrary that there is an integer j 6 d−1 such that (bi,1, . . . , bi,piu)
p ·H

are cycles of Γ for all i ∈ {0, 1, . . . , j−1}, but (bj,1, . . . , bj,pju)
p ·H is not a cycle of Γ. Then

there exist distinct integer pairs (r, s) and (e, f) with 0 6 r, e 6 p− 1 and 1 6 s, f 6 pju
such that

(y−1
j yj+1)rbj,1 · · · bj,sH = (y−1

j yj+1)ebj,1 · · · bj,fH. (2)

Therefore bj,1 · · · bj,sK = bj,1 · · · bj,fK. By condition (d), we have s ≡ f (mod u). Set
s = λu + l and f = µu + l where 0 6 λ, µ 6 pj − 1 and 1 6 l 6 u. To obtain the
contradiction, we divide the discussions into the following three cases.
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Case 1. bj,λu+1 · · · bj,λu+l = bj,µu+1 · · · bj,µu+l.

In this case, set c = bj,λu+1 · · · bj,λu+l. Then Eq. (2) implies that

(y−1
j yj+1)rbj,1 · · · bj,λu(cHc−1) = (y−1

j yj+1)ebj,1 · · · bj,µu(cHc−1). (3)

Since [G,w] ∩ H = {1} and [G,w] C G, we have [G,w] ∩ cHc−1 = {1}. Then, by the
condition (c) and Eq. (3), we have

(y−1
j yj+1)rbj,1 · · · bj,λu = (y−1

j yj+1)ebj,1 · · · bj,µu. (4)

Recall that 0 6 λ, µ 6 pj−1. By condition (c), both bj,1 · · · bj,λu and bj,1 · · · bj,µu belong to
〈y1, . . . , yj〉. Then, by Eq. (4) and condition (f), we have r = e and λ = µ, a contradiction.

Case 2. bj,λu+l+1 · · · bj,(λ+1)u = bj,µu+l+1 · · · bj,(µ+1)u.

In this case, set c = bj,λu+l+1 · · · bj,(λ+1)u. Then Eq. (2) implies that

(y−1
j yj+1)rbj,1 · · · bj,(λ+1)u(c

−1Hc) = (y−1
j yj+1)ebj,1 · · · bj,(µ+1)u(c

−1Hc).

As the proof of Case 1., we have

(y−1
j yj+1)rbj,1 · · · bj,(λ+1)u = (y−1

j yj+1)ebj,1 · · · bj,(µ+1)u.

Suppose that λ 6 µ. If λ = µ, then r = e and we get the contradiction. If µ < pj − 1,
then we can obtain the contradiction by the same reason as Case 1.. Now we assume
λ < µ = pj − 1, then

(y−1
j yj+1)rbj,1 · · · bj,(λ+1)u = (y−1

j yj+1)e+1.

By condition (c), bj,1 · · · bj,(λ+1)u ∈ 〈y1, . . . , yj〉. Therefore, r = e+ 1 and bj,1 · · · bj,(λ+1)u =
1, which is in contradiction with the condition (e).

Case 3.

{
bj,λu+1 · · · bj,λu+l 6= bj,µu+1 · · · bj,µu+l

bj,λu+l+1 · · · bj,(λ+1)u 6= bj,µu+l+1 · · · bj,(µ+1)u
.

In this case,

bj,λu+1 · · · bj,λu+l = x1 · · ·xl or bj,µu+1 · · · bj,µu+l = x1 · · ·xl.

Without loss of generality, let bj,λu+1 · · · bj,λu+l = x1 · · ·xl. Set c = xl+1 · · ·xu. Then,
bj,µu+l+1 · · · bj,(µ+1)u = cw. By Eq. (2), we have

(y−1
j yj+1)r(bj,1 · · · bj,λu)c−1Hc = (y−1

j yj+1)e(bj,1 · · · bj,(µ+1)u)w
−1c−1Hc.

Noting that [G,w] ∩ c−1Hc = {1}, we have

(y−1
j yj+1)rbj,1 · · · bj,λu = (y−1

j yj+1)e(bj,1 · · · bj,(µ+1)u)[w, c]. (5)
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Assume that
bj,λu+1 · · · bj,(λ+1)u = yα and bj,µu+1 · · · bj,(µ+1)u = yβ

for some α, β ∈ {1, 2, . . . , j + 1}. Then 1 6 uβ 6 l < uα 6 uj+1. It follow that both
bj,1 · · · bj,λu and (bj,1 · · · bj,(µ+1)u)[w, c] belong to 〈y1, . . . , yj〉. Then, by Eq. (5), we have
r = e. Therefore, by Eq. (2), we have bj,1 · · · bj,sH = bj,1 · · · bj,fH. Note that both
(bj,1, . . . , bj,s) · H and (bj,1, . . . , bj,f ) · H are sections of (bj−1,1, . . . , bj−1,pj−1u)

p · H. Since
(bj−1,1, . . . , bj−1,pj−1u)

p ·H is a cycle of Γ, we have s = f , a contradiction.

So far we have proved that (bi,1, . . . , bi,piu)
p ·H are cycles of Γ for all i = 0, 1, . . . , d−1.

In particular, (bd−1,1, . . . , bd−1,pd−1u)
p ·H is a cycle of Γ. Noting that the digraph Γ is of

order |G : H| = |G : K||K : H| = upd, which is coincident with the length of the sequence
(bd−1,1, . . . , bd−1,pd−1u)

p, we have that (bd−1,1, . . . , bd−1,pd−1u)
p ·H is a Hamilton cycle of Γ.

Proof of (iii).

Assume [G,w] is of order p3. Then
∣∣[G,w] : Φ([G,w])

∣∣ 6 p2 or [G,w] is an elementary
abelian group and therefore the assertion follows from (i) or (ii) respectively.

Proof of Theorem 1.1. Since Cayley digraphs of order a prime power are always
Hamiltonian, it suffices to consider the non-Cayley case. By Proposition 3.2, a non-
Cayley vertex-transitive digraph of order p5 admits a representation as Γ = Cos(G,H,Ω)
where G is a p-group, |G : H| = p5, H ∩ Z(G) = {1} and {1} < H < Φ(G). Let w be
an element of order p in the center of H such that [G,w] ∩ H = {1}. Set K = [G,w]H
and Λ = {KxK | HxH ∈ Ω}. Then Σ = Cos(G,K,Λ) is of order not bigger than p4 and
hence Hamiltonian. Since [G,w] 6 G′ and [G,w] < Φ(G), we have K 6 Φ(G). Noting
that G is not a cyclic group, we get |G : K| > p2. Therefore, from [G,w] ∩H = {1} and
|G : H| = p5, we have

∣∣[G,w]
∣∣ 6 p3. Then the assertion follows from Lemma 4.1 (iii).

Proof of Theorem 1.2. Let Γ be a connected digraph of which the automorphism group
contains a finite vertex-transitive subgroup G of prime power order.

(i) Suppose that G′ is generated by two elements. By Lemma 2.4, we can assume that
G is a minimum vertex-transitive p-subgroup of Aut(Γ) without loss of any generality.
Let H be a vertex stabilizer in G. Assume that the order of Γ is pn. Then |G : H| = pn,
H ∩ Z(G) = {1}, H < Φ(G) and Γ admits a representation Γ = Cos(G,H,Ω) for some
Ω ⊆ H\G/H − {H}.

We proceed the remainder proof by induction on the order of Γ. Assume that the
assertion holds for any such vertex-transitive digraph of order a power of p smaller than
pn. Let w be an element of order p in the center of H such that [G,w] ∩ H = {1}. Set
K = [G,w]H and Λ = {KxK | HxH ∈ Ω}. By Proposition 3.1, the automorphism group
of Σ = Cos(G,K,Λ) contains a vertex-transitive subgroup isomorphic to G/KG. Since
G′ is generated by two elements, we have (G/KG)′ can be generated by two elements. By
induction hypothesis, Σ is Hamiltonian. By Lemma 2.4, [G,w] can be generated by at
most two elements. It follows from Lemma 4.1 (i) that Γ is Hamiltonian.
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(ii) Note that any subgroup of an elementary abelian group is also elementary abelian.
Then, by using the same method as in the proof of (i) together with Lemma 4.1 (ii), one
can prove the assertion. The details are omitted.
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Cayley graphs. Proc. London Math. Soc., 104:1171–1197, 2012.
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[11] K. Kutnar, P. Šarl. Hamilton paths and cycles in vertex-transitive graphs of order
6p. Discrete Math., 309:5444–5460, 2009.

[12] P. Lorimer. Vertex-transitive graphs: Symmetric graphs of prime valency. J. Graph
Theory, 8:55–68, 1984.

[13] L. Lovász. Combinatorial Structures and their Applications. In Problem, volume 11
of Proc. Calgary Internat. Conf., Calgary, Alberta, 1969, pages 243–246. Gordon and
Breach, 1970.
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