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Abstract

Let 2 6 k1 < k2 < · · · < kt, 3 6 g1 < g2 < · · · < gs < N be integer parameters.
A (k1, k2, . . . , kt; g1, g2, . . . , gs;N)-graph is a graph that contains vertices of degrees
k1, k2, . . . , kt but no other degrees and cycles of lengths g1, g2, . . . , gs but no other
cycles of length < N . For any given set of parameters satisfying the above condi-
tions, we present an explicit construction of (k1, k2, . . . , kt; g1, g2, . . . , gs;N)-graphs
and extend the concept of a cage (a smallest graph of given degree and girth) to
that of a generalized cage – a smallest (k1, k2, . . . , kt; g1, g2, . . . , gs;N)-graph. We
introduce several infinite families of generalized cages and study their basic proper-
ties in the context of connected, bipartite, and vertex-transitive graphs, as well as
combinatorial configurations (in the context of multilaterals).
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1 Introduction

The main motivation for our paper comes from [4] that addressed among other topics
the question of the existence of trivalent graphs with certain prescribed and prohibited
cycle lengths. This called, for example, for the construction of a trivalent graph of girth
6 that contains an 8-cycle, no 10-cycle and a 12-cycle, and all the possible combinations
of prescribed or prohibited 6-, 8-, and 10-cycles. The authors have been able to construct
a trivalent graph for any combination of these, and became interested in characterizing
all possible combinations of cycle lengths for regular graphs. In the original version of
this paper, we were able to show that essentially any sequence of cycle lengths can be
the beginning of the cycle spectrum of a finite graph of degree k. Only after solving our
original problem, we found out that a more general version of the above problem has been
considered by Sachs in 1963 [22]. He was able to prove the following:

Theorem 1 ([22]). Corresponding to any two integers k > 3 and N > 4 and any N −
2 integers α3, . . . , αN it is possible to construct an unlimited number of mutually non-
isomorphic connected regular graphs of degree k without bridges or cut-vertices, which
contain exactly αi cycles of length i for i = 3, . . . , N and in which all the cycles of length
6 N are mutually disjoint.

In our approach, we think of the problem of finding finite graphs with prescribed
degrees and girths as a generalization of the well-known (k, g)-Cage Problem [8]:

Problem 2. Given integers k > 2 and g > 3, construct a k-regular graph of girth g of
the smallest possible order.

The smallest k-regular graphs of girth g are called (k, g)-cages. The aim of our paper is
to generalize the well-known problem of finding (k, g)-cages to that of finding generalized
cages – smallest graphs for which we prescribe and limit both the vertex degrees and cycle
lengths. Special cases of generalized cages have already been considered under several
different settings. One of these directions allowed for extending the degrees considered
and involved the study of graphs of prescribed bi-degree and girth [1, 10] or prescribed
set of degrees and girth [6, 3]. In another direction, Harary and Kovács introduced
the problem of the construction of regular graphs with prescribed even and odd girth
[13, 14], a topic of considerable interest [5, 2, 1, 16, 24]. Obviously, each change of the
original requirements required a separate proof of the existence of finite graphs with the
characteristics under consideration. From this point of view, the graphs constructed in
our proofs of Corollary 8 and Theorem 10 serve as universal examples for all of the above
generalizations of (the original) concept of cages.

The precise definition of generalized cages we use in this paper proceeds as fol-
lows. A (k1, k2, . . . , kt; g1, g2, . . . , gs;N)-graph, 2 6 k1 < k2 < · · · < kt, 3 6 g1 <
g2 < · · · < gs < N , is a graph that contains vertices of degrees k1, k2, . . . , kt but no
other degrees and cycles of lengths g1, g2, . . . , gs but no other cycles of length < N . A
(k1, k2, . . . , kt; g1, g2, . . . , gs;N)-cage is defined accordingly. We need to stress that even
though we specify the degrees required of our graphs, we do not specify how many of
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the vertices that have the required degrees (beyond the fact that we always need at least
one vertex of the particular order) must exist and we only prescribe the beginning of the
cycle spectrum for our graphs (hence, specifically, we do not specify whether a cycle of
length N must or must not exist). Occasionally, in the case when we only want to limit
the girth of the graphs up to gs, we will leave out the upper bound N , and will talk
about the (k1, . . . , kt; g1, . . . , gs; )-graphs that are simply graphs with the required degrees
k1, . . . , kt (and no others) and cycles of the required lengths g1, . . . , gs (and no others of
length 6 gs). Similarly, the notation (k1, . . . , kt; ;N) indicates graphs of girth at least N .

The problem of finding (k, g)-cages has been quite popular during the 1960’s and 70’s.
After this initial period, the remaining problems were deemed hard, and not much has been
happening with regard to cages until the introduction of algebraic and topological methods
in the 1990’s. These marked a revival of the topic with the focus on the construction of
infinite families of small graphs of given degree and girth (see, for example, the survey
paper [8]).

Following this general trend, we focus specifically on topological constructions and as a
part of our treatise we investigate a construction that is a a generalization of the truncation
construction particularly popular in topological graph theory. It is also a generalization
of a method introduced by Sachs in [22] which helped him to prove Theorem 1. Using
this construction in combination with the voltage graph construction, we prove a positive
answer to the following question for all but the 1-regular graphs:

Problem 3. Given integers 1 6 k1 < k2 < · · · < kt, 3 6 g1 < g2 < · · · < gs < N , does
there exist a (k1, k2, . . . , kt; g1, g2, . . . , gs;N)-graph?

Unlike the case of the original cages (which are all connected), several generalized cages
found in this paper turn out to be disconnected (as seen, for example, in the first figure
of our paper). In view of this, throughout the paper we are careful to stress the difference
between the results concerning connected and disconnected graphs. In the second half of
our paper, in addition to proving the general existence of (k1, k2, . . . , kt; g1, g2, . . . , gs;N)-
graphs, we obtain bounds on the order of the (k1, k2, . . . , kt; g1, g2, . . . , gs;N)-cages, refine
the problem to the classes of connected, bipartite, and vertex-transitive graphs, and in-
vestigate the connection of such graphs to incidence structures.

2 The cases k1 = 1 and k1 = 2

Before introducing our main construction, note that graphs satisfying k1 = 1 or k1 = 2
(graphs possessing vertices of degree 1 or 2) are very easy to understand (see, for example,
the next figure). Due to their simplicity, we deal with these cases first.

Theorem 4. (i) There are no (1; g1, g2, . . . , gs;N)-graphs.

(ii) A (1, 2; g1, g2, . . . , gs;N)-graph exists for every set of parameters 3 6 g1 < · · · < gs,
but there are no connected (1, 2; g1, g2, . . . , gs;N)-graphs.

(iii) If k1 = 1 and t > 1, a (1, k2, . . . , kt; g1, g2, . . . , gs;N)-graph exists if a (k2, . . . , kt;
g1, g2, . . . , gs;N)-graph exists.
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(iv) If k1 = 1 and t > 1, a connected (k1, k2, . . . , kt; g1, g2, . . . , gs;N)-graph exists if there
exists a connected (k′2, . . . , k

′
t; g1, g2, . . . , gs;N)-graph satisfying the property k′i 6 ki

for all 2 6 i 6 t and k′i < ki for at least one i.

Proof. There are no cycles in 1-regular graphs and no graph containing cycles and only ver-
tices of degrees 1 and 2 is connected. To complete the proof of item (ii), note that a disjoint
union of gi-cycles Cgi , 1 6 i 6 s, and a single edge is a disconnected (1, 2; g1, g2, . . . , gs;N)-
graph. Item (iii) can be proved by adding two vertices joined by a single edge which makes
a (k2, . . . , kt; g1, g2, . . . , gs;N)-graph into a disconnected (1, k2, . . . , kt; g1, g2, . . . , gs;N)-
graph. Similarly for (iv), connecting extra edges to vertices of degree k′i < ki makes
a connected (k′2, . . . , k

′
t; g1, g2, . . . , gs;N)-graph satisfying the property from the theorem

into a connected (1, k2, . . . , kt; g1, g2, . . . , gs;N)-graph.

While the order n(1, k2, . . . , kt; g1, g2, . . . , gs;N) of the smallest (1, k2, . . . , kt; g1, g2, . . .,
gs;N)-graph can be deduced from the above constructions, it is ultimately not completely
easy to determine. For example, a straightforward analysis of all possible cases shows that
the smallest (1, 2; 3; 4)-graph is simply the 3-cycle united with a single disconnected edge,
n(1, 2; 3; 4) = 5, and the smallest (1, 2, 3; 3; 4)-graph is the 3-cycle with a pendant edge
attached at one of the vertices, n(1, 2, 3; 3; 4) = 4 (see Figure 1). Somewhat surprisingly,
the generalized cage with a larger set of degrees and the same set of required girths
happens to be of a smaller order.

Figure 1: The unique (1, 2; 3; 4)- and (1, 2, 3; 3; 4)-cages.

The case when we allow for degree 2 is of a slightly different nature.

Theorem 5. (i) If k1 = 2 and t = 1, a (2; g1, g2, . . . , gs;N)-graph exists for every set of
parameters 3 6 g1 < g2 < · · · < gs and every (2; g1, g2, . . . , gs;N) graph is a disjoint
union of (at least one for each gi) cycles of lengths g1, g2, . . . , gs, combined (possibly)
with cycles of length > N .

(ii) There are no connected (2; g1, g2, . . . , gs;N)-graphs for s bigger than 1 and the (2; g1,
g2, . . . , gs;N)-cages are of order g1 +g2 + · · ·+gs, consist of disjoint unions of single
copies of gi-cycles, 1 6 i 6 s, and are the unique (2; g1, g2, . . . , gs;N)-graphs of that
order.

(iii) If k1 = 2 and t > 1, there exist connected (2, k2, . . . , kt; g1, g2, . . . , gs;N)-graphs for
any choice of the parameters 2 < k2 < · · · kt and 3 6 g1 < g2 < · · · < gs < N .

the electronic journal of combinatorics 22(1) (2015), #P1.77 4



Proof. The case t = 1 follows from the fact that all 2-regular graphs consist of disjoint
cycles.

If ki = 2m for m > 1, joining m cycles through a single vertex results in a vertex of de-
gree ki and all other vertices of degree 2. If, on the other hand, ki = 2m+1, m > 1, joining
two bouquets of m cycles through a single edge results in two vertices of degree ki and all
other vertices of degree 2. It is not hard to see that further manipulation together with
choosing the right cycle lengths can result in connected (2, k2, . . . , kt; g1, g2, . . . , gs;N)-
graphs.

Again, the order of a smallest (2, k2, . . . , kt; g1, g2, . . . , gs;N)-graph can be determined
from the above constructions but may be tricky to find. For example, n(2, 3; 3, 5; 6) = 6
as the (2, 3; 3, 5; 6)-cage is 3-cycle sharing an edge with a 5-cycle, while n(2, 3; 3, 4; 6) = 4
as the (2, 3; 3, 4; 6)-cage is the 4-cycle with a chord (see Figure 2).

Figure 2: The unique (2, 3; 3, 4; 6)- and (2, 3; 3, 5; 6)-cages.

In view of these results, we shall assume from now on that k1 > 3.

3 Generalized truncation construction

The truncation of a map is well-known construction from topological graph theory in which
one saws off the vertices of a map (an embedding of a graph into a surface) together with
small immediate neighborhoods and then attaches cycles in their place [11]. Our main
construction is a generalization of this construction.

Let G be a finite graph with the degree set {d1, d2, . . . , dt} (i.e., the degree dv of each
vertex v ∈ V (G) is equal to exactly one of the di’s). Each edge of G can be associated
with two opposing directed edges, each of which starts at other end-vertex of the edge.
Let D(G) denote the set of these oriented edges; note that |D(G)| = 2|E(G)|. While
orientable topological maps naturally come with an inherent ordering of the oriented
edges emanating from a vertex, in the case of graphs, we are free to choose this ordering
ourselves: A vertex-neighborhood labeling of G is a function ρ from the set D(G) into the
set of positive integers that orders the oriented edges adjacent to the vertices of G, i.e.,
a function that maps the oriented edges starting from a vertex v bijectively onto the set
{1, 2, . . . , dv}, for all v ∈ V (G).

We note that every vertex-neighborhood labeling of a connected graph G uniquely
determines an orientable embedding of G [11]. In that sense, the truncation of a graph G
with a vertex neighborhood labeling ρ is simply a truncation of a specific embedding of
G. The main difference between our truncation and the topological truncation, in which
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vertices are always replaced by cycles, lies in the fact that we truncate by all kinds of
graphs: Let H1, H2, . . . , Ht be a family of graphs of orders d1, d2, . . . , dt, respectively, with
the vertices of the Hi’s labeled by the numbers 1, 2, . . . , |V (Hi)| = di, for 1 6 i 6 t. The
generalized truncation of the graph G with a vertex-neighborhood labeling ρ by the family
H1, H2, . . . , Ht is the graph T (G, ρ;H1, H2, . . . , Ht) obtained from G by replacing each of
the vertices of G by one the graphs Hi according to the following rule: Let v be a vertex
of G of degree di, and let ei, 1 6 i 6 di, be the oriented edges emanating from v labeled
according to the vertex-neighborhood labeling ρ, i.e., labeled so that ρ(ei) = i. Then, v is
replaced by the graph Hi of order di by first removing the vertex v together with a part
of each of the edges ei, 1 6 i 6 di, and then attaching Hi to the oriented edges ei in such
a way so that a vertex of H labeled by i is attached to the edge ei. An example of one
such local truncation is included in Figure 3 in which a vertex of degree 4 is replaced by
a labeled 4-cycle with a chord.

1

23

4

⇒

1

23

4

⇒

1

23

4

Figure 3: Truncation of a vertex of degree 4 by a 4-cycle with a chord

The significance of the generalized truncation construction in constructing graphs with
prescribed and prohibited degrees and cycles is summarized in the following theorem.

Theorem 6. Let G be a finite (d1, d2, . . . , dt; g)-graph with vertex-neighborhood labeling
ρ. Let H1, H2, . . . , Ht be a truncation family for (G, ρ) of labeled (ki1, . . . , k

i
ti

; gi)-graphs,
1 6 i 6 t.

The generalized truncation graph G̃ = T (G, ρ;H1, H2, . . . , Ht) is a (K; g) graph of girth
not smaller than gmin = min{2g, g1, g2, . . . , gt}, and degree set K = {kji + 1 | 1 6 i 6
tj, 1 6 j 6 t}.

Moreover, if both G and the Hi’s are connected, so is G̃, and if gmin < 2g, then gmin
is the exact girth of G̃.

Proof. In G̃, color the new edges (the edges of the graphs Hi) red, and the old edges (the
original edges of G) blue. The blue edges form a 1-factor of G̃, and each vertex v of G̃ is
incident with one blue edge and kji red edges of G̃ (for some 1 6 i 6 tj, 1 6 j 6 t). Thus,
the degree set of G̃ equals K = {kji + 1 | 1 6 i 6 tj, 1 6 j 6 t}, as claimed. Furthermore,
no cycle C of G̃ has two consecutive blue edges, and we have two possibilities to consider.
If C contains no blue edges at all, it is completely red, and its vertex set must be a subset
of a copy of Hi for some 1 6 i 6 t. Thus, in this case, C is a cycle of Hi and its length
must be > gi. The other possibility is that C contains both red and blue edges. For any
2-colored cycle, if we remove the red edges, the sequence of blue edges is non-repeating
and any two adjacent blue edges (with a red path between them) must have been adjacent
in G. Thus, the blue edges constitute a walk in the original graph G that contains at least
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one cycle of G, and the red/blue cycle is of length at least 2g. The last statement of our
theorem follows from the fact that G̃ contains a red cycle of length gi for each 1 6 i 6 s.
The connectivity of G̃ in the case when both G and the Hi’s are connected is easy to
see.

Note that the above proof shows an even stronger result. Namely, in the case when
all the graphs Hi are connected, each cycle C of the graph G is ‘lifted’ into a cycle of the
graph G̃ with the length of the lifted cycle being at least twice the length of C.

4 Disconnected (k1, . . . , kt; g1, . . . , gs;N)-graphs

In this section, we solve the general question of the existence of (k1, . . . , kt; g1, . . . , gs;N)-
graphs. As stated in the introduction, we will construct such graph for every set of
parameters 2 6 k1 < k2 < · · · < kt and 3 6 g1 < g2 < · · · < gs < N . It is important
to note that if we do not require the graph to be connected, the problem is quite a bit
easier to handle. As in the case of the 2-regular graphs covered in Theorem 5, we can
compose the (k1, . . . , kt; g1, . . . , gs;N)-graph of disconnected components, each of them
being a (k; g;N)-graph, k ∈ {k1, . . . , kt}, g ∈ {g1, . . . , gs}. Our main claim thus follows
from the following theorem that is a special case of the more general Theorem 1 of Sachs.
Its proof provides us with a nice example of the use of the generalized truncation.

Theorem 7. Let k > 2 and 3 6 g < N . Then there exists a (k; g;N)-graph.

Proof. We proceed by induction on k. The case of k = 2 has been settled in Theorem 5.
The graph can be taken to be a single g-cycle.

For k = 3, let G be any (g, dN
2
e)-graph (the existence of which is guaranteed for

example by the result of [22]). Note that g is the degree of the graph while dN
2
e is its

girth. Let H be the g-cycle, and ρ be any vertex-neighborhood labeling of G. It follows
from Theorem 6 that the generalized truncation graph T (G, ρ;H) is a (3; g;N)-graph.

For the induction step, assume the existence of a (k; g;N)-graph H for some k > 2
and 3 6 g 6 N of order n. Let G be any n-regular graph of girth at least dN

2
e (guaranteed

again by [22]), and let ρ be any vertex-neighborhood labeling of G. Theorem 6 asserts
that the truncated graph T (G, ρ;H) is a (k + 1; g;N)-graph.

Corollary 8. Let 1 6 k1 < k2 < · · · < kt and 3 6 g1 < g2 < · · · < gs < N . If k1 > 2 or
t > 1, then there exists a (k1, . . . , kt; g1, . . . , gs;N)-graph.

Proof. If k1 > 2, the graph can be taken to be the disjoint union of graphs Gi,j, where Gi,j

is a (ki; gj;N)-graph whose existence is guaranteed by Theorem 6, 1 6 i 6 t, 1 6 j 6 s.
If t > 1, the result follows from Theorem 4 (iii).

The reader may find it a bit disappointing that we broke the intriguing problem of
mutually coexisting cycles into separate problems by constructing a disconnected graph.
As seen in Theorem 5, the disconnectedness of our solution may appear inherent to the
problem. This is however not the case, and the only sets of parameters that do not allow
for connected graphs are those from Theorems 4 and 5. In the next two sections we will
construct connected (k1, . . . , kt; g1, . . . , gs;N)-graphs for all other parameter sets.
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5 Voltage graph lifts

Our construction of connected (k; g1, g2, . . . , gs;N)-graphs includes the use of a lift of a
graph with a voltage assignment (see, e.g., [11]). We briefly describe this method and
prove the existence of a connected graph with properties needed for our main construction.

The base graph B is allowed to have multiple edges and multiple loops and we replace
each edge and loop of B by a pair of opposing (oriented) darts (with D(B) denoting the
set of darts of B). A voltage assignment on B is any mapping α from D(B) into a group
Γ that satisfies the condition α(e−1) = (α(e))−1 for all e ∈ D(B).

The derived regular cover (lift) of B with respect to the voltage assignment α is denoted
by Bα, and has the vertex set V (B)× Γ (written in the form ug, u ∈ V (B), g ∈ Γ). Two
vertices ug and vf are adjacent in Bα if e = (u, v) ∈ D(B) and f = g · α(e). The set of
vertices {ug | g ∈ Γ} is called the fiber of u. If C = e1, e2, . . . , e` is an oriented cycle of B,
the product f = α(e1) · α(e2) · · · · · α(e`) (in Γ) is called the net voltage of C, and a lift of
C is a cycle of length equal to the lcm(`, |f |), where |f | denotes the order of f in Γ.

A lift of B is said to be cyclic if the voltage group used is a cyclic group Zn of order
n (which we will write in the additive notation).

We are ready to prove the main theorem of our section.

Lemma 9. Let k > 2, g > 3, and B be a (k, g)-graph. Let z > 1. Then there exists a
cyclic lift Bα that contains a connected component G such that
(i) G is k-regular,

(ii) the girth of G is at least g,

(iii) no 2 vertices of G that belong to the same fiber share mutual neighbors, and

(iv) at least one fiber of G contains at least z vertices.

Proof. Let B be a k-regular graph of girth g and order n. Take m > z · n and relatively
prime to g and let u be a vertex of B that lies on a g-cycle of B. Choose a direction
for the g-cycle containing u and define a voltage assignment α from D(B) into Zm by
assigning 1 to one of each pair of opposing darts of B and −1 to the opposite dart in
such a way that the darts of the g-cycle containing u oriented along the direction chosen
for this cycle all receive the voltage 1. Let (u, g) be any lift of u in Bα, and let G be the
connected component of (u, g). Then G satisfies the conditions of our lemma.

First, each vertex of Bα is of degree k, and so must be the degree of each vertex of G.
Consider a cycle C of Bα of length `. If C contains no two vertices from the same fiber

of Bα (other than the beginning and end vertex), the projection of C into B must be a
cycle of B of length ` as well, and hence ` > g. If C does contain at least two vertices of
the same fiber, it contains a sub-path P whose end-points belong to the same fiber, but
no other two vertices do. The projection of P into B cannot be a self-reversing path as
the base graph B has no loops and no multiple edges and thus the projection is a cycle
of B, and hence ` > g again. It follows that the girth of G is at least g.

Let vf , vh ∈ V (G), and suppose that there exists a vertex wr that is a mutual neighbor
of vf and vh. Then there must exist an edge e of B that connects v and w. Suppose that
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the voltage of the dart from v to w is a (where a is either 1 or −1). Since wr is a neighbor
of vf , r = f + a. Similarly, since wr is a neighbor of vh, r = h + a. But f and h were
assumed different, and we obtain a contradiction.

Finally, it is not hard to see that the order of G is at least m (the order of the voltage
group). The argument is quite simple. Let C be the g-cycle through u whose edges have
been assigned 1’s in accordance with its direction. Then the net voltage of C is equal to
g, and the length of each lift of C in Bα is equal to g · |g| where |g| denotes the order of
g in Zm. Since m is assumed to be relatively prime to g, the order of g in Zm is m and
hence the lift of C passing through ug is a cycle of length gm. As all the vertices of C
belong to G, the order of G is greater than m > z ·n, where n is the number of fibers. By
the Pigeonhole Principle, G contains at least z vertices of at least one fiber of Bα.

6 Connected (k1, . . . , kt; g1, . . . , gs;N)-graphs

We prove the existence of a connected (k1, . . . , kt; g1, . . . , gs;N)-graph for each set of pa-
rameters satisfying the condition k1 > 3. It is once again the case that the first part of our
proof, namely the part where we prove the existence of the (k1; g1, g2, . . . , gs;N)-graphs,
can already be deduced from Theorem 1 (but we prove it differently). Graphs with varied
degrees are then obtained by extending the initial (k1; g1, g2, . . . , gs;N)-graphs.

Theorem 10. Let 2 < k1 < · · · < kt and 3 6 g1 < · · · < gs < N , and suppose that t > 1
or k1 > 3. Then there exists a connected (k1, . . . , kt; g1, . . . , gs;N)-graph.

Proof. For t = 1 and k1 = 3, letB be any connected (k′, g′)-graph with k′, g′ > max{N, 3},
and let G be the connected component of a lift of B that we constructed in Lemma 9
with z = s. Then G is of degree k′ > 3 and girth at least g′ > N . Let v1, v2, . . . , vs be the
s vertices that belong to the same fiber of B whose existence is guaranteed by Lemma 9
(iv). Then all their neighborhoods are mutually disjoint and each of the neighborhoods is
of size k′. For each of the numbers gj, 1 6 j 6 t, decrease the degree of the vertex vj to gj
(by removing the appropriate number of adjacent edges). The removal of these edges will
result in a graph H with one vertex of degree gj for each 1 6 j 6 s, and the rest of the
vertices of degrees k′−1 or k′ (depending on whether they had been a neighbor of a vertex
whose degree has been decreased and the connecting edge has been removed or not). If
ρ is any vertex-neighborhood labeling of H, for each 1 6 i 6 s, Cgi is a gi-cycle labeled
at random from {1, . . . , gi}, and Ck′−1, Ck′ are randomly labeled k′− 1 and k′-cycles, then
the generalized truncated graph T (H, ρ; Cg1 , Cg2 , . . . , Cgs , Ck′−1, Ck′) can be easily seen to
be a (3; g1, g2, . . . , gs;N)-graph. (Since k′ is taken to be greater than N , the cycles Ck′−1
and Ck′ do not have to be listed among the cycles shorter than N .)

The proof for the cases t = 1 and k1 > 3 can now be completed using the ‘usual’
recursion via inserting a (k − 1; g1, g2, . . . , gs;N)-graph of order n into any (n, g)-graph
with g > N to obtain a (k; g1, g2, . . . , gs;N)-graph.

Consider finally the case t > 1 and k1 > 3. In this case, we construct the (k1, . . . , kt;
g1, . . . , gs;N)-graphs from the above (k1; g1, g2, . . . , gs;N)-graph G by increasing the de-
grees of some of the vertices of the graph G to the desired values k2, k3, . . . , kt. Let us
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assume without loss of generality that G contains at least t−1 non-incident edges e2, . . . , et
with end-points xi, yi, 2 6 i 6 t, respectively. Let H be any connected k1-regular graph of
girth g > N+1, let e be an edge of H with end-points x and y, and let H ′ be the graph H
with the edge e (but not the vertices x, y) removed. For every i, 2 6 i 6 t, attach ki − k1
disjoint copies of H ′ to the vertices xi, yi with each of the copies attached via a pair of
edges connecting x to xi and y to yi. We claim that the resulting graph is our desired
(k1, . . . , kt; g1, . . . , gs;N)-graph: The degrees of all but the vertices x, y, xi, yi, 2 6 i 6 t,
remain unchanged (equal to k1), the degrees the vertices of x, y in each copy of H ′ equal
k1 − 1 + 1 = k1, and the degrees of the vertices xi, yi clearly equal ki, for all 2 6 i 6 t.
Thus, the resulting graph has the correct degree sequence. As G already contains cycles
of all of the lengths gi, 1 6 i 6 s, and no edges have been removed from G, the resulting
graph contains all the required cycles. It remains to show that the resulting graph does
not contain cycles of length smaller than N that are not among the required ones. As
no edges have been added between any two vertices of G, and no edges have been added
between any two vertices of H ′, if such a cycle existed, it would have to contain edges
from both G and some copy of H ′, and thus would have to contain both vertices x and y
of some copy of H ′. However, since the girth of H was taken to be greater than N + 1,
any path between x and y that consists entirely of edges in H ′ must be of length at least
N as otherwise this path together with the (removed) edge between x and y would have
given rise to a cycle of length smaller than N + 1. Thus, any cycle of the resulting graph
that contains both x and y must be longer than N , and therefore the resulting graph does
not contain cycles that contain edges from G and some copy of H ′ and are shorter than
N . This completes the proof of the theorem for this last case.

We feel obliged to note that the above proof is a simplification of our original proof.
This has been achieved using ideas submitted by one of our referees.

7 Bipartite (k1, . . . , kt; g1, . . . , gs;N)-graphs and configurations

As mentioned in the introduction, the motivation for considering bipartite graphs with
these properties comes from the study of combinatorial configurations [4].

A (vk) configuration is an incidence structure of v points and v lines satisfying the
properties that each line is incident with k points, each point is incident with k lines, and
any two distinct points are incident with at most one common line. The incidence graph
(also called a Levi graph) of a (vk) configuration is a bipartite graph with the vertices
in one bipartition set representing the points, the vertices in the other bipartition set
representing the lines, and the adjacency relation defined by the incidence relation in
the configuration. From the definition it immediately follows that a Levi graph of a (vk)
configuration is a k-regular graph of girth at least 6. Conversely, each bipartite k-regular
graph with girth at least 6 determines a pair of mutually dual (vk) configurations.

A cycle of length g (which is an even number) in the Levi graph of a configuration
C corresponds to a g

2
-lateral (or a g

2
-gon) in C. Formally, an n-lateral (or an n-gon) in a

configuration is a cyclically ordered set {p0, `0, p1, `1, . . . , pn−2, `n−2, pn−1, `n−1} of pairwise
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distinct points pi and pairwise distinct lines `i such that pi is incident to `i−1 and `i.
The question posed in [12] (though in the context of geometric configurations) and par-

tially answered in [4] asks about all possible combinations of existence and non-existence
of n-laterals in configurations. The same question (via Levi graphs) can be expressed as a
problem of existence of bipartite (k; g1, g2, . . . , gs;N)-graphs, 6 6 g1 < g2 < · · · < gs < N ,
for each set of parameters with all the gi’s even.

Theorem 11. Let 3 6 k1 < . . . < ks and 4 6 g1 < g2 < . . . < gs < N , each gi even.
Then there exists a (connected) bipartite (k1, . . . , kt; g1, g2, . . . , gs;N)-graph.

Proof. If the (k1, . . . , kt; g1, g2, . . . , gs;N)-graph constructed in the proof of Theorem 10,
is already bipartite, then we are done. Otherwise we construct its double cover – a Z2 lift
with each dart receiving the voltage 1. The lifted graph is twice the size of the original, has
only cycles of even length, and most importantly, lifts even length cycles of the original
graph into cycles of the same length, and lifts odd cycles to cycles of doubled size. Since
all the edges of the lift go between the two copies of the original graph, the double cover
of a (k1, . . . , kt; g1, g2, . . . , gs;N)-graph with all gi’s even is a bipartite graph that contains
cycles of length gi for each 1 6 i 6 s. It remains to show that the lift does not contain
cycles of ‘wrong’ length. Let C be any cycle of the lifted graph. If C contains no two
distinct vertices from the same fiber, C projects onto a base graph cycle, and hence is
of good length, as the base graph contains only cycles of good length. If C contains two
distinct vertices u, v from the same fiber, since we have no vertical edges within fibers, C
contains a non-trivial path connecting u and v. Let P be a shortest sub-path of C that
connects two vertices from the same fiber. Then P projects onto a cycle of the base graph.
As the end-points of the lift of this cycle are not the same vertex, this cycle must be of
odd length and hence of length at least N . It follows that C is also of length at least N .
Thus, the lifted graph is a (k1, . . . , kt; g1, g2, . . . , gs;N)-graph.

The following corollary of the above theorem answers the related question concerning
configurations.

Corollary 12. Let k > 3 and 3 6 n1 < n2 < · · · < ns < N . Then there exists a (vk)
configuration that contains laterals of lengths n1, n2, . . . , ns but no other laterals of length
< N .

Proof. Using Theorem 11 construct a bipartite (k; 2n1, 2n2, . . . , 2ns; 2N)-graph which is
a Levi graph of the desired configuration.

Combining the ideas from Section 5 with this Section we notice that if we want to
extend the generalized girth problem to incidence graphs of non-balanced configurations,
i.e. configurations with semi-regular bipartite Levi graphs, a special notation is needed.
In [12], there are several examples involving configurations with the symbol (vr, bk), where
vr = bk and the corresponding Levi graph has girth at least 6, has v black vertices and
b white vertices, the black vertices have degree r and the white vertices have degree
k. In our notation it is a bipartite (r, k; ; 6) graph. In order to have more precise in-
formation, we have to amend the notation. Let [k1, k2, . . . , kt; g1, g2, . . . , gs;N ] denote a
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(k1, k2, . . . , kt; g1, g2, . . . , gs;N) graph with a t-vertex coloring and the property that each
vertex of color i has degree ki. Using this notation we no longer require that the ki be
distinct (and ordered). The generalized girth problem has now a special subproblem for
[k1, k2, . . . , kt; g1, g2, . . . , gs;N ]-graphs.

8 Vertex-transitive (k; g1, g2, . . . , gs;N)-graphs

A graph G is called vertex-transitive if for any ordered pair (u, v) of vertices of G there
exists an automorphism φ of G such that φ(u) = v. As every vertex-transitive graph
must be k-regular for some k, none of the non-regular graphs constructed so far in our
paper are vertex-transitive. Thus, in this section, in the context of vertex-transitive
graphs, we will only consider (k; g1, . . . , gs;N)-graphs. In view of the vertex-transitive
constructions in [19, 15, 9], it is interesting to ask whether we may be able to construct a
vertex-transitive (k; g1, g2, . . . , gs;N)-graph for any parameter set (k; g1, g2, . . . , gs;N). To
answer this question, we present a negative result that shows that for certain parameter
sets there exist no vertex-transitive graphs.

Lemma 13. If g1 > 3 is odd, g2 = 2g1, and g1 + g2 = 3g1 < N , then there is no
vertex-transitive (3; g1, g2;N)-graph.

Proof. Due to their high level of symmetry, vertex-transitive graphs have the same cycle
structure through each vertex of the graph. Thus, if a trivalent vertex-transitive graph G
contains a g1- and a g2-cycle, each vertex of G must lie on at least one g1- and at least
one g2-cycle. Since G is trivalent, this means that there exist a g1-cycle C1 and g2-cycle
C2 of G that share at least one edge. Let P1, P2, . . . , Pr be the maximal subpaths shared
by C1 and C2 of lengths `1, `2, . . . , `r, respectively.

If r = 1, i.e., the two cycles share just one path, consider the cycle constructed from
the union of C1 and C2 with the path P1 removed. Its length is g1 + g2 − 2`1 = 3g1 − 2`1,
which is an odd number smaller than N . The only admissible odd cycle length smaller
than N is g1, and hence g1 = 3g1−2`1 or 0 = 2g1−2`1. But `1 < g1, and thus 0 < 2g1−2`1.
The assumption r = 1 leads to a contradiction.

If r > 1, consider the cycles obtained from the union of C1 and C2 after removing
the paths P1, P2, . . . , Pr. There is exactly r of them, say of lengths g1, g2, . . . , gr. Then
g1+g2+· · ·+gr+2`1+2`2+· · ·+2`r = g1+g2 = 3g1, and since each of the gi’s is either equal
to g1 or 2g1, and all the `i’s are > 1, there cannot be more than 2 such cycles and they both
have to be of length g1. This is once again impossible, as g1+g1+2`1+2`2 = 2(g1+`1+`2)
is even while 3g1 is odd.

Note that our non-existence result bears further insight into the question about the
distribution of face lengths in embeddings of Cayley graphs addressed in [23] as well
as in the constructions of vertex-transitive cages [15, 9]. It appears extremely likely
that there are many further restrictions of the above type, and the classification of all
the parameters sets (k; g1, g2, . . . , gs;N) that admit the existence of a vertex-transitive
(k; g1, g2, . . . , gs;N)-graph may prove to be very interesting (and complicated).
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9 Smallest order (k1, . . . , kt; g1, . . . , gs;N)-graphs

As mentioned in the introduction, a k-regular graph with girth g of the smallest possible
order is called a (k, g)-cage; we denote the order of a (k, g)-cage by n(k, g). Following this
terminology, we refer to a (k1, . . . , kt; g1, . . . , gs;N)-graph of the smallest possible order as
a (k1, . . . , kt; g1, . . . , gs;N)-cage and denote its order by n(k1, . . . , kt; g1, . . . , gs, N). Using
a simple computer program written in C (which checks for the presence of cycles of various
lengths in a given graph) and the graph generator geng by B. D. McKay [18], we have been
able to determine the values of n(3; g1, g2, . . . , gs;N) and n(2, 3; g1, g2, . . . , gs;N) for all
possible combinations of cycle lengths and N = 4, 5, . . . , 8. The results of our calculations
are included in Tables 1–8.

(k1, . . . , kt; g1, . . . , gs;N) order
(3; ; 4) 6
(3; 3; 4) 4

(k1, . . . , kt; g1, . . . , gs;N) order
(3; ; 5) 10
(3; 3; 5) 10
(3; 4; 5) 6
(3; 3, 4; 5) 4

Table 1: Orders of the smallest (3; g1, g2, . . . , gs; 4)-graphs (left) and (3; g1, g2, . . . , gs; 5)-
graphs (right) for all possible combinations. All of them are connected.

(k1, . . . , kt; g1, . . . , gs;N) order (k1, . . . , kt; g1, . . . , gs;N) order
(3; ; 6) 14 (3; 3, 4; 6) 4
(3; 3; 6) 12 (3; 3, 5; 6) 10
(3; 4; 6) 6 (3; 4, 5; 6) 8
(3; 5; 6) 10 (3; 3, 4, 5; 6) 6

Table 2: Orders of the smallest (3; g1, g2, . . . , gs; 6)-graphs for all possible combinations.
All these graphs are connected.

(k1, . . . , kt; g1, . . . , gs;N) order (k1, . . . , kt; g1, . . . , gs;N) order
(3; ; 7) 24 (3; 4, 5; 7) 12
(3; 3; 7) 16 (3; 4, 6; 7) 6
(3; 4; 7) 16 (3; 5, 6; 7) 10
(3; 5; 7) 18 (3; 3, 4, 5; 7) 10
(3; 6; 7) 14 (3; 3, 4, 6; 7) 8
(3; 3, 4; 7) 4 (3; 3, 5, 6; 7) 10
(3; 3, 5; 7) 20 (3; 4, 5, 6; 7) 8
(3; 3, 6; 7) 12 (3; 3, 4, 5, 6; 7) 6

Table 3: Orders of the smallest (3; g1, g2, . . . , gs; 7)-graphs for all possible combinations.
All these graphs are connected.
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(k1, . . . , kt; g1, . . . , gs;N) order (k1, . . . , kt; g1, . . . , gs;N) order
(3; ; 8) 30 (3; 3, 4, 5; 8) 10
(3; 3; 8) 18 (3; 3, 4, 6; 8) 10
(3; 4; 8) 18 (3; 3, 4, 7; 8) 14
(3; 5; 8) 20 (3; 3, 5, 6; 8) 20
(3; 6; 8) 14 (3; 3, 5, 7; 8) 20
(3; 7; 8) 24 (3; 3, 6, 7; 8) 12
(3; 3, 4; 8) 4 (3; 4, 5, 6; 8) 16
(3; 3, 5; 8) 26∗ (3; 4, 5, 7; 8) 12
(3; 3, 6; 8) 22 (3; 4, 6, 7; 8) 12
(3; 3, 7; 8) 16 (3; 5, 6, 7; 8) 12
(3; 4, 5; 8) 18 (3; 3, 4, 5, 6; 8) 6
(3; 4, 6; 8) 6 (3; 3, 4, 5, 7; 8) 14
(3; 4, 7; 8) 16 (3; 3, 4, 6, 7; 8) 8
(3; 5, 6; 8) 10 (3; 3, 5, 6, 7; 8) 10
(3; 5, 7; 8) 18 (3; 4, 5, 6, 7; 8) 8
(3; 6, 7; 8) 18 (3; 3, 4, 5, 6, 7; 8) 8

Table 4: Orders of the smallest (3; g1, g2, . . . , gs; 8)-graphs for all possible combinations.
All graphs are connected except of the smallest (3; 3, 4, 6; 8)-graph which is the union of
K4 and K3,3. In case of the smallest (3; 4, 5, 6; 8)-graph there exist both a connected and
a disconnected graph of order 16. The (3; 3, 5; 8)-graph was found by G. Exoo.

Furthermore, it is not hard to see that for all 2 6 k and 3 6 g

n(k; g; g + 1) = n(k, g),

and for all 2 6 k and 3 6 g1 < · · · < gs < N ,

n(k, g1) 6 n(k; g1, . . . , gs;N),

as the class of the (k; g1, . . . , gs;N)-graphs is a subclass of the class of the (k, g)-graphs.
The following well-known Moore bound [8] serves therefore as a lower bound for

(k1, . . . , kt; g1, . . . , gs;N) order
(2, 3; ; 4) 5
(2, 3; 3; 4) 4

(k1, . . . , kt; g1, . . . , gs;N) order
(2, 3; ; 5) 7
(2, 3; 3; 5) 6
(2, 3; 4; 5) 5
(2, 3; 3, 4; 5) 4

Table 5: Orders of the smallest (2, 3; g1, . . . , gs; 4)-graphs (left) and (2, 3; g1, . . . , gs; 5)-
graphs (right) for all possible combinations. All of them are connected.

the electronic journal of combinatorics 22(1) (2015), #P1.77 14



(k1, . . . , kt; g1, . . . , gs;N) order (k1, . . . , kt; g1, . . . , gs;N) order
(2, 3; ; 6) 8 (2, 3; 3, 4; 6) 4
(2, 3; 3; 6) 6 (2, 3; 3, 5; 6) 6
(2, 3; 4; 6) 5 (2, 3; 4, 5; 6) 6
(2, 3; 5; 6) 7 (2, 3; 3, 4, 5; 6) 5

Table 6: Orders of the smallest (2, 3; g1, . . . , gs; 6)-graphs for all possible combinations.
All these graphs are connected.

(k1, . . . , kt; g1, . . . , gs;N) order (k1, . . . , kt; g1, . . . , gs;N) order
(2, 3; ; 7) 10 (2, 3; 4, 5; 7) 6
(2, 3; 3; 7) 6 (2, 3; 4, 6; 7) 6
(2, 3; 4; 7) 5 (2, 3; 5, 6; 7) 7
(2, 3; 5; 7) 8 (2, 3; 3, 4, 5; 7) 5
(2, 3; 6; 7) 8 (2, 3; 3, 4, 6; 7) 7
(2, 3; 3, 4; 7) 4 (2, 3; 3, 5, 6; 7) 6
(2, 3; 3, 5; 7) 8 (2, 3; 4, 5, 6; 7) 7
(2, 3; 3, 6; 7) 7 (2, 3; 3, 4, 5, 6; 7) 6

Table 7: Orders of the smallest (2, 3; g1, . . . , gs; 7)-graphs for all possible combinations.
All these graphs are connected.

n(k; g1, g2, . . . , gs;N) as well.

n(k, g) >

{
1 + k + k(k − 1) + · · ·+ k(k − 1)(g−3)/2, g odd
2(1 + (k − 1) + · · ·+ (k − 1)(g−2)/2), g even

(1)

A (k, g)-graph of order equal to the Moore bound is called a Moore graph and Moore graphs
are known to exist (even though only for very special sets of parameters [8]). Thus, there
are instances of our generalized problem where the Moore bound is actually achieved.
Namely, the Moore bound is at least achieved for any set of parameters (k; g; g + 1) for
which a (k, g)-Moore graph exists.

The general situation is however quite different, and it appears likely that the ‘trivial’
cases are the only cases where the order of a generalized cage matches the order of the
corresponding cage. A specific situation supporting our argument is described in the
following lemma.

Lemma 14. Let 3 6 k, g and suppose that N > 2g. Then

n(k; g;N) >{
g(1 + (k − 2) + (k − 2)(k − 1) + · · ·+ (k − 2)(k − 1)(g−3)/2), g odd,
g(1 + (k − 2) + (k − 2)(k − 1) + · · ·+ (k − 2)(k − 1)(g−2)/2), g even.

(2)

Proof. Let k, g and N be as above and suppose first that g is odd. By definition, any
(k; g;N)-graph G contains at least one g-cycle. Observe that no two g-cycles in such
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(k1, . . . , kt; g1, . . . , gs;N) order (k1, . . . , kt; g1, . . . , gs;N) order
(2, 3; ; 8) 11 (2, 3; 3, 4, 5; 8) 5
(2, 3; 3; 8) 6 (2, 3; 3, 4, 6; 8) 9
(2, 3; 4; 8) 5 (2, 3; 3, 4, 7; 8) 8
(2, 3; 5; 8) 8 (2, 3; 3, 5, 6; 8) 6
(2, 3; 6; 8) 8 (2, 3; 3, 5, 7; 8) 10
(2, 3; 7; 8) 10 (2, 3; 3, 6, 7; 8) 7
(2, 3; 3, 4; 8) 4 (2, 3; 4, 5, 6; 8) 9
(2, 3; 3, 5; 8) 8 (2, 3; 4, 5, 7; 8) 7
(2, 3; 3, 6; 8) 9 (2, 3; 4, 6, 7; 8) 9
(2, 3; 3, 7; 8) 8 (2, 3; 5, 6, 7; 8) 8
(2, 3; 4, 5; 8) 6 (2, 3; 3, 4, 5, 6; 8) 6
(2, 3; 4, 6; 8) 6 (2, 3; 3, 4, 5, 7; 8) 8
(2, 3; 4, 7; 8) 8 (2, 3; 3, 4, 6, 7; 8) 7
(2, 3; 5, 6; 8) 7 (2, 3; 3, 5, 6, 7; 8) 7
(2, 3; 5, 7; 8) 9 (2, 3; 4, 5, 6, 7; 8) 7
(2, 3; 6, 7; 8) 9 (2, 3; 3, 4, 5, 6, 7; 8) 7

Table 8: Orders of the smallest (2, 3; g1, . . . , gs; 8)-graphs for all possible combinations.
All graphs are connected. Note that in case of the smallest (2, 3; 3, 4, 6; 8)-graph there
exist both a connected and a disconnected graph of order 9.

a graph can share an edge as such an occurrence would lead to the existence of g′-
cycle of length strictly between g and N . Let C be a g-cycle of G, assume that the
vertices of C are the vertices v1, v2, . . . , vg, and consider the g(k − 2) edges incident to
the vertices vi not included in C. We claim that each vi is attached to a separate ‘tree’
of (k − 2) + (k − 2)(k − 1) + · · · + (k − 2)(k − 1)(g−3)/2 vertices (with any two trees
mutually disjoint). The argument is similar to the argument used to prove the Moore
bound. Consider the end-points of the (k − 2) edges adjacent to vi and not belonging to
C. Each of these must be adjacent to k−1 new vertices not shared with any other branch
of the tree at vi and neither with any other tree rooted at vj, j 6= i. This is due to the
fact that we cannot create shorter cycles than g and cannot even create cycles of length g
that would share a part of C. The first time an edge from a tree from vi can go to another
branch of that tree or to one of the other trees is at the distance (g − 1)/2 from vi. This
completes the proof for odd g.

The case for even g differs from the odd case in that there might exist two cycles of
length g that share at least an edge. More precisely, if g = 2m, there might exist two
g-cycles that share an m-path. If no such two g-cycles exist in G, a very similar proof to
the odd case shows the bound stated. If G contains two g-cycles sharing an m-path, trees
attached to vertices antipodal with respect to these cycles (i.e., lying on the same cycle and
of distance m) may form another m-path and thus the attached trees may share vertices.
It is not hard to see, however, that this is not possible. Namely, if there existed two distinct
vertices anywhere on these two g-cycles that were joined by an additional path of length
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m, one could always construct a cycle involving this path and parts of the original g-cycles
of length smaller than 2g but not equal to g. Thus, all the trees attached to the 3m vertices
of the two g-cycles must be disjoint in this case as well, and the number of vertices of the
graph G must be at least 3m(1 + (k− 2) + (k− 2)(k− 1) + · · ·+ (k− 2)(k− 1)(g−2)/2).

Two upper bounds follow from the proof of Corollary 8:

n(k; g1, . . . , gs;N) 6
s∑
i=1

n(k; gi;N),

n(k1, . . . , kt; g1, . . . , gs;N) 6
t∑
i=1

s∑
j=1

n(ki; gj;N),

where the second bound could clearly be improved. Both upper bounds are obtained by
considering disconnected graphs which yields another interesting aspect of the problem
of the minimal order of an (k; g1, g2, . . . , gs;N)-graph that does not occur with regard to
(k, g)-cages: the order n(k; g1, g2, . . . , gs;N) can be achieved by a disconnected union of
smaller graphs (as is the case for k = 2). The smallest such example for k = 3 is the
(3; 3, 4, 6; 8)-cage which turns out to be a union of the complete graph K4, the smallest
(3; 3, 4; 8)-graph, and the complete bipartite graph K3,3, the smallest (3; 4, 6; 8)-graph. It
has order 10 while the smallest connected (3; 3, 4, 6; 8)-graph has order 14. It is also possi-
ble that n(k; g1, g2, . . . , gs;N) is achieved by both a connected and a disconnected graph.
The smallest case for k = 3 is n(3; 4, 5, 6; 8): there exist connected and disconnected
(3; 4, 5, 6; 8)-graphs of order 16 which is the smallest value for this set of parameters. On
the other hand, there exists an infinite family of triples (gi, g

′
i;Ni), gi < g′i < Ni and k > 3,

such that
n(k; gi, g

′
i;Ni) < n(k; gi;Ni) + n(k; g′i;Ni),

and the corresponding generalized cage is connected. A somewhat disappointing example
of this situation can be obtained as follows:

n(3; 3, 4;N) = 4 < n(3; 3;N) + n(3; 4;N),

where N is assumed to be > 4. At this point, we do not have a more meaningful example
of this situation.

One of the fundamental problems when trying to determine a precise value of n(k, g)
(the order of the smallest (k, g)-graph) is that beside having to construct a graph of order
n(k, g), one also has to establish the non-existence of a smaller (k, g)-graph. Although
obviously one is to expect the same problem to occur with regard to our generalized cages,
there are certain parameter sets where establishing the non-existence of smaller graphs
of those parameters proves out to be a bit less demanding. One such example are the
sets of parameters with k = 3 and the required cycle lengths covering the whole range of
cycle lengths from the girth 3 through N −1 – the (3; 3, 4, . . . , N −1;N)-cages. These are
depicted in Figure 4 for N > 4 and it is easy to see that the graphs GN have cycles of all
the lengths 3, 4, . . . , N − 1 while being of the smallest possible orders (N for N even and
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G4 = G5 G6 = G7 GN = GN+1, N even

Figure 4: Smallest (3; 3, 4, . . . , N − 1;N)-graphs GN , N > 4.

N − 1 for N odd) – due to the fact that they must contain an N − 1 cycle. These graphs
can be thought of as in some sense opposite to the graphs considered in Lemma 14.

To conclude our paper, we point out that the above cages are not unique with re-
spect their parameters. It is easy to see that the graph depicted in Figure 5 is also a
(3; 3, 4, 5, 6, 7, 8; 9)-graph but it is not isomorphic to the graph G8 = G9.

Figure 5: Smallest (3; 3, 4, 5, 6, 7, 8; 9)-graph not isomorphic to G8 = G9.
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