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Abstract

In their study of a quartic integral, Boros and Moll discovered a special class of
sequences, which is called the Boros–Moll sequences. In this paper, we consider the
concavity and convexity of the Boros–Moll sequences {di(m)}mi=0. We show that
for any integer m > 6, there exist two positive integers t0(m) and t1(m) such that
di(m)+di+2(m) > 2di+1(m) for i ∈ [0, t0(m)]

⋃
[t1(m),m−2] and di(m)+di+2(m) <

2di+1(m) for i ∈ [t0(m)+1, t1(m)−1]. When m is a square, we find t0(m) = m−
√
m−4
2

and t1(m) = m+
√
m−2
2 . As a corollary of our results, we show that

lim
m→+∞

card{i|di(m) + di+2(m) < 2di+1(m), 0 6 i 6 m− 2}√
m

= 1.

Keywords: Boros–Moll sequences; concavity; convexity; log-concavity; log-convexity

1 Introduction and Main Results

The object of this paper is to study the concavity and convexity of the Boros–Moll se-
quences. Boros and Moll [4, 5, 6, 7, 8] explored a special class of Jacobi polynomials
in their study of a quartic integral. They have shown that for any a > −1 and any
nonnegative integer m,∫ ∞

0

1

(x4 + 2ax2 + 1)m+1
dx =

π

2m+3/2(a+ 1)m+1/2
Pm(a), (1)
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where

Pm(a) =
∑
j, k

(
2m+ 1

2j

)(
m− j
k

)(
2k + 2j

k + j

)
(a+ 1)j(a− 1)k

23(k+j)
. (2)

Using Ramanujan’s Master Theorem, Boros and Moll [7, 18] derived the following
formula

Pm(a) = 2−2m
∑
k

2k
(

2m− 2k

m− k

)(
m+ k

k

)
(a+ 1)k, (3)

which indicates that the coefficients of ai in Pm(a) are positive for 0 6 i 6 m. Chen,
Pang and Qu [12] gave a combinatorial proof to show that (2) is equal to (3). Let di(m)
be defined by

Pm(a) =
m∑
i=0

di(m)ai. (4)

The polynomials Pm(a) will be called the Boros–Moll polynomials, and the sequences
{di(m)}mi=0 of the coefficients will be called the Boros–Moll sequences. It follows from (3)
and (4) that

di(m) = 2−2m
m∑
k=i

2k
(

2m− 2k

m− k

)(
m+ k

k

)(
k

i

)
. (5)

The readers can find in [3] many proofs of this formula. Recall that Pm(a) can be expressed
as a hypergeometric function

Pm(a) = 2−2m
(

2m

m

)
2F1

(
−m,m+ 1;

1

2
−m;

a+ 1

2

)
, (6)

from which one sees that Pm(a) can be viewed as the Jacobi polynomial P
(α,β)
m (a) with

α = m+ 1
2

and β = −(m+ 1
2
), where P

(α,β)
m (a) is given by

P (α,β)
m (a) =

m∑
k=0

(−1)m−k
(
m+ β

m− k

)(
m+ k + α + β

k

)(
1 + a

2

)k
. (7)

Some combinatorial properties of the Boros–Moll sequences have been established.
Boros and Moll [5] proved that the sequence {di(m)}mi=0 is unimodal and the maximum
element appears in the middle, namely,

d0(m) < d1(m) < · · · < d[m2 ](m) > d[m2 ]+1(m) > · · · > dm(m). (8)

They also established the unimodality of the sequence {di(m)}mi=0 by taking a different
approach [6]. Amdeberhan, Dixit, Guan, Jiu and Moll [1] presented another proof of
(8). Amdeberhan, Manna and Moll [2] analyzed properties of the 2-adic valuation of an
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integer sequence and gave a combinatorial interpretation of the valuations of the integer
sequence which is related to the Boros–Moll sequences. Moll [18] conjectured that the
sequence {di(m)}mi=0 is log-concave. Kauers and Paule [16] proved this conjecture based
on the following four recurrence relations found by using the WZ-method [20]:

di(m+ 1) =
m+ i

m+ 1
di−1(m) +

(4m+ 2i+ 3)

2(m+ 1)
di(m), 0 6 i 6 m+ 1, (9)

di(m+ 1) =
(4m− 2i+ 3)(m+ i+ 1)

2(m+ 1)(m+ 1− i)
di(m)

− i(i+ 1)

(m+ 1)(m+ 1− i)
di+1(m), 0 6 i 6 m, (10)

di(m+ 2) =
−4i2 + 8m2 + 24m+ 19

2(m+ 2− i)(m+ 2)
di(m+ 1)

− (m+ i+ 1)(4m+ 3)(4m+ 5)

4(m+ 2− i)(m+ 1)(m+ 2)
di(m), 0 6 i 6 m+ 1, (11)

and for 0 6 i 6 m+ 1,

(m+ 2− i)(m+ i− 1)di−2(m)

− (i− 1)(2m+ 1)di−1(m) + i(i− 1)di(m) = 0. (12)

In fact, the recurrences (11) and (12) are also derived independently by Moll [19] by using
the WZ-method [20]. Chen and Gu [11] showed that the Boros–Moll sequences satisfy the
reverse ultra log-concavity. Chen and Xia [13] proved that the Boros–Moll sequences sat-
isfy the ratio monotone property which implies the log-concavity and the spiral property.
They [14] also confirmed a conjecture given by Moll in [19]. By constructing an interme-
diate function, Chen and Xia [15] proved the 2-log-concavity of the Boros–Moll sequences.
Chen, Dou and Yang [10] proved two conjectures of Brändén [9] on the real-rootedness
of the polynomials Qn(x) and Rn(x) which are related to the Boros–Moll polynomials
Pn(x). The first conjecture implies the 2-log-concavity of the Boros–Moll sequences, and
the second conjecture implies the 3-log-concavity of the Boros–Moll sequences.

In this paper, we consider the concavity and convexity of the Boros–Moll sequences.
Let {ai}ni=0 be a sequence of real numbers. Recall that the sequence {ai}ni=0 is said to be
convex (resp. concave) if

ai + ai+2 > 2ai+1 (resp. ai + ai+2 6 2ai+1) (13)

for 0 6 i 6 n − 2. It is easy to see that for positive sequences, the log-convexity implies
the convexity and the concavity implies the log-concavity.

The main results of this paper can be stated as follows.

Theorem 1. Let m, i be integers and m > 6. We have di(m) + di+2(m) > 2di+1(m) for
i ∈ [0, t0(m)]

⋃
[t1(m),m−2] and di(m)+di+2(m) < 2di+1(m) for i ∈ [t0(m)+1, t1(m)−1],
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where t0(m) = m
2
−
√
m
2
−2 and t1(m) = m

2
+
√
m
2
−1 whenm is a square; t0(m) = [m

2
−
√
m
2
−2]

or [m
2
−
√
m
2
− 1] and t1(m) = [m

2
+
√
m
2
− 1] or [m

2
+
√
m
2

] when m is not a square.

In order to prove Theorem 1, we establish the following two Theorems:

Theorem 2. Let m, i be integers and m > 6. We have di(m) + di+2(m) > 2di+1(m) for

i ∈ [0, m
2
−
√
m
2
− 2]

⋃
[m
2

+
√
m
2
− 1,m− 2].

Theorem 3. Let m, i be integers and m > 6. We have di(m) + di+2(m) < 2di+1(m) for

i ∈ [m
2
−
√
m
2
− 1, m

2
+
√
m
2
− 2].

Note that m
2
−
√
m
2

is an integer if and only if m is a square. Therefore, from Theorems
2 and 3, we immediately prove Theorem 1. By Theorems 2 and 3, we can obtain the
following corollary:

Corollary 4. We have

lim
m→+∞

card{i|di(m) + di+2(m) < 2di+1(m), 0 6 i 6 m− 2}√
m

= 1. (14)

To conclude this section, we propose an open problem. Determine the signs of the dif-
ferences d

[m
2
−

√
m
2
−1](m)+d

[m
2
−

√
m
2

+1]
(m)−2d

[m
2
−

√
m
2

]
(m) and d

[m
2
+

√
m
2
−1](m)+d

[m
2
+

√
m
2

+1]
(m)−

2d
[m
2
+

√
m
2

]
(m) when m is not a square.

2 Proofs of the Main Results

In this section, we present proofs of the main results. We first represent di(m)+di+2(m)−
2di+1(m) in terms of di(m) and di(m+ 1).

Lemma 5. For 1 6 i 6 m− 2, we have

di(m) + di+2(m)− 2di+1(m) =A(m, i)di(m+ 1) +B(m, i)di(m) (15)

where

A(m, i) =− (m+ 1)(m+ 1− i)(2m− 2i− 3)

i(i+ 1)(i+ 2)
, (16)

B(m, i) =
(8m3 − 15m− 5i− 8mi2 − 6m2i− 20mi+ 2m2 + 12i2 + 8i3 − 9)

2i(i+ 1)(i+ 2)
. (17)

Proof. It follows from (10) and (12) that for 1 6 i 6 m− 1,

di+1(m) =
(4m− 2i+ 3)(m+ i+ 1)

2i(i+ 1)
di(m)− (m+ 1− i)(m+ 1)

i(i+ 1)
di(m+ 1) (18)
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and

di+2(m) =
2m+ 1

i+ 2
di+1(m)− (m− i)(m+ i+ 1)

(i+ 1)(i+ 2)
di(m). (19)

Lemma 5 follows from (18) and (19). This completes the proof.
Now, we are ready to prove Theorem 2.

Proof of Theorem 2. It is a routine to verify that Theorem 2 holds for 6 6 m 6 9. So, we
can assume that m > 10. It is easy to check that for 1 6 i 6 m− 2,

−2(m+ 1)(m+ 1− i)B(m, i)

A(m, i)
− (4m2 + 7m+ 3− 2i2)

=
i(4i2 − 4im+ 2m2 + 6i− 6m+ 1)

(2m− 2i− 3)
> 0. (20)

It is easy to verify that(
i(4i2 − 4im+ 2m2 + 6i− 6m+ 1)

(2m− 2i− 3)

)2

− i2(4m+ 4i2 + 1) =
4i2G(m, i)

(2m− 2i− 3)2
, (21)

where

G(m, i) =(4m2 − 16m+ 1)i2 − (4m3 − 26m2 + 30m)i

+m4 − 10m3 + 21m2 − 9m− 2. (22)

In Section 3, we will prove that for i ∈ [0, m
2
−
√
m
2
− 2]

⋃
[m
2

+
√
m
2
− 1,m− 2] and m > 10,

G(m, i) > 0. (23)

Combining (20), (21) and (23), we deduce that

i(4i2 − 4im+ 2m2 + 6i− 6m+ 1)

(2m− 2i− 3)
> i
√

4m+ 4i2 + 1. (24)

It follows from (20) and (24) that for i ∈ [1, m
2
−
√
m
2
−2]

⋃
[m
2

+
√
m
2
−1,m−2] and m > 10,

−B(m, i)

A(m, i)
>

4m2 + 7m+ 3− 2i2 + i
√

4m+ 4i2 + 1

2(m+ 1)(m+ 1− i)
. (25)

In order to establish the reverse ultra log-concavity of {di(m)}mi=0, Chen and Gu [11] gave
an upper bound of the ratio di(m+1)/di(m). They proved that for m > 2 and 0 6 i 6 m,

di(m+ 1)

di(m)
6

4m2 + 7m+ 3− 2i2 + i
√

4m+ 4i2 + 1

2(m+ 1)(m+ 1− i)
. (26)
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By (25) and (26), we see that for i ∈ [1, m
2
−
√
m
2
− 2]

⋃
[m
2

+
√
m
2
− 1,m− 2] and m > 10,

−B(m, i)

A(m, i)
>
di(m+ 1)

di(m)
. (27)

It should be noted that A(m, i) < 0 for 1 6 i 6 m − 1. Thus, the above inequality can
be rewritten as

A(m, i)di(m+ 1) +B(m, i)di(m) > 0. (28)

By Lemma 5 and (28), we see that di(m) + di+2(m) − 2di+1(m) > 0 for m > 10 and

i ∈ [1, m
2
−
√
m
2
− 2]

⋃
[m
2

+
√
m
2
− 1,m− 2].

It remains to verify that d0(m) + d2(m) > 2d1(m) for m > 10. In (12), let i = 2, we
have

d0(m) =
2m+ 1

m(m+ 1)
d1(m)− 2

m(m+ 1)
d2(m). (29)

Therefore,

d0(m) + d2(m)− 2d1(m) =
m2 +m− 2

m(m+ 1)
d2(m)− 2m2 − 1

m(m+ 1)
d1(m). (30)

Employing (5), we deduce that

dm−2(m) =
(m− 1)(4m2 + 2m+ 1)

2m+2(2m− 1)

(
2m

m

)
(31)

and

dm−3(m) = 2−m
(m− 2)(2m+ 1)(4m2 − 2m+ 3)

24(2m− 1)

(
2m

m

)
. (32)

By (31), (32) and the ratio monotone property of the Boros–Moll sequences established
by Chen and Xia in [13], we have

d2(m)

d1(m)
>
dm−3(m)

dm−2(m)
=

(m− 2)(2m+ 1)(4m2 − 2m+ 3)

6(m− 1)(4m2 + 2m+ 1)
>

2m2 − 1

m2 +m− 2
, (33)

which implies that the left hand side of (30) is positive for m > 10. This completes the
proof.

Now we turn to prove Theorem 3.
Proof of Theorem 3. It is easy to check that Theorem 3 is true for 6 6 m 6 931 by Maple.
In the following, we assume that m > 932. It is easy to verify that

4m2 + 7m+ m
i+2
i+ 4

2(m+ 1)(m+ 1− i)
+
B(m, i)

A(m, i)

=
−H(m, i)

2(m+ 1)(m+ 1− i)(i+ 2)(2m− 2i− 3)
, (34)
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where

H(m, i) =8i4 − 8i3m+ 2i2m2 + 28i3 − 20i2m

+ 2im2 + 27i2 − 11im+ 9i− 4m+ 6. (35)

We can prove that for m > 932 and i ∈ [m
2
−
√
m
2
− 1, m

2
+
√
m
2
− 2],

H(m, i) < 0. (36)

The proof of (36) is analogous to the proof of (23), and hence is omitted. In Section 4,
we will prove that for m > 55 and [2m

5
] + 1 6 i 6 m− 1,

di(m+ 1)

di(m)
>

4m2 + 7m+ m
i+2
i+ 4

2(m+ 1)(m+ 1− i)
. (37)

In view of (34), (36) and (37), we find that for i ∈ [m
2
−
√
m
2
−1, m

2
+
√
m
2
−2] and m > 932,

di(m+ 1)

di(m)
>

4m2 + 7m+ m
i+2
i+ 4

2(m+ 1)(m+ 1− i)
> −B(m, i)

A(m, i)
, (38)

which implies

A(m, i)di(m+ 1) +B(m, i)di(m) < 0. (39)

This is because A(m, i) < 0 for 1 6 i 6 m− 1. In view of Lemma 5 and (39), we deduce

that di(m) + di+2(m) − 2di+1(m) < 0 for i ∈ [m
2
−
√
m
2
− 1, m

2
+
√
m
2
− 2] and m > 932.

This completes the proof.
Proof of Corollary 4. It follows from Theorem 2 that

lim
m→+∞

card{i|di(m) + di+2(m) < 2di+1(m), 0 6 i 6 m− 2}√
m

6 1. (40)

Theorem 3 implies that

lim
m→+∞

card{i|di(m) + di+2(m) < 2di+1(m), 0 6 i 6 m− 2}√
m

> 1. (41)

Corollary 4 follows from (40) and (41). The proof is complete.

3 Proof of (23)

In this section, we present a proof of (23).
It is a routine to verify that for m > 10,

2(4m2 − 16m+ 1)

(
m

2
−
√
m

2
− 2

)
− (4m3 − 26m2 + 30m)

=− 4m5/2 − 6m2 + 16m3/2 + 35m−m1/2 − 4 < 0. (42)
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Also, it is easy to check that for m > 6,

2(4m2 − 16m+ 1)

(
m

2
+

√
m

2
− 1

)
− (4m3 − 26m2 + 30m)

=4m5/2 + 2m2 − 16m3/2 + 3m+m1/2 − 2 > 0. (43)

It follows from (42) and (43) that for m > 10,

m

2
−
√
m

2
− 2 <

4m3 − 26m2 + 30m

2(4m2 − 16m+ 1)
<
m

2
+

√
m

2
− 1. (44)

It should be noted that 4m2 − 16m + 1 > 0 for m > 6. Therefore, for m > 10 and
i ∈ [0, m

2
−
√
m
2
− 2]

⋃
[m
2

+
√
m
2
− 1,m− 2], we obtain

G(m, i) > min

{
G(m,

m

2
−
√
m

2
− 2), G(m,

m

2
+

√
m

2
− 1)

}
. (45)

It is easy to verify that for m > 10,

G(m,
m

2
−
√
m

2
− 2) = 3m5/2 − 7

4
m2 − 35

2
m3/2 − 59

4
m+ 2m1/2 + 2 > 0 (46)

and

G(m,
m

2
+

√
m

2
− 1) = m5/2 − 15

4
m2 +

3

2
m3/2 +

17

4
m−m1/2 − 1 > 0. (47)

Inequality (23) follows from (45), (46) and (47). This completes the proof.

4 Proof of (37)

In this section, we provide a proof of (37).
We are ready to prove (37) by induction on m. It is easy to check that (37) holds for

m = 55. We assume that (37) is true for n > 55, i.e.,

di(n+ 1)

di(n)
>

4n2 + 7n+ n
i+2
i+ 4

2(n+ 1− i)(n+ 1)
,

[
2n

5

]
+ 1 6 i 6 n− 1. (48)

We aim to prove that (37) holds for n+ 1, that is,

di(n+ 2)

di(n+ 1)
>

4(n+ 1)2 + 7(n+ 1) + n+1
i+2

i+ 4

2(n+ 2− i)(n+ 2)
,

[
2(n+ 1)

5

]
+ 1 6 i 6 n. (49)

It is easy to check that

4n2 + 7n+ n
i+2
i+ 4

2(n+ 1− i)(n+ 1)
− (2 + i)(4n+ 5)(4n+ 3)(n+ i+ 1)

−2(8i2 + 4i3 − 8n2 − 4n2i− 18n− 8ni− 8− 3i)(n+ 1)

=
F (n, i)

2(8n2 + 4n2i+ 18n+ 8ni+ 8 + 3i− 8i2 − 4i3)(2 + i)(n+ 1)(n+ 1− i)
, (50)
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where F (n, i) is given by

F (n, i) = 4− 4i+ 8n− 7i2 − 4n2i− 3n2i2 − 6ni− 4i3 − i4 + 10ni2 + 8ni3. (51)

Let f(i) and g(i) be defined by

f(i) = 8ni− 3n2 − i2, g(i) = 10ni− 4n2 − 4i2. (52)

For
[
2n+2

5

]
+ 1 6 i 6 n− 1, we find that

f(i) > f

(
2n

5

)
=
n2

25
, g(i) > g

(
2n

5

)
= −16n2

25
. (53)

In view of (51), (52) and (53), we deduce that for
[
2n+2

5

]
+ 1 6 i 6 n− 1 and n > 55,

F (n, i) =f(i)i2 + g(i)i+ (8n+ 4− 4i)− (7i2 + 6ni)

>
1

25
n2i2 − 16

25
n2i− 13ni >

ni

25

(
2n2

5
− 16n− 325

)
> 0. (54)

It follows from (50) and (54) that for
[
2n+2

5

]
+ 1 6 i 6 n− 1 and n > 55,

4n2 + 7n+ n
i+2
i+ 4

2(n+ 1− i)(n+ 1)
>

(2 + i)(4n+ 5)(4n+ 3)(n+ i+ 1)

−2(8i2 + 4i3 − 8n2 − 4n2i− 18n− 8ni− 8− 3i)(n+ 1)
. (55)

By (48) and (55), we deduce that for
[
2n+2

5

]
+ 1 6 i 6 n− 1,

di(n+ 1)

di(n)
>

(2 + i)(4n+ 5)(4n+ 3)(n+ i+ 1)

−2(8i2 + 4i3 − 8n2 − 4n2i− 18n− 8ni− 8− 3i)(n+ 1)
. (56)

It is a routine to verify that

(n+ i+ 1)(4n+ 3)(4n+ 5)

4(n+ 2− i)(n+ 1)(n+ 2)

−4i2 + 8n2 + 24n+ 19

2(n+ 2− i)(n+ 2)
−

4(n+ 1)2 + 7(n+ 1) + n+1
i+2

i+ 4

2(n+ 2)(n+ 2− i)

=
(2 + i)(4n+ 5)(4n+ 3)(n+ i+ 1)

2(8n2 + 4n2i+ 18n+ 8ni+ 8 + 3i− 8i2 − 4i3)(n+ 1)
, (57)

which implies that

−4i2 + 8n2 + 24n+ 19

2(n+ 2− i)(n+ 2)
−

4(n+ 1)2 + 7(n+ 1) + n+1
i+2

i+ 4

2(n+ 2)(n+ 2− i)
> 0. (58)
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By (57), we can rewrite (56) as follows

di(n+ 1) >

(n+ i+ 1)(4n+ 3)(4n+ 5)

4(n+ 2− i)(n+ 1)(n+ 2)

−4i2 + 8n2 + 24n+ 19

2(n+ 2− i)(n+ 2)
−

4(n+ 1)2 + 7(n+ 1) + n+1
i+2

i+ 4

2(n+ 2)(n+ 2− i)

di(n). (59)

It follows from (58) and (59) that for
[
2n+2

5

]
+ 1 6 i 6 n− 1,

−4i2 + 8n2 + 24n+ 19

2(n+ 2− i)(n+ 2)
di(n+ 1)− (n+ i+ 1)(4n+ 3)(4n+ 5)

4(n+ 2− i)(n+ 1)(n+ 2)
di(n)

>
4(n+ 1)2 + 7(n+ 1) + n+1

i+2
i+ 4

2(n+ 2− i)(n+ 2)
di(n+ 1). (60)

By (11), we find that the left hand side of (60) equals di(n + 2). Thus we have verified
the inequality (49) for

[
2n+2

5

]
+ 1 6 i 6 n − 1. It is still necessary to show that (49) is

true for i = n, that is,

dn(n+ 2)

dn(n+ 1)
>

4(n+ 1)2 + 7(n+ 1) + n+1
n+2

n+ 4

4(n+ 2)
. (61)

By (5), we get

dn(n+ 1) = 2−n−2(2n+ 3)

(
2n+ 2

n+ 1

)
. (62)

It follows from (31) and (62) that

dn(n+ 2)

dn(n+ 1)
=

(n+ 1)(4n2 + 18n+ 21)

2(n+ 2)(2n+ 3)
>

4(n+ 1)2 + 7(n+ 1) + n+1
n+2

n+ 4

4(n+ 2)
, (63)

which yields (61). Hence the proof is complete by induction.
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