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Abstract

For any graphG, letW (G) be the set of vertices inG of degrees larger than 3. We
show that for any bridgeless graph G, if W (G) is dominated by some component of
G−W (G), then F (G,λ) has no roots in (1, 2), where F (G,λ) is the flow polynomial
of G. This result generalizes the known result that F (G,λ) has no roots in (1, 2)
whenever |W (G)| 6 2. We also give some constructions to generate graphs whose
flow polynomials have no roots in (1, 2).
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1 Introduction

The graphs considered in this paper are undirected and finite, and may have loops and
parallel edges. However, the graphs should have no loops when their chromatic polynomi-
als are considered, and the graphs should have no bridges when their flow polynomials are
considered. For any graph G, let V (G), E(G), P (G, λ) and F (G, λ) be the set of vertices,
the set of edges, the chromatic polynomial and the flow polynomial of G. The roots of
P (G, λ) and F (G, λ) are called the chromatic roots and the flow roots of G respectively.

A near-triangulation is a loopless connected plane graph in which at most one face
is not bounded by a cycle of order 3. Birkhoff and Lewis [1] showed that G has no real
chromatic roots in (1, 2) for every near-triangulation G. Since P (G, λ) = λF (G∗, λ) for
any plane graph G, where G∗ is its dual, this result is equivalent to that any connected
plane graph G has no flow roots in (1, 2) under the condition |W (G)| 6 1, where W (G) is
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the set of vertices x in G with its degree larger than 3 and the degree of x in G, denoted
by dG(x) (or simply d(x)), is defined to be the sum of the number of non-loop edges in G
incident with x and twice the number of loops in G incident with x.

Jackson [5] generalized Birkhoff and Lewis’ result by showing that any bridgeless
connected graph G with |W (G)| 6 1 has no real flow roots in (1, 2), no matter whether G
is planar or non-planar. This result was further generalized by Dong [2]. For any integer
k > 0, let Ψk be the set of bridgeless connected graphs with |W (G)| 6 k and ξk be the
supremum in (1, 2] such that every graph G in Ψk has no flow roots in (1, ξk). It was
shown in [2] that ξ2 = 2. But it is also shown there that ξk < 2 for all k > 3, i.e., Ψk

contains bridgeless connected graphs with flow roots in (1, 2) for all k > 3. For example,
the graph in Figure 1 belongs to Ψ3 and has a real flow root 1.430159709 . . . which is the
only zero of λ3 − 5λ2 + 10λ− 7 in (1, 2).

y

y y
Figure 1: A graph in Φ3 having flow zeros in (1,2)

The main purpose of this paper is to find graphs in each set Ψk which have no flow
roots in (1, 2), although we are not able to determine all such graphs. For any vertex x in
G = (E, V ), let NG(x) (or simply N(x)) denote the set of vertices in G which are adjacent
to x. Thus d(x) > |N(x)|, where the equality holds if and only if no loops and no parallel
edges are incident with x. For any graph G and S ⊆ V (G), let NG(S) (or simply N(S))
be the set defined below:

NG(S) =
⋃
x∈S

(N(x) \ S). (1)

For any subgraph H of G, let NG(H) = NG(V (H)). Any subset of NG(H) is said to be
dominated by H. Recall that W (G) = {x ∈ V (G) : d(x) > 4}. Let Υ denote the family of
graphs G satisfying the condition that either |V (G)| 6 2 or W (G) is dominated by some
component of G−W (G), where G−W (G) is the subgraph of G induced by V (G)−W (G).
Note that W (G) is dominated by some component of G −W (G) if and only if W (G) is
dominated by a connected subgraph of G−W (G).

In Section 2, we introduce some known results which will be applied in Sections 3 and
4. In Section 3, we show that all bridgeless graphs in Υ have no flow roots in (1, 2). In
Section 4, we provide two constructions to generate graphs which have no flow roots in
(1, 2). Some graphs produced by these constructions do not belong to Υ.

Note that this article does not study real flow roots larger than 4. Recently, Jacobsen
and Salas [7] proved that there is a sequence of real flow roots that converges to 5 from
below and also showed that there exist real flow roots larger than 5.
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2 Preliminary results

The flow polynomial F (G, λ) of a graph G can be obtained from the following properties
of F (G, λ) (see Tutte [11]):

F (G, λ) =


1, if E = ∅;
F (G1, λ)F (G2, λ), if G = G1 ∪G2;
0, if G has a bridge;
(λ− 1)F (G− e, λ), if e is a loop;
F (G/e, λ)− F (G− e, λ), if e is not a loop nor a bridge,

(2)

where e is an edge of G, G − e and G/e 1 are the graphs obtained from G by deleting e
and contracting e respectively, and G1 ∪G2 is the disjoint union of graphs G1 and G2.

A graph G = (V,E) is said to be non-separable if it is connected, has no cut-vertex
and either G has no loops or |E| = |V | = 1, where a vertex x in G is called a cut-vertex if
G− x, the graph obtained from G by deleting x and all edges incident with x, has more
components that G has. A graph is said to be separable if it is not non-separable. So
every loopless connected graph G with |V (G)| 6 2 is non-separable, and a non-separable
graph has a bridge if and only if this graph is K2.

For any graph G, a block of G is a maximal subgraph of G with the property that it is
non-separable. So every loop is also considered as a block, and any block with more than
one vertex has no loops nor cut-vertices. Let b(G) be the number of blocks B of G with
E(B) 6= ∅. When b(G) = 1, G does not need to be non-separable as it is possible that G
is not connected. If G is connected, then b(G) = 1 if and only if G is non-separable with
E(G) 6= ∅.

For a connected graph G = (V,E) without loops, it is well known (see Woodall [10])
that (−1)|V |P (G, λ) > 0 for all real λ < 0 and (−1)|V |−1P (G, λ) > 0 for all real
0 < λ < 1. Woodall [10] and Whitehead and Zhao [9] independently showed that G
always has a chromatic root of multiplicity b(G) at λ = 1. Jackson [3] also proved that
(−1)|V |−b(G)+1P (G, λ) > 0 for all real 1 < λ 6 32/27, where 32/27 cannot be replaced by
any larger number. There is an analogous result for flow polynomials due to Wakelin [8].

Theorem 1 ([8]). Let G = (V,E) be a bridgeless connected graph. Then

(a) F (G, λ) is non-zero with sign (−1)|E|−|V |+1 for λ ∈ (−∞, 1);

(b) F (G, λ) has a zero of multiplicity b(G) at λ = 1;

(c) F (G, λ) is non-zero with sign (−1)|E|−|V |+b(G)−1 for λ ∈ (1, 32/27].

By (2), the following result can be easily proved by induction.

1 If u and v are two vertices of a graph H, let H/uv denote the graph obtained from H by identifying
u and v. So every edge of H is also an edge in H/uv and every edge of H joining u and v becomes a loop
in H/uv. Then G/e is the graph (G− e)/uv, where u and v are the two ends of e.
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Lemma 2. Let G be a bridgeless graph. If G1, G2, . . . , Gk are the components of G or
G1, G2, . . . , Gk are the blocks of G, then

F (G, λ) =
∏

16i6k

F (Gi, λ). (3)

The next result on the factorization of flow polynomials can be found in [5] (see [4, 6]
also). For any graph G and any two vertices u and v in G, let G + uv denote the graph
obtained by adding a new edge joining u and v.

Lemma 3 ([5]). Let G be a bridgeless connected graph, v be a vertex of G, e = u1u2 be
an edge of G, and H1 and H2 be edge-disjoint subgraphs of G such that E(H1)∪E(H2) =
E(G− e), V (H1) ∩ V (H2) = {v}, V (H1) ∪ V (H2) = V (G), u1 ∈ V (H1) and u2 ∈ V (H2),
as shown in Figure 2. Then

F (G, λ) =
F (G1, λ)F (G2, λ)

λ− 1
. (4)

where Gi = Hi + vui for i ∈ {1, 2}.

w w

w wv
u1 u1u2

e

H1 H1H2

v v

G G1

Figure 2: G− e is separable.

The following result given in [2] can be easily proved by applying the recursive expres-
sion in (2) and Lemma 3. It will be applied latter.

Lemma 4 ([2]). Let G be a non-separable graph with edge-disjoint subgraphs G1 and G2

such that V (G1)∩ V (G2) = {u, v}, V (G1)∪ V (G2) = V (G) and E(G1)∪E(G2) = E(G),
as shown in Figure 3(a). Then

F (G, λ) =
F (G1 + uv, λ)F (G2 + uv, λ)

λ− 1
+ F (G1, λ)F (G2, λ), (5)

where u and v be two vertives of G.

For any connected graph G, let

Q(G, λ) = (−1)p(G)F (G, λ) (6)

where p(G) = |E(G)|−|V (G)|+b(G)−1. So p(G) = |E(G)|−|V (G)| if G is non-separable
with E(G) 6= ∅. It is clear that F (G, λ) 6= 0 if and only if Q(G, λ) 6= 0. Theorem 1 implies
that Q(G, λ) > 0 for any bridgeless connected graph G and real number λ ∈ (1, 32/27].
Thus we have the following result.
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(a) G (b) G1 + uv

Figure 3: G is formed by G1 and G2

Corollary 5. Let G be any bridgeless graph. Then G has no flow roots in (1, 2) if and
only if Q(G, λ) > 0 for all λ ∈ (1, 2).

The following result is from Theorem 3.1 in [2]. It provides a sufficient condition for a
family S of graphs to have no flow zeros in (1, β) for some β with 1 < β 6 2. This result
will be applied in the next section to prove the main result of this paper.

Theorem 6 (Theorem 3.1, [2]). Let S be a family of bridgeless connected graphs and β
a real number in (1, 2]. Assume that there exists S ′ ⊆ S such that all the following three
conditions are satisfied:

(i) Q(G, λ) > 0 for all graphs G ∈ S ′ and all real λ ∈ (1, β);

(ii) for every separable graph G ∈ S, all blocks of G belong to S;

(iii) for every non-separable graph G ∈ S \ S ′, one of the following cases occurs:

(a) for some edge e in G, G − e has a cut-vertex u and each Gi belongs to S for
i = 1, 2, where G1 and G2 are graphs stated in Lemma 3;

(b) for some edge e in G, both G− e and G/e belong to S and both b(G− e) and
b(G/e) are odd numbers;

(c) there are subgraphs G1 and G2 of G with V (G1) ∩ V (G2) = {u, v}, V (G1) ∪
V (G2) = V (G), E(G1) ∩E(G2) = ∅ and E(G1) ∪E(G2) = E(G), as shown in
Figure 3(a), such that b(G1) + b(G2) is even, and for i = 1, 2, |E(Gi)| > 2 and
both Gi + uv and Gi belong to S, where Gi + uv is the graph obtained from Gi

by adding a new edge joining u and v; and

Then Q(G, λ) > 0 for all graphs G ∈ S and all real λ ∈ (1, β).

Note that Theorem 3.1 in [2] has a weaker condition than Theorem 6 here, as Theorem
3.1 in [2] contains case (d) for Condition (iii). However, in the application of Theorem 3.1
of [2] in this paper, one of the three cases in Condition (iii) (i.e., (a), (b) and (c)) always
occurs. Thus it is not necessary for Theorem 6 to include case (d) in Condition (iii).
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3 A family of graphs having no flow roots in (1, 2)

Recall that Υ denotes the family of graphs G satisfying the condition that either |V (G)| 6
2 or W (G) is dominated by some component of G−W (G). In this section, we will show
that every bridgeless graph in Υ has no flow roots in (1, 2), which generalizes the result
that all graphs in Ψ2 has no flow roots in (1, 2), as the result below shows that Ψ2 ⊆ Υ
and Ψk ∩Υ 6= ∅ for every k > 3.

Lemma 7. Ψ2 ⊆ Υ and Ψk ∩Υ 6= ∅ for every k > 3.

Proof. Let G ∈ Ψ2. We need only to consider the case that |V (G)| > 3. As G is connected,
if |W (G)| 6 1, then W (G) is certainly dominated by every component of G −W (G). If
|W (G)| = 2 and W (G) is not dominated by any component of W (G), then G should be
disconnected or the edge joining the two vertices of W (G) is a bridge of G, contradicting
the definition of Ψ2.

Let k > 3. Consider the graph Gk obtained from a k-cycle C with vertices v1, v2, . . . , vk
and the complete graph Kk with vertices u1, u2, . . . , uk by adding an edge joining vi and ui
for all i = 1, 2, . . . , k. If k > 4, then Gk ∈ Ψk and W (Gk) = {ui : 1 6 i 6 k} is dominated
by the cycle C. Thus Gk ∈ Υ. If k = 3, let G′3 be the graph obtained from G3 by adding
a new vertex w and new edges joining w to ui for all i = 1, 2, 3. Then G′3 ∈ Ψ3 ∩Υ.

Some properties on graphs in Υ can be proved directly from the definition of Υ. These
properties will be applied later.

Lemma 8. Assume H is a component of G−W (G) such that W (G) ⊆ N(H). Then
the following results hold.

(i) For any edge subset E0 and any vertex subset V0 in the subgraph of G induced by
W (G), both G/E0 and G− E0 − V0 belong to Υ.

(ii) For any x ∈ V \ W (G), if x /∈ V (H), then G − x ∈ Υ; otherwise, if x is not a
cut-vertex of H and N(x) ∩W (G) ⊆ NG(H − x), then G− x ∈ Υ.

(iii) For any e ∈ E with ends x and y not in W (G), if d(x) 6 2, then G/e ∈ Υ; if e is
not a bridge of H, then G− e ∈ Υ.

(iv) If e1, e2 are parallel edges, then G− e1 ∈ Υ.

(v) Every component (or block) of G belongs to Υ.

Proof. Note that if |V (G)| 6 2, all these properties hold. Thus we assume that |V (G)| >
3.

Observe that H is a connected subgraph of G/E0 and W (G/E0) is dominated by H
in G/E0. Thus G/E0 ∈ Υ. Similarly, we also have G − E0 − V0 ∈ Υ. Thus 1 holds by
definition.

Let x ∈ V \W (G). If x /∈ V (H), then W (G − x) ⊆ W (G) and H is a subgraph of a
component H ′ of G−x−W (G−x). Thus W (G−x) ⊆ NG−x(H ′), implying that G−x ∈ Υ.
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Now assume that x ∈ V (H) is not a cut-vertex of H and N(x) ∩W (G) ⊆ NG(H − x).
Thus H − x is connected and W (G) ⊆ NG(H − x). Observe that W (G− x) ⊆ W (G) and
H − x is a subgraph of some component H ′ of G − x. Hence W (G − x) ⊆ NG−x(H ′),
implying that G− x ∈ Υ. So 2 holds.

For e ∈ E with ends x and y, if x, y /∈ W (G) and d(x) 6 2, then the new vertex
obtained after contracting e has a degree less than 4 and all other vertices remain the
same degrees. Thus W (G/e) = W (G) and W (G/e) is still dominated by a component H ′

of G/e−W (G/e), where H ′ = H/e when x, y ∈ V (H) and H ′ = H otherwise. If e is not
a bridge of H, then H − e is a connected subgraph of G − e and W (G − e) = W (G) ⊆
NG(H) = NG−e(H − e). So 3 holds.

If e1 and e2 are parallel edges in G, then 1 and 3 implies that G− e1 ∈ Υ if both ends
of e1 are in W (G) or both ends are in V \W (G). If e1 has one end in W (G) only, then
H is a connected subgraph in G − e1 and W (G − e1) ⊆ W (G) ⊆ N(H), implying that
G− e1 ∈ Υ. So 4 holds.

If G0 is a component of G and V (G0)∩V (H) = ∅, then W (G0) = ∅ and so G0 ∈ Υ by
definition. If V (G0) ∩ V (H) 6= ∅, then H is a component of G0 −W (G0) = G0 −W (G)
and W (G0) = W (G) ⊆ N(H), implying that G0 ∈ Υ.

Now we assume that G is connected and separable. Let u be any cut-vertex of G and
G1 and G2 be edge-disjoint connected subgraphs of G such that V (G1)∪ V (G2) = V (G),
V (G1) ∩ V (G2) = {u} and E(G1) ∪ E(G2) = E(G). It suffices to show that Gi ∈ Υ for
both i = 1, 2. Let i = 1 or i = 2. It is obvious that Gi ∈ Υ if W (G) ∩ V (Gi − u) = ∅.
Now suppose that W (G) ∩ V (Gi − u) 6= ∅. Since W (G) ⊆ N(H) and H is connected,
W (G) ∩ V (G3−i − u) = ∅. Note that Gi can be obtained from G by removing all vertices
in V (G3−i − u). Then applying result (ii) repeatedly yields that Gi ∈ Υ.

Hence 5 holds.

Lemma 9. Let G be any graph in Υ with edge-disjoint proper subgraphs G1 and G2

such that V (G1)∩ V (G2) = {u, v}, V (G1)∪ V (G2) = V (G) and E(G1)∪E(G2) = E(G),
as shown in Figure 3(a). For i = 1, 2, if there exist u−v paths in G3−i, then Gi +uv ∈ Υ.

Proof. Suppose that there is a graph G ∈ Υ with subgraphs G1 and G2 stated in the
lemma such that G2 has a u− v path but G1 +uv /∈ Υ. We further assume that G is such
a graph with the minimum number of edges. By definition, we have |W (G1 + uv)| > 3.
So there is at least one vertex, say w, contained in W (G1 +uv)\{u, v}. As G2 has a u−v
path, we have dG(u) > dG1+uv(u) and dG(v) > dG1+uv(v). Thus w ∈ W (G1+uv) ⊆ W (G).

By definition, G −W (G) has a component H such that W (G) ⊆ N(H). Since w ∈
W (G)∩ (V (G1) \ {u, v}), we have V (H)∩ V (G1) 6= ∅. We will show that G1 + uv ∈ Υ in
two cases.
Case 1: V (H) ∩ {u, v} 6= ∅.

Assume that v ∈ V (H) in this case. As (W (G) ∩ V (G1)) \ {u} ⊆ N(V (H) ∩ V (G1))
and u is adjacent to v in G1 + uv, W (G) ∩ V (G1) is dominated by V (H) ∩ V (G1) in
G1 +uv. Since W (G1 +uv) ⊆ W (G)∩V (G1), W (G1 +uv) is dominated by V (H)∩V (G1)
in G1 + uv. Note that the subgraph of G1 + uv induced by V (H) ∩ V (G1) is connected
no matter whether u ∈ W (G). Thus G1 + uv ∈ Υ, a contradiction.
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Case 2: V (H) ∩ {u, v} = ∅.
In this case, we have V (H) ∩ V (G2) = ∅, as H is connected and V (H) ∩ V (G1) 6=

∅. Let P be a shortest u − v path in G2. So P is an induced subgraph of G2. Let
V (G2) \ V (P ) = {x1, x2, . . . , xk}. By Lemma 82, we have G − {x1, x2, . . . , xk} ∈ Υ and
P is a path in G − {x1, x2, . . . , xk}, contradicting the assumption on the minimality of
|E(G)| if k > 0. Thus k = 0. So V (G2) = V (P ). By Lemma 83, repeating contracting
|E(P )| − 1 edges in P yields that G1 + uv ∈ Υ, a contradiction again.

Thus we complete the proof.

The next result from [2] will also be applied in the proof of the main result.

Lemma 10. Let G = (V,E) be a non-separable graph with |V | > 3 and x ∈ V with
d(x) 6 3. If G − e is non-separable for every edge e incident with x, then G/e′ is also
non-separable for every edge e′ incident with x.

Now we are going to establish the main result in this section.

Theorem 11. Q(G, λ) > 0 for all bridgeless graphs G ∈ Υ and for all real λ ∈ (1, 2).

Proof. We shall apply Theorem 6 to prove this result. Let β = 2, S be the family of
bridgeless graphs in Υ and S ′ be the set of non-separable graphs G = (V,E) with |V | 6 2
and E 6= ∅, i.e., S ′ = {L} ∪ {Zj : j > 2}, where L is the graph with one vertex and one
loop and Zj is the graph with two vertices and j parallel edges joining the two vertices.
Note that F (L, λ) = λ− 1 and F (Zj, λ) = ((λ− 1)j + (−1)j(λ− 1))/λ. So it is clear that
Q(L, λ) = λ− 1 > 0 and

Q(Zj, λ) = (−1)j−2
(λ− 1)j + (−1)j(λ− 1)

λ
=

(λ− 1)(1− (1− λ)j−1)

λ
> 0 (7)

for every λ ∈ (1, 2). Lemma 85 also implies that condition (ii) in Theorem 6 is satisfied.
We need only to show that condition (iii) in Theorem 6 is also satisfied.

Suppose that there exists a non-separable graph G in S \ S ′ which does not satisfy
condition (iii) in Theorem 6. Thus none of conditions (a), (b), (c) of (iii) in Theorem 6
is satisfied for G. We will get a conclusion that such a graph G does not exist and so the
proof is completed by Theorem 6.

Since G ∈ S \ S ′ and G is non-separable, we have |V (G)| > 3. Let W (G) =
{x1, x2, . . . , xk}, where k = |W (G)|. By definition, G − W (G) contains a component
H such that W (G) ⊆ N(H). We now prove the following claims.
Claim 1: G− e is non-separable for every e ∈ E(G).

Suppose that G− e is separable for some edge e = u1u2 of G. Let v be any cut-vertex
of G − e, as shown in Figure 2. As condition (a) of (iii) in Theorem 6 is not satisfied,
either G1 or G2 does not belong to S, where G1 and G2 are the graphs stated in Lemma 3.
However, both G1 and G2 have no bridges and Lemma 9 implies that both graphs belong
to Υ, and so both belong to S, a contradiction. Hence Claim 1 holds.
Claim 2: For every u ∈ V (G) \W (G) (i.e., d(u) 6 3), u is not incident with parallel
edges.
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Suppose that d(u) 6 3 and u is incident with parallel edges e1 and e2. As G is non-
separable and |V (G)| > 3, we have d(u) = 3 and u is incident with an edge e which is not
parallel to e1 and e2. Thus G− e is separable, contradicting Claim 1.
Claim 3: For any edge e, if at least one end of e does not belong to W (G), then G/e is
non-separable.

Let e be any edge in G. Assume that u is one end of e with u ∈ V (G) \W (G). So
d(u) 6 3. This claim then follows directly from Claim 1 and Lemma 10.
Claim 4: H is the only component of G−W (G).

Suppose that G −W (G) has a component H1 different from H. As G is connected,
there exists an edge e with one end u ∈ V (H1) and another end v ∈ W (G). By Claims 1
and 3, both G − e and G/e are non-separable. It is also clear that both G − e and G/e
belong to Υ. So condition (b) of (iii) in Theorem 6 is satisfied, a contradiction.
Claim 5: For any z ∈ V (H), if N(z) ∩W (G) 6= ∅, then either H − z is disconnected or
N(xi) \W (G) = {z} for some xi ∈ W (G).

Suppose that this claim fails. Then N(z) ∩ W (G) 6= ∅, H − z is connected and
N(x) \W (G) 6= {z} for all x ∈ W (G).

Assume that e is an edge joining z and xj ∈ W (G). By Claim 2, e is the only edge
joining z and xj. By Claims 1 and 3, both G − e and G/e are non-separable. Since
N(x) \W (G) 6= {z} for all x ∈ W (G), every vertex in W (G) is dominated by H in the
graph G − e and so G − e ∈ Υ. Note that W (G/e) = W (G), where xj is considered as
the new vertex in G/e when G/e is produced by contracting e. Also note that H − z is
the subgraph of G/e −W (G/e). Again as N(x) \W (G) 6= {z} for all x ∈ W (G), every
vertex in W (G/e) is dominated by H − z. Since H − z is connected, we have G/e ∈ Υ.
Now we have show that both G− e and G/e are non-separable and belong to Υ, and so
both belong to S and condition (b) of (iii) in Theorem 6 is satisfied, a contradiction.
Claim 6: xi and xj are not adjacent for all i, j : 1 6 i < j 6 k.

Suppose that x1 and x2 are adjacent. There are two cases: x1 and x2 are joined by
parallel edges or a single edge.
Case 1: x1 and x2 are joined by exactly s edges, where s > 2.

Let e1, e2, . . . , es be the s parallel edges joining x1 and x2. Let G1 be the graph obtained
from G by deleting all edges e1, e2, . . . , es and G2 be the graph with V (G2) = {x1, x2} and
E(G2) = {e1, e2, . . . , es}. As G is non-separable and |V (G)| > 3, G1 is connected.

It is obvious that both G2 and G2 + x1x2 belong to S. By Lemma 9, G1 + x1x2 ∈ Υ.
It does not have bridges and so G1 +x1x2 ∈ S. By Lemma 81, G1 ∈ Υ. If G1 has a bridge
e, then as G is non-separable, x1 or x2 is a cut-vertex of G − e, contradicting Claim 1.
Thus G1 ∈ S. Now both Gi and Gi + x1x2 belong to S for i = 1, 2. Since condition (c) of
(iii) in Theorem 6 is not satisfied, b(G1) + b(G2) is odd. As b(G2) = 1, we have b(G1) > 2.
Thus x1 and x2 are contained in different blocks of G1 as shown in Figure 4, where u is a
cut-vertex of G1.

If u /∈ W (G), then d(u) = 2 or d(u) = 3. But, in both cases, G1 has a bridge e
which is incident with u, contradicting G1 ∈ S. Thus u ∈ W (G). As H is connected and
u, x1, x2 /∈ V (H), xs /∈ N(H) for some s ∈ {1, 2}, a contradiction.
Case 2: x1 and x2 are joined by a single edge e.
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Figure 4: u is a cut-vertex of G1

Now suppose that e = x1x2 is a simple edge. By Lemma 81, both G − e and G/e
belong to Υ. It is clear that G/e has no bridges and so it belongs to S. By Claim 1,
G − e is non-separable, and so G − e ∈ S. As G − e is non-separable and Condition
(b) of (iii) in Theorem 6 is not satisfied, G/e is separable, i.e., {x1, x2} is a cut-set of
G. Since H is connected and {x1, x2} ⊆ W (G), H is a subgraph of some component
H ′ of G − {x1, x2}. Let G′ be a component of G − {x1, x2} different from H ′. Then
V (G′) 6⊆ N(H), contradicting the fact that V (G′) ⊆ W (G) ⊆ N(H).
Claim 7: G does not exist.

y yy

'

&

$

%

x x· · ·
x1 xk

H

z
· · · · · ·

Figure 5: N(xi) ⊆ V (H) for all i

By Claims 2 and 6, G has no parallel edges. Then Claims 4 and 6 yield that N(xi) ⊆
V (H) and |N(xi) ∩ V (H)| = d(xi) > 4 for all i = 1, 2, . . . , k, as shown in Figure 5. Thus
Claim 5 implies that each vertex z ∈ N(W (G)) ⊆ V (H) is a cut-vertex of H. Thus H
is separable. Let B be a block of H which contains only one cut-vertex of H, say y. For
each z ∈ V (B) \ {y}, as z is not a cut-vertex of H, z /∈ N(W (G)). Thus B is a block of
G, contradicting the fact that G is non-separable. Hence Claim 7 holds.

By Claim 7, we know that every non-separable graph in S \S ′ satisfies condition (iii)
in Theorem 6. Thus Q(G, λ) > 0 for all G ∈ S and all real λ ∈ (1, 2) by Theorem 6.

We end this section by applying Theorem 11 to get a result on chromatic roots of
plane graphs. Note that for any plane graph G, we have P (G, λ) = λF (G∗, λ). Thus
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every non-zero chromatic root of G is a flow root of G∗.
Let S be a set of triangles in a graph G. A triangle-path of S is a sequence of distinct

triangles T1, T2, . . . , Tm in S such that E(Ti) ∩ E(Ti+1) 6= ∅ for all 1 6 i 6 m− 1.

Corollary 12. For a connected plane graph G, if G contains a set S of triangular faces
such that every two members in S are connected by a triangle-path of S and every face
of G bounded by more than three edges is adjacent to some member of S, then G has no
chromatic roots in (1, 2).

For example, the following plane graph has no chromatic roots in (1, 2).

Figure 6: A plane graph without real chromatic root in (1, 2)

4 Construct graphs which have no flow roots in (1, 2)

In this section, we present two ways of constructing graphs with the property that they
have no flow roots in (1, 2). Some graphs constructed by these two methods do not belong
to Υ.

Theorem 13. Let G1, G2, . . . , Gk, where k > 2, be vertex-disjoint non-separable graphs
which have no flow roots in (1, 2). Assume that ui, vi are distinct vertices in Gi such that
Gi + uivi also has no flow roots in (1, 2) for all i = 1, 2, . . . , k. If G is obtained by one of
the following constructions, where k is even for (ii), then G has no flow roots in (1, 2):

(i) identifying u1, u2, . . . , uk and identifying v1, v2, . . . , vk respectively;

(ii) identifying ui and vi+1 for all i = 1, 2, . . . , k, where vk+1 = v1.

Proof. (i) For given graphs G1, G2, . . . , Gk and any integers s > 0 and 0 6 m 6 k,
let Hm,s denote the graph obtained from G1, G2, . . . , Gm by identifying u1, u2, . . . , um
and identifying v1, v2, . . . , vm respectively and adding s parallel edges e1, e2, . . . , es joining
u and v, where u (resp. v) is the vertex obtained after identifying u1, u2, . . . , uk (resp.
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Figure 7: Graph Hm,s

v1, v2, . . . , vk), as shown in Figure 7. We shall show by induction on m that Q(Hm,s, λ) > 0
for all λ ∈ (1, 2) whenever m > 0 or s > 2.

Note that
F (H0,s, λ) = ((λ− 1)s + (−1)s(λ− 1))/λ. (8)

So Q(H0,1, λ) = 0 and when s > 2,

Q(H0,s, λ) = (−1)s−2((λ−1)s+(−1)s(λ−1))/λ = (λ−1)(1+(−1)s(λ−1)s−1)/λ > 0. (9)

Now assume that m > 1 and s > 0 and assume that Q(Hj,t, λ) > 0 for all 0 6 j 6
m − 1, where t > 2 whenever j = 0. If m = 1, we may assume that s > 2, as H1,0 is G1

and H1,1 is G1 + uv. By Lemma 4, we have

F (Hm,s, λ) = F (Gm + uv, λ)F (Hm−1,s + uv, λ)/(λ− 1) + F (Gm, λ)F (Hm−1,s, λ), (10)

i.e.,

F (Hm,s, λ) = F (Gm + uv, λ)F (Hm−1,s+1, λ)/(λ− 1) + F (Gm, λ)F (Hm−1,s, λ). (11)

Since Gm, Gm + uv, Hm−1,s and Hm−1,s+1 are all non-separable, we have

Q(Hm,s, λ) = Q(Gm + uv, λ)Q(Hm−1,s+1, λ)/(λ− 1) +Q(Gm, λ)Q(Hm−1,s, λ). (12)

By the given conditions and inductive assumption, Q(Gm, λ), Q(Gm+uv, λ), Q(Hm−1,s, λ)
and Q(Hm−1,s+1, λ) are all positive for all λ ∈ (1, 2). Hence Q(Hm,s, λ) > 0 for all
λ ∈ (1, 2). Thus the graph constructed in (i), i.e., Hk,0 has no flow roots in (1, 2).
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(ii) By Lemmas 4, 2 and 3, it can be shown that

F (G, λ) =
1

(λ− 1)k−1

∏
16i6k

F (Gi + uivi, λ) +
∏

16i6k

F (Gi, λ). (13)

Note that∑
16i6k

p(Gi+uivi) =
∑
16i6k

(|E(Gi+uivi)|−|V (Gi+uivi)|) = (k+|E(G)|)−(k+|V (G)|) = p(G)

(14)
and ∑

16i6k

p(Gi) =
∑
16i6k

(|E(Gi)| − |V (Gi)|) = |E(G)| − (k + |V (G)|) = p(G)− k. (15)

Since k is even, we have

Q(G, λ) =
1

(λ− 1)k−1

∏
16i6k

Q(Gi + uivi, λ) +
∏

16i6k

Q(Gi, λ). (16)

By the given condition and Corollary 5, Q(Gi, λ), Q(Gi + uivi, λ) and Q(G/uivi, λ) are
all positive for all λ ∈ (1, 2). Then (16) yields that Q(G, λ) > 0 for all λ ∈ (1, 2).

Assume that dGi
(ui) > 2 and dGi

(vi) > 2 for all i = 1, 2, . . . , k. If W (Gi) \ {ui, vi} 6= ∅
for at least two i’s, the graphs constructed by Theorem 13 (i) do not belong to Υ. If
k > 3, then the graphs constructed by Theorem 13 (ii) do not belong to Υ. Hence some
graphs constructed by Theorem 13 do not belong to Υ but have no flow roots in (1, 2).

Note that if k is odd, the graphs obtained in Theorem 13 (ii) may have flow roots in
(1, 2). For example, the graph shown in Figure 1 has a flow root in (1, 2). However, if
each Gi satisfies the extra condition that Gi/uivi has no flow root in (1, 2) and b(Gi/uivi)
is odd, then the graphs constructed in Theorem 13 (ii) have no flow root in (1, 2).

Theorem 14. Let G1, G2, . . . , Gk be vertex-disjoint non-separable graphs which have no
flow roots in (1, 2). Assume that ui, vi are distinct vertices in Gi such that both Gi/uivi
and Gi +uivi also have no flow roots in (1, 2) and b(Gi/uivi) is odd for all i = 1, 2, . . . , k.
If G is obtained from G1, G2, . . . , Gk by identifying ui and vi+1 for all i = 1, 2, . . . , k,
where vk+1 = v1, then G has no flow roots in (1, 2).

Proof. By Theorem 13, we just need to consider the case that k > 3 is odd.
Since k is odd, from the proof of Theorem 13 (ii), we have

Q(G, λ) =
1

(λ− 1)k−1

∏
16i6k

Q(Gi + uivi, λ)−
∏

16i6k

Q(Gi, λ). (17)

Next we show that Q(Gi + uivi, λ)−Q(Gi, λ) = Q(Gi/uivi, λ) for each i. By (2),

F (Gi + uivi, λ) + F (Gi, λ) = F (Gi/uivi, λ). (18)
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Observe that

p(Gi/uivi) = |E(Gi/uivi)| − |V (Gi/uivi)|+ b(Gi/uivi)− 1

= |E(Gi)| − (|V (Gi)| − 1) + b(Gi/uivi)− 1

= p(Gi) + b(Gi/uivi) (19)

and

p(Gi + uivi) = |E(Gi + uivi)| − |V (Gi + uivi)| = |E(Gi)|+ 1− |V (Gi)| = p(Gi) + 1. (20)

Since b(Gi/uivi) is odd, we have

Q(Gi + uivi, λ)−Q(Gi, λ) = Q(Gi/uivi, λ). (21)

By the given condition and Corollary 5, Q(Gi, λ), Q(Gi + uivi, λ) and Q(Gi/uivi, λ) are
all positive for all λ ∈ (1, 2). Thus Q(Gi + uivi, λ) > Q(Gi, λ) > 0 for all λ ∈ (1, 2) and
i = 1, 2, . . . , k. Since 0 < λ − 1 < 1 for λ ∈ (1, 2), by (17), we have Q(G, λ) > 0 for all
λ ∈ (1, 2).
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