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Abstract

The distinguishing index D′(G) of a graph G is the least cardinal d such that G has
an edge colouring with d colours that is only preserved by the trivial automorphism.
This is similar to the notion of the distinguishing number D(G) of a graph G, which
is defined with respect to vertex colourings.

We derive several bounds for infinite graphs, in particular, we prove the general
bound D′(G) 6 ∆(G) for an arbitrary infinite graph. Nonetheless, the distinguish-
ing index is at most two for many countable graphs, also for the infinite random
graph and for uncountable tree-like graphs.

We also investigate the concept of the motion of edges and its relationship with
the Infinite Motion Lemma.

Keywords: distinguishing index, automorphism, infinite graph, countable graph,
edge colouring, Infinite Motion Lemma

1 Introduction

Albertson and Collins [1] introduced the (vertex-)distinguishing number D(G) of a graph
G as the least cardinal d such that G has a labeling with d labels that is only preserved by
the trivial automorphism. This concept has spawned numerous papers, mostly on finite
graphs. But countable infinite graphs have also been investigated with respect to the
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distinguishing number; see [11], [12], and [13]. For graphs of higher cardinality, see [5].
The corresponding notion for endomorphisms instead of automorphisms is investigated in
[4].

In this paper, we consider edge colourings of a graph G instead of vertex colourings.
An edge colouring of G is a function f : E(G) → C which labels each edge of G with
a colour from some set C. Given a graph G with an edge colouring f , we say that a
graph automorphism ϕ : V (G) → V (G) of G preserves the edge colouring f if f(xy) =
f(ϕ(x)ϕ(y)) for every edge xy ∈ E(G). The distinguishing index D′(G) of a graph G is
the least cardinal d such that G has an edge colouring with d colours that is only preserved
by the trivial automorphism. Obviously for K2 the distinguishing index is not defined
and it is the only such connected graph.

In our first two results we give sufficient conditions for a graph G to have D′(G) 6 2.
Clearly, D′(G) = 1 if and only if G is an asymmetric graph, that is, a graph of which the
automorphism group Aut(G) is the trivial group. The following observation shows why
D′(G) = 2 should be expected in most circumstances.

Proposition 1 If the graph G has an asymmetric spanning subgraph, then D′(G) 6 2.

Proof. We merely need to remark that the colouring, in which the edges of the asymmetric
spanning subgraph of G are coloured with 0 and every other edge (if any) with 1, is an
edge colouring of G which is only preserved by the identity so that D′(G) 6 2. �

Proposition 2 If the connected graph G has a vertex colouring using only two colours
such that there is no automorphism interchanging these colours and only the identity
preserves colours, then D′(G) 6 2.

Proof. Given such a vertex colouring, using, say, a and b as colours, colour all edges
between vertices with like colours 1 and all edges between vertices with different colours
2. Consider any vertex v and assume it is coloured a. Then all neighbours of v incident
with edges coloured 1 have colour a and all others have colour b. Hence, since G is
connected, one can recover the original vertex colouring of the graph up to a permutation
of the colours simply by knowing the colour of v. It follows that any automorphism
preserving edge colours either interchanges colours, and no such automorphism exists, or
preserves the colours of the vertices, and hence is the identity.

Therefore D′(G) 6 2. �

For examples in which D′(G) < D(G), one can observe that D′(Kn) = D′(Kp,p) = 2,
for any n > 6 and for any p > 4 while D(Kn+1) = D(Kn,n) = n+ 1.

For finite graphs this concept is investigated by Kalinowski and Piĺsniak in [7] and [8].
In [7], the following general upper bound was proved.

Theorem 3 If G is a finite connected graph of order n > 3, then D′(G) 6 D(G) + 1.
Moreover, if ∆ is the maximum degree of G, then D′(G) 6 ∆, unless G is a C3, C4 or C5.

The aim of this paper is to present some fundamental results for the distinguishing
index of infinite graphs. We obtain general theorems for countable and uncountable
graphs, and a relationship with the Infinite Motion Lemma.
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2 A general bound for infinite graphs

In this section we consider infinite graphs and prove an analogue of Theorem 3 for them.
In the case of vertex colourings, Imrich, Klavžar and Trofimov showed in [5] that for a
connected, infinite graph G the distinguishing number is at most the maximum degree
G. We will prove the same for the distinguishing index in a similar way. In the sequel,
we denote the sphere at x with radius k, which is the set of all vertices of G at distance
k from x, by Sx(k).

Theorem 4 Let G be a connected, infinite graph such that the degree of every vertex of
G is not greater than ∆. Then D′(G) 6 ∆.

Proof. Suppose first that ∆ is a finite cardinal. Then G is an infinite graph of bounded
finite degree. So G contains a one-way infinite ray R. Let x be the first vertex of R.
We colour all edges of R with ∆; no other edge will receive the colour ∆. Since an edge
incident with x is coloured ∆ and x is adjacent to exactly one vertex with the edge between
them coloured ∆, while any other vertex y of R is adjacent to two vertices with the edges
between y and these vertices coloured ∆, x is fixed by every automorphism of G which
preserves edge colours. Consequently, R is fixed point-wise by every such automorphism.

Let T be a breadth-first spanning tree rooted at x = x1 with a given enumeration. We
now colour edges at vertices taken in that enumerative order. First colour the edges at x
other than the one with colour ∆ by {1, . . . ,∆− 1}. Having coloured edges at x1, . . . , xn,
vertex xn+1 has one edge e already coloured previously. Colour the remaining edges with
different colours {1, . . . ,∆ − 1} (one of these will have already been used on e). Colour
all edges not in T by 1. Any colour-preserving automorphism ϕ fixes x as it is the only
vertex incident to exactly one vertex labeled ∆. Thus it also fixes all edges incident to x,
since they have different colours. Thus all vertices at the next level of tree T are fixed.
Continuing this way level by level in the tree T , we conclude that ϕ fixes all vertices and
hence is the identity.

Assume next that the degree of G is not finite. The vertex set of G is the union over k
of the vertices in the spheres Sx(k). Since the number of vertices in every such sphere is
at most ∆ and the graph is connected, we have that |V (G)| 6 ∆, hence also |E(G)| 6 ∆.
Hence it is possible to colour the edges of G using each colour at most once. �

3 Trees and tree-like graphs

Let us start with some simple examples. An infinite ray (of any cardinality) is an asym-
metric graph, so the distinguishing index of each infinite ray is one. Consider the following
colouring of the edges of the two-way infinite path P∞: colour any two incident edges and
a third edge, not incident with them, with 0 and colour all the other edges with 1. Since
this colouring is only preserved by the identity automorphism, it follows that D′(P∞) = 2.

On the other hand there exists, for any d ∈ N, a countable locally finite tree, such
that the distinguishing index is equal to d. An example of such a tree can be obtained as
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follows: consider an infinite ray x0, x1, x2, . . . with d − 1 pendant vertices added to any
one (fixed) xi, for some i > 1. With this type of example we can furthermore observe
that the distinguishing index can even be infinite: simply take d to be infinite. These
examples serve as motivation to consider trees without leaves (or, with at most one leaf)
and, more general, tree-like graphs.

Let x be a vertex of a graph G and denote the set of vertices adjacent to x by N(x).
We denote the ball at x with radius k, which is the set of all vertices of G at distance at
most k from x, by Bx(k).

By a tree-like graph we mean a connected graph G that contains a vertex, say x,
with the following property: for any vertex y 6= x there exists a vertex z such that
{y} = N(z) ∩Bx(d(x, z)− 1). Such a vertex x will be called central in the graph G.

Notice that in every vertex y of a tree-like graph there starts an infinite ray
(y0, y1, y2, . . . ) such that d(x, yi) = d(x, y) + i, y0 = y and y1 = z. In particular, a
tree T is a tree-like graph if and only if T has at most one leaf.

Theorem 5 Let G be a tree-like graph such that the degree of every vertex of G is not
greater than 2ℵ0. Then D′(G) 6 2.

Proof. Let fV be a colouring of vertices of G preserved only by the identity and defined
as in the proof of Theorem 4.2 in [5]. In particular, a central vertex x is unique such
that all its neighbours have colour 0. Moreover, consider a spanning subgraph F of G
with the property that x′x′′ ∈ E(F ) if and only if {x′} = N(x′′) ∩ Bx(d(x, x′′) − 1) or
{x′′} = N(x′) ∩ Bx(d(x, x′) − 1). So F is a forest with no finite component, uniquely
defined and with at most 2ℵ0 connected components Fi. The colouring fV is given in such
way that:

1. in the connected component F0 of F containing x, and the set of neighbours v of x
in F (coinciding with the set of neighbours of x in G) we have: fV (x) = 0 and fV (v) = 0;

2. in every remaining connected component Fi a unique vertex xFi
is coloured with 1

and xFi
is the only vertex of Fi for which all neighbours in Fi are coloured with 0;

3. for any distinct i 6= i′ the colouring tree Fi and tree xF ′i are not isomorphic.
Define a colouring f : E(G) → {0, 1} as follows. If an edge joins two vertices from

different spheres with center x, then it obtains the colour of its end vertex which is closer
to x. If an edge joins two vertices of the same sphere, then it is coloured with 0. In other
words,

- for every edge ab such that d(x, a) = d(x, b)− 1 we get f(ab) = fV (a) and
- for every edge ab such that d(x, a) = d(x, b) we get f(ab) = 0.
Now let ϕ be an automorphism of G preserving f . Note that x is the only vertex of

G for which all edges in the ball Bx(2) are coloured with 0. Therefore x is fixed by ϕ.
Suppose now that there exist two distinct edges ab and cd with the same colour α such
that ϕ(a) = c and ϕ(b) = d. Since ϕ preserves distances, there exist k, k′ > 2 and the
vertices a and c belong to the sphere Sx(k), and the vertices b and d belong to the sphere
Sx(k′). Assume that k 6 k′. Then the infinite ray Rb starting at vertex b (there exists
one by the definition of a tree-like graph) is mapped into an infinity ray Rd with starting
vertex d. Since the restrictions of fV to distinct connected components of F give pairwise
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non-isomorphic labeled components and by the definition of f , we obtain a contradiction
with the fact that fV is preserved by ϕ. Hence the colouring f is preserved only by the
identity. �

We can observe that for tree-like graphs, the central vertex x is characterized as the
only vertex having all its neighbours of the same colour. Thus there is no colour-reversing
automorphism, and by Proposition 2 we have D′(G) 6 2. So we can obtain another proof
the above theorem if G is denumerable.

4 The countable random graph

It is useful to remark that, given a graph G with an edge colouring f and an automorphism
ϕ which preserves edge colours, then for every vertex x of G and every colour c, the number
of edges at x with colour c is equal to the numbers of edges at ϕ(x) with colour c. Let us
call a triple G, f and ϕ for which this property holds for some colour c an edge number
preserving triple at c.

We shall now show that many countable graphs, including the Rado graph (see [9],
also known as the random graph), have distinguishing index D′(G) 6 2. In order to
do so, we say that a countable graph G has good degrees if it is possible to label the
vertices with the natural numbers N such that the degree constraint degG(n) > 2n− 1 is
satisfied by every vertex n ∈ N. Clearly, every countable graph G of which every vertex
has denumerable degree, including therefore the Rado graph, has good degrees.

Theorem 6 For every countable graph G with good degrees there is an edge colouring f
of G with colours 0 and 1 such that the number of edges of colour 0 incident to a given
vertex x is different from the number of edges of colour 0 incident to a vertex y whenever
x 6= y.

Proof. Consider any countable graph G with good degrees. Then we may assume that
the vertex set is N and that degG(n) > 2n− 1 for each n ∈ N.

Our strategy is to describe, in a recursive manner, an edge colouring of G with the
property that, for every n ∈ N, there are exactly n edges incident to a vertex n with colour
0. Consider, for any n ∈ N, the partition N(n) = B(n) ∪A(n) of the neighbourhood of a
vertex n obtained by letting x ∈ B(n) if x ∈ N(n) and x < n (the vertices before n) while
y ∈ A(n) if y ∈ N(n) and y > n (the vertices after n). Note that, since |N(n)| > 2n− 1
for each n ∈ N while |B(n)| 6 n − 1 (since there are only n − 1 vertices x satisfying
x < n), it follows that |A(n)| > n for each n ∈ N.

We are now ready to describe the colouring of the edges mentioned above, using only
the two colours 0 and 1. We describe our choices for edges incident with vertices 1 and 2
first. Identify at vertex 1 the least vertex m such that 1m ∈ E(G) and colour this edge
0; every other edge incident with vertex 1 (if any) is coloured with 1. Next we consider
vertex 2 and we distinguish two cases:
If there is an edge 12 ∈ E(G), it will already have colour 0 and we choose the smallest

the electronic journal of combinatorics 22(1) (2015), #P1.78 5



member from A(2) to colour the edge between it and 2 with 0 too; all other edges from
2 to vertices of N(2) are now coloured with 1. If, on the other hand, 12 6∈ E(G), then
the two smallest vertices m and m′ in A(2) are chosen and the edges 2m and 2m′ are
coloured 0; all other edges of N(2) are then coloured 1. Note that in both cases the two
edges incident to the vertex 2 which received colour 0 are indeed the two edges 2x and 2y
with x and y the smallest members of the set N(2).

Now suppose that, for some k > 2, all the edges incident to each of the vertices
1, 2, . . . , k have been coloured in such a way that, for each j 6 k, there are j edges that
received colour 0 and they are exactly the edges of the form jx where x ranges over the
subset of N(j) containing its smallest j members. Furthermore, suppose that all edges
of the form xj, for each j 6 k and x ∈ B(j), have been coloured with 0 or 1. In order
to proceed to edges incident to the vertex k + 1, suppose there are m vertices y with
y < k+ 1 for which the edges y(k+ 1) have already received the colour 0. Then we colour
the remaining, i.e., not yet coloured, edges incident to the vertex k+ 1 as follows: Choose
the k + 1 −m smallest members from A(k + 1) and, for each such vertex z, colour the
edge (k+ 1)z with colour 0; all other edges of A(k+ 1) are now coloured 1. Then clearly,
all the edges incident with vertex k+ 1 have been coloured; and exactly k+ 1 of them are
coloured 0.

Repeating this recursive process clearly delivers the required edge colouring of G with
the property that, for every n ∈ N, there are exactly n edges incident to vertex n with
colour 0. Hence this colouring has the properties claimed by the Theorem. �

Corollary 7 For every countable graph G with good degrees there is an edge colouring of
G in the colours 0 and 1 such that, with respect to any automorphism ϕ of G, the triple
G, f and ϕ is edge number preserving at 0.

Corollary 8 Every countable graph G with good degrees satisfies D′(G) 6 2.

Proof. Let f be colouring of the edges which is described in Theorem 6 and let ϕ be
any automorphism of G. Then we have an edge number preserving triple G, f and ϕ at
0. Hence, for any n,m ∈ N, if ϕ(n) = m, then n = m since the number of edges of colour
0 incident to n is ϕ(n) and is n. But this means that ϕ is the identity automorphism
idV (G); showing that D′(G) 6 2. �

It is interesting to note that Theorem 6 implies that a graph on the rationals has
distinguishing index equal to two whereas the distinguishing number is infinite. So D and
D′ can have an arbitrary large difference for infinite graphs as they can have for finite
graphs.

We remark that the above theorem and corollaries merely repeat the idea in the proof
of Proposition 1 since the edges with colour 0 form an asymmetric spanning subgraph.

Corollary 9 The random graph R has edge distinguishing number 2.
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Proof. It has already been remarked that the graph R, being an example of a countable
graph in which every vertex is of denumerable degree, has good degrees so that D′(R) 6 2
by the previous corollary.

To complete the proof we merely need to remark that D′(R) 6= 1 since R has a
non-trivial automorphism (in fact, it has a very large automorphism group by [2]) which
necessarily preserves the colours if only one colour is used. �

We complete this section by giving an example of a denumerable graph H with V (H) =
N and with good degrees in which every vertex has finite degree. Define the edges of H
through a recursive construction as follows: Let 12 ∈ E(H). For every n > 2 we now
choose edges of the form kn with n < k as follows: If m edges of the form xn with x < n
have already been chosen (while describing the edges incident to vertices j with j < n),
then we complete the choice of edges incident to n by choosing 2n − 1 −m edges of the
form nk with k > n. This graph, which is not unique since different choices are possible,
clearly has degH(n) = 2n− 1 for each n ∈ N.

A direct approach to describe the edges for such a graph H can be obtained by taking,
for each n > 2, all edges of the form mn ∈ E(H) if m ∈ {n− 1, n+ 1, n+ 2, . . . , 3n− 2}.
It is easy to see that, indeed, each vertex n has a finite degree and that degH(n) > 2n−1.

5 The Edge-Motion Lemma

Russel and Sundaram [10] introduced the concept of motion and they proved that the
distinguishing number of a graph is small when every automorphism of G moves many
elements. Kalinowski and Piĺsniak in [8] considered the concept of the edge-motion of a
non-trivial automorphism of a graph. The motion m(ϕ) of a non-trivial automorphism
ϕ : V → V of a finite graph G = (V,E) is the number of elements it moves:

m(ϕ) = |{v ∈ V (G) |ϕ(v) 6= v}|,

and the motion of a graph G is

m(G) = min
ϕ∈Aut(G)\{id}

m(ϕ).

Let ϕ∗ : E → E be the bijection induced by ϕ : V → V . We denote by m∗(ϕ) the
edge-motion of a nontrivial automorphism ϕ : V → V of a graph G; it is the number of
edges it moves:

m∗(ϕ) = |{uv ∈ E |ϕ(u)ϕ(v) 6= uv}|,
and the edge-motion of a graph G is

m∗(G) = min
ϕ∈Aut(G)\{id}

m∗(ϕ).

For example, m(Kn) = 2 and m∗(Kn) = 2n − 4, m(C2n) = m∗(C2n) = 2n − 2,
m(P2n+1) = 2n = m∗(P2n+1), but m(P2n) = 2n = m∗(P2n) + 2.

A comparison between the graph-parameters m and m∗ can be found in [8]; the main
observation is
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Theorem 10 [8] Let G be a connected graph of order n > 3 with minimal degree δ. Then

m∗(G) >

{
1
2
(δ − 1)m(G), if δ > 3,
m(G)− 2, if δ 6 2.

There is also a upper bound for the edge motion, m∗(G) 6 ∆(G)m(G). This, together
with the Motion Lemma, gives a further explanation for why D′ is generally much less
than D.

These definitions can clearly be used verbatim to define m(G) and m∗(G) for an infinite
graph G. The following general result for finite graphs can also be found in [8].

Lemma 11 (Edge-Motion Lemma) For any finite graph G we have: if

d
m∗(G)

2 > |Aut(G)|,

then D′(G) 6 d.

Let G be an infinite graph with infinite edge-motion m∗(G). Note that

dm
∗(G)/2 = dm

∗(G) = 2m∗(G) if d > 2

in this situation. Thus we obtain the natural generalization of Theorem 11, which we
formulate as a conjecture.

Edge-Motion Conjecture. Let G be a connected, infinite graph with edge-motion
m∗(G). If the automorphism group Aut(G) of G is non-trivial and

2m∗(G) > |Aut(G)|,

then D′(G) 6 2.

Let us first consider the case where G is countable. If m∗(G) is infinite, then m∗(G) =
ℵ0 and 2m∗(G) = 2ℵ0 = c, where c denotes he cardinality of the continuum.

Furthermore, for countable graphs we have |Aut(G)| 6 ℵℵ00 = 2ℵ0 = c. This means
that the inequality 2m∗(G) > |Aut(G)| is always satisfied for countably infinite graphs with
infinite edge-motion. This motivates the following conjecture.

Infinite Edge-Motion Conjecture. Let G be a countable connected graph with
infinite edge-motion. Then the distinguishing index of G is at most two.

We now show that graphs which have countable automorphism groups and infinite
edge-motion have distinguishing index at most two. We start with a slightly more general
result. Its proof is almost verbatim the same as the analogous to proof of Theorem 6 in
[4], but we include this short proof for the sake of completeness.
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Theorem 12 Let G be a graph with infinite edge-motion whose automorphism group is
countable. Let f be a random 2-colouring of edges where all edges have been coloured
independently and assume that there is an ε > 0 such that for every edge e the probability
that it is assigned the colour c ∈ {black,white} satisfies

ε 6 Prob [f(e) = c] 6 1− ε.

Then f is almost surely distinguishing.

Proof. First, let ϕ ∈ Aut(G) be a fixed automorphism of G. Since the edge-motion
of ϕ is infinite we can find infinitely many pairs {ei, ϕ∗(ei)} of distinct edges. Clearly
the colourings of these pairs are independent and the probability that ϕ∗ preserves the
colouring in any of the pairs is bounded from above by some constant ε′ < 1. Now

Prob [ϕ∗ preserves f ] 6 Prob [∀i : f(ei) = f(ϕ∗(ei))] = 0.

Since there are only countably many automorphisms we can use σ-subadditivity of the
probability measure to conclude that

Prob [∃ϕ ∈ Aut(G) : ϕ∗ preserves f] 6
∑

ϕ∈Aut(G)

Prob [ϕ∗ preserves f ] = 0

which completes the proof. �

We will usually only use the following Corollary of Theorem 12.

Corollary 13 Let G be a graph with the infinite edge-motion whose automorphism group
is countable. Then

D′(G) 6 2.

Additionally we can remark:

Corollary 14 Let G be a infinite, locally finite, 3-connected planar graph with infinite
edge-motion. Then D′(G) 6 2.

Corollary 15 Let G be an finite, locally finite, connected graph of linear growth with
infinite edge-motion. Then D′(G) 6 2.

Proof. In both cases the graphs have a countable group of automorphisms. �

The next theorem shows that the edge-motion conjecture is true if m∗(G) = |Aut(G)|,
even if m∗(G) is not countable. The proof of this theorem is identical to the proof of
Theorem 4.4 in [3], so we omit it.

Theorem 16 Let G be a connected graph with uncountable edge-motion. Then

|Aut(G)| 6 m∗(G)

implies D′(G) = 2. �
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Corollary 17 Let G be a connected graph with uncountable edge-motion. If the general
continuum hypothesis holds, and if |Aut(G)| < 2m∗(G), then D′(G) = 2.

Proof. By the generalized continuum hypothesis 2m∗(G) is the successor of m∗(G). Hence,
the inequality 2m∗(G) > |Aut(G)| is equivalent to m∗(G) > |Aut(G)|. �
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