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Abstract

In their study of a quartic integral, Boros and Moll discovered a special class of
sequences, which is called the Boros—Moll sequences. In this paper, we consider the
concavity and convexity of the Boros-Moll sequences {d;(m)}",. We show that
for any integer m > 6, there exist two positive integers to(m) and ¢;(m) such that
di(m)+dita(m) > 2d;11(m) for i € [0,to(m)]J[t1(m), m—2] and d;(m)+d;12(m) <
2d;y1(m) fori € [to(m)+1,t1(m)—1]. When m is a square, we find to(m) = mff\/m
and t1(m) = %\/m As a corollary of our results, we show that

lim Card{z|dl(m) + di+2(m) < 2d;i41 (m), 0<1<m— 2}
1 =

m——+00 \/m 1
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1 Introduction and Main Results

The object of this paper is to study the concavity and convexity of the Boros—Moll se-
quences. Boros and Moll [4, 5, 6, 7, 8] explored a special class of Jacobi polynomials
in their study of a quartic integral. They have shown that for any a > —1 and any
nonnegative integer m,

/0 (ZL’4 + 2ax? + 1)m+1 dx = 2m+3/2(a 4 1)m+1/2 Pm(a)7 (1)

*This work was supported by the National Natural Science Foundation of China (11201188).

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P1.8 1



where

Paa) = <2m2 j+ 1> (mk— j) (2: ijj) (a+ 213(1%— D* @)

J k

Using Ramanujan’s Master Theorem, Boros and Moll [7, 18] derived the following
formula

P, (a) =272 Xk: ok (22 i Zf) (mz k) (a+ 1) (3)

which indicates that the coefficients of a’ in P,,(a) are positive for 0 < i < m. Chen,
Pang and Qu [12] gave a combinatorial proof to show that (2) is equal to (3). Let d;(m)
be defined by

Po(a) = Z d;(m)a’. (4)

The polynomials P,,(a) will be called the Boros—-Moll polynomials, and the sequences
{d;(m)}™, of the coefficients will be called the Boros—Moll sequences. It follows from (3)

and (4) that
e 010 N

The readers can find in [3] many proofs of this formula. Recall that P,,(a) can be expressed
as a hypergeometric function

2 1 1
Pm(a):2_2m(;n)2F1 (—m,m+1;§—m;a; )7 (6)

from which one sees that P,,(a) can be viewed as the Jacobi polynomial ples )(a) with
a=m+ 3 and § = —(m+ 3), where P,Sf’ﬁ)(a) is given by

P = SR (TR RSy ()

k=0

Some combinatorial properties of the Boros—Moll sequences have been established.
Boros and Moll [5] proved that the sequence {d;(m)}, is unimodal and the maximum
element appears in the middle, namely,

do(m) < dy(m) <--- < d[%] (m) > d[%]ﬂ(m) > o> dy(m). (8)

They also established the unimodality of the sequence {d;(m)}™, by taking a different
approach [6]. Amdeberhan, Dixit, Guan, Jiu and Moll [1] presented another proof of
(8). Amdeberhan, Manna and Moll [2] analyzed properties of the 2-adic valuation of an
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integer sequence and gave a combinatorial interpretation of the valuations of the integer
sequence which is related to the Boros-Moll sequences. Moll [18] conjectured that the
sequence {d;(m)}, is log-concave. Kauers and Paule [16] proved this conjecture based
on the following four recurrence relations found by using the WZ-method [20]:

m+ 1 (4m + 2i + 3) 4
; 1 — U, — T, o~ ) < < 17
di(m+1) m—i—le 1(m) + 2+ 1) di(m), 0<i<m+ (9)
(4m —2i+3)(m+i+1)
, 1) — .
dilm +1) 2(m+1)(m+1—1) di(m)
i(i+1) .
(m+1)(m—|—1—i)d2+1<m)’ Osism (10)
A2 2
di(m +2) = 41* + 8m +24m+19di(m+1)

2(m+2—i)(m+2)

(m+i+1)(4m + 3)(4dm + 5) .
_4(m+2—¢)(m+1)(m+2)di(m)’ Osism+l, (11

and for 0 <1 <m+1,
(m+2—1i)(m+i—1)d;_2(m)
(i = D)@m A Ddiy(m) +il— Ddim) =0, (12)

In fact, the recurrences (11) and (12) are also derived independently by Moll [19] by using
the WZ-method [20]. Chen and Gu [11] showed that the Boros—Moll sequences satisfy the
reverse ultra log-concavity. Chen and Xia [13] proved that the Boros—-Moll sequences sat-
isfy the ratio monotone property which implies the log-concavity and the spiral property.
They [14] also confirmed a conjecture given by Moll in [19]. By constructing an interme-
diate function, Chen and Xia [15] proved the 2-log-concavity of the Boros—Moll sequences.
Chen, Dou and Yang [10] proved two conjectures of Briandén [9] on the real-rootedness
of the polynomials @,(z) and R,(x) which are related to the Boros—Moll polynomials
P,(z). The first conjecture implies the 2-log-concavity of the Boros—-Moll sequences, and
the second conjecture implies the 3-log-concavity of the Boros—Moll sequences.

In this paper, we consider the concavity and convexity of the Boros—Moll sequences.
Let {a;}!", be a sequence of real numbers. Recall that the sequence {a;}}_, is said to be
convex (resp. concave) if

@i + Giyy > 20,41 (resp.  a; + iyo < 20411) (13)

for 0 < i < n—2. It is easy to see that for positive sequences, the log-convexity implies
the convexity and the concavity implies the log-concavity.
The main results of this paper can be stated as follows.

Theorem 1. Let m, i be integers and m > 6. We have d;(m) + diy2(m) > 2d;11(m) for
i€ [0,to(m)]U[t1(m), m—2] and d;(m)+d;12(m) < 2d;11(m) fori € [to(m)+1,t1(m)—1],
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where to(m) = %—@—2 andty(m) = —1—‘F 1 when m is a square; to(m) = [%—\/—f—Z]
or 2 — \/TF” —1] and ty(m) = [F + ‘F —1] or [F + \/T%] when m is not a square.

In order to prove Theorem 1, we establish the following two Theorems:

Theorem 2. Let m, i be integers and m > 6. We have d;(m) + diio(m) > 2d;11(m) for
zem——ii—mu +f'Lm—ﬂ.

Theorem 3. Let m, i be integers and m > 6. We have d;(m) + diy2(m) < 2d;41(m) for
i€ — £ - 1,5+ ‘F —-2].

Note that 7 — £ is an integer if and only if m is a square. Therefore, from Theorems
2 and 3, we 1mmed1ately prove Theorem 1. By Theorems 2 and 3, we can obtain the
following corollary:

Corollary 4. We have

lim card{i|d;(m) + di12(m) < 2d;+1(m), 0 < i< m—2}

m—>—00 \/m

To conclude this section, we propose an open problem. Determine the signs of the dif-

ferences d m_Jm (m)+d[%7¢2j+” (m)—2d[%7T}( m) and i oy 1]( )—I—d[%JF@H] (m)—

Qd[m+ﬂ](m) when m is not a square.
2 2

~ 1. (14)

2 Proofs of the Main Results

In this section, we present proofs of the main results. We first represent d;(m)+d; 2(m) —
2d;11(m) in terms of d;(m) and d;(m + 1).

Lemma 5. For 1 <i<m — 2, we have

where

1 1—4)(2m — 21 —

A(m i) = — D £ L JCGm 207 3) (16)
i(i+ 1)+ 2)

(8m?® — 15m — 5i — 8mi? — 6m?i — 20mi + 2m? + 12i? + &> — 9)

2i(i+1)(i +2) '

B(m,i) = (17)

Proof. 1t follows from (10) and (12) that for 1 <i<m —1,

(4m —2i+3)(m+i+1)
20(1+1)

dig1(m) = di(m) — di(m+1)  (18)

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P1.8 4



and

2m+1 (m—i)(m+1i+1)
H——Qdiﬂ(m) - i+ 1)(i+2) di(m). (19)

dira(m) =

Lemma 5 follows from (18) and (19). This completes the proof.

Now, we are ready to prove Theorem 2.
Proof of Theorem 2. 1t is a routine to verify that Theorem 2 holds for 6 < m < 9. So, we
can assume that m > 10. It is easy to check that for 1 <7 < m — 2,

Blm.i
—2(m+1)(m+1— z)% — (4m? 4+ Tm + 3 — 2i?)
i(442 = 4im + 2m?* + 6i — 6m + 1)
= > 0. 20
(2m — 2i — 3) (20)
It is easy to verify that
(442 — dim + 2m? + 6i — 6m + 1)\ 442G (m, i
L e e ) T OV OO W A LK) N
(2m — 2i — 3) (2m — 2i — 3)?
where
G(m,i) =(4m? — 16m + 1)i* — (4m> — 26m* + 30m)i
+m* —10m?® + 21m? — 9Im — 2. (22)

In Section 3, we will prove that for i € [0, % — @ —2lUl% + \/77” —1,m—2] and m > 10,

G(m,i) > 0. (23)

Combining (20), (21) and (23), we deduce that

i(432 — dim + 2m> + 6i — 6m + 1) ,
> ivam + 42 + 1. 24
(2m — 2i — 3) v ST (24)

It follows from (20) and (24) that for i € [1, 7 —¥2" —2] [ + ¥ — 1y —2] and m > 10,

B(m,i)  4m*+Tm+3 — 2i* +iv4dm + 42 + 1
- = > : . (25)
A(m, 1) 2(m+1)(m+1—1)

In order to establish the reverse ultra log-concavity of {d;(m)}",, Chen and Gu [11] gave
an upper bound of the ratio d;(m+1)/d;(m). They proved that for m > 2 and 0 < i < m,

di(m+1)<4m2+7m+3—22’2+i dm + 42 + 1 (26)
di(m) 2(m+1)(m+1—1) '
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By (25) and (26), we sce that for i € [1,2 — ¥ — JUlF +*/TF” —1,m — 2] and m > 10,

~ B(m,i) _ di(m+1)
Amyd) ~ dym)

It should be noted that A(m,i) < 0 for 1 < i < m — 1. Thus, the above inequality can
be rewritten as

(27)

A(m,i)d;(m + 1) + B(m,i)d;(m) > 0. (28)

By Lemma 5 and (28), we see that d;(m) + d;i2(m) — 2d;41(m) > 0 for m > 10 and
iel,m -V g[m 4 1 m 2.
It remains to verify that do(m) + da(m) > 2d;(m) for m > 10. In (12), let ¢ = 2, we

have

2m +1 2
Therefore,
m?+m — 2 2m? — 1

Employing (5), we deduce that

o) = N R () (31)
and
da(m) = 2 (m — 2)(277;4—(#22(4i7ri) — 2m + 3) (2777;1) (32)

By (31), (32) and the ratio monotone property of the Boros—Moll sequences established
by Chen and Xia in [13], we have

da(m) _ dm-s(m)  (m—2)(2m+1)(4m?* — 2m + 3) - 2m? — 1
dy(m) " dp_o(m) 6(m —1)(4m? 4+ 2m + 1) m2+m —2’

(33)

which implies that the left hand side of (30) is positive for m > 10. This completes the
proof.

Now we turn to prove Theorem 3.
Proof of Theorem 3. 1t is easy to check that Theorem 3 is true for 6 < m < 931 by Maple.
In the following, we assume that m > 932. It is easy to verify that

4m? 4 Tm + #5i 4 4 N B(m, 1)
2(m+1)(m+1—14)  A(m,1)
—H(m,1)

T m A )m+1—i)(i+2)2m—2i—3) (34)
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where
H(m, i) =8* — 8*m + 2i*m? + 28i* — 20i*m
+ 2im? + 27i% — 11im 4 9i — 4m + 6. (35)
S _m _ J/m m | m
We can prove that for m > 932 and i € [§ — F* — 1,2 + ¥5* — 2],
H(m, i) < 0. (36)

The proof of (36) is analogous to the proof of (23), and hence is omitted. In Section 4,
we will prove that for m > 55 and [22] +1 <i<m — 1,

di(m +1) _ 4m® +Tm + i + 4
di(m) 7 2m4+1)(m+1—14)

(37)

In view of (34), (36) and (37), we find that for i € [ — */Tﬁ -1, 5+ \/T% —2] and m > 932,

di(m +1) S 4m? 4 Tm + 25 +'4 - _B(m,@:)7 (33)
d;(m) 2(m+ 1)(m+1—14) A(m, 1)
which implies
A(m,i)d;(m + 1) + B(m,i)d;(m) < 0. (39)

This is because A(m,7) < 0 for 1 <i < m — 1. In view of Lemma 5 and (39), we deduce
that d;(m) + diza(m) — 2d;y1(m) < 0 for i € [ — \/Tm -1,%+ \/Tm — 2] and m > 932.
This completes the proof.

Proof of Corollary 4. 1t follows from Theorem 2 that

card{i|d;(m) + di;2(m) < 2d;11(m),0 <i < m —2} <1

li 4
i Jm (40)
Theorem 3 implies that
lim card{i|d;(m) + di12(m) < 2d;11(m),0 < i < m — 2} 1. (41)
m——+oo \/m
Corollary 4 follows from (40) and (41). The proof is complete.
3 Proof of (23)
In this section, we present a proof of (23).
It is a routine to verify that for m > 10,
2(4m? — 16m + 1) (% - @ - ) — (4m? — 26m? + 30m)
= —4m®? — 6m? 4+ 16m*? 4+ 35m — m/? — 4 < 0. (42)
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Also, it is easy to check that for m > 6,

2(4m? — 16m + 1) <% + ym _ ) — (4m® — 26m? + 30m)

2
=4m®? 4 2m? — 16m** + 3m + m'/? — 2 > 0. (43)
It follows from (42) and (43) that for m > 10,
m m <4m3—26m2—|—30m<@ @_1. (44)
2 2 2(dm? — 16m+1) 2 = 2

It should be noted that 4m? — 16m + 1 > 0 for m > 6. Therefore, for m > 10 and

i€ ’%_\/TR—Q]U[%jL\/TE—l,m—Q],weobtain

G(m,i) >min{G(m,%—@—2),61(771,%—1—@—1)}. (45)

It is easy to verify that for m > 10,

v/ 7 35 59
G(m, m_vm 2) =3m®? — —m? - 2 —m+2ml/2 +2>0 (46)
2 2 4 2 4
and
v/ 15 3 17
G(m, % + _2m -1)= m®? — ZmQ + §m3/2 + Zm—ml/2 —1>0. (47)

Inequality (23) follows from (45), (46) and (47). This completes the proof.

4 Proof of (37)

In this section, we provide a proof of (37).
We are ready to prove (37) by induction on m. It is easy to check that (37) holds for
m = 55. We assume that (37) is true for n > 55, i.e.,

di(n+1) _ 4n* +Tn+ 250+ 4 2n .
> N ) —|+1<i<n—1 48
di(n) = 2n+1-i)(n+1) FlThSEsT (48)

We aim to prove that (37) holds for n + 1, that is,
di(n+2) _ An+ 1 +7(n+ 1)+ 50+ 4 [2(n+1)

]—i—lgign. (49)

di(n+1) ~ 2(n+2—1)(n+2) 5
It is easy to check that
An® + Tn + i + 4 (24i)(An+5)(4n+3)(n+1i+1)
2(n+1—1i)(n+1) —2(8:2+4i3 — 8n? —4n%i — 18n — 8ni — 8 — 3i)(n + 1)

F(n,1i)
= 50
2(8n2 +4n%i 4+ 18n +8ni + 8+ 3i — 82 —43)(2+i)(n+ 1)(n+ 1 — i)’ (50)
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where F'(n,i) is given by
F(n,i) =4 — 4i 4+ 8n — 7i* — 4n*i — 3n*i* — 6ni — 44° — i* 4+ 10ni* + 8ni®.
Let f(i) and g(i) be defined by
f(i) = 8ni — 3n* — %, g(i) = 10mi — 4n® — 4i*.

For [M}—i—lgign—l,weﬁndthat

5
2 2 2 16n?
oz (2) -5 anze(F) -

(53)

In view of (51), (52) and (53), we deduce that for [222] +1<i<n—1and n > 55,

F(n,i) =f(i)i* + g(i)i + (8n + 4 — 44) — (7i* + 6ni)

1 [ 9n2
S n22 - p% — 13ni > & (% — 16n — 325) > 0.

It follows from (50) and (54) that for [242] + 1 <i<n—1and n > 55,

4n® + Tn + Z51 + 4 N (24+i)(4n+5)(dn+3)(n+i+1)
S+ 1—i)(n+1) = —2(82+ 4% — 8n® — 4n% — 18n — 8ni — 8 — 3i)(n + 1)’

By (48) and (55), we deduce that for [22£2] +1<i<n—1,

di(n+1) _ (2+4)(4n +5)(4n +3)(n +i+ 1)
di(n) 7 —2(8i2 + 4i3 — 8n2 — 4n% — 18n — 8ni — 8 — 3i)(n + 1)’

It is a routine to verify that

(n+i+1)(4n+3)(4n+5)
4n+2—i)(n+1)(n+2)
42+ 8n% +24n + 19 An+ 1) +7(n+ 1) + Hi+ 4
2n+2—1)(n+2) 2(n+2)(n+2—1)
(2+4)(An+5)(dn+3)(n+i+1)
2(8n2 + 4n2i + 18n + 8ni + 8 + 3i — 82 — 4i3)(n + 1)’

which implies that

4 4+ 8n2 +24n+19  4n+1)° +T(n+1)+ 250+ 4
2(n+2—1i)(n+2) 2(n+2)(n+2—1)
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By (57), we can rewrite (56) as follows

(n+i+1)(4n+3)(4n +5)
dn+2—1i)(n+1)(n+2)
42 4 8%+ 24n +19  Aln+ 1>+ T(n+1) + Fi+ 4
2n+2—i)(n+2) 2(n +2)(n+2— 1)

diln+1) = di(n).  (59)

It follows from (58) and (59) that for [242] + 1 <i<n—1,
—44% + 8n? 4 24n + 19d-(n ) (n+i+1)(4n+ 3)(4n + 5)
2(n+2—i)(n+2) 4n+2—10)(n+1)(n+2)
An+ 17 +7(n+1)+ 50+ 4
2(n+2—1i)(n+2)
By (11), we find that the left hand side of (60) equals d;(n + 2). Thus we have verified

the inequality (49) for [222] +1 <4 < n — 1. It is still necessary to show that (49) is
true for ¢ = n, that is,

d;(n+1). (60)

=

do(n+2) _4n+1P2+7(n+1)+25n +4

> 1
dn(n+1) 4(n +2) (61)
By (5), we get
2n + 2

dy H=2"722n+3 : 62
1) =220+ 3)( 217 (©2)

It follows from (31) and (62) that
do(n+2) _ (n+1)(4n° +18n+21) An+1°+7(n+1)+ 50 + 4 (63)

d,(n+1) 2m+2)2n+3) 7 4(n +2) ’

which yields (61). Hence the proof is complete by induction.
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