
A Deza–Frankl type theorem for set partitions

Cheng Yeaw Ku
Department of Mathematics

National University of Singapore
Singapore 117543

matkcy@nus.edu.sg

Kok Bin Wong
Institute of Mathematical Sciences

University of Malaya
50603 Kuala Lumpur, Malaysia

kbwong@um.edu.my

Submitted: Jan 21, 2015; Accepted: Mar 17, 2015; Published: Mar 30, 2015

Mathematics Subject Classifications: 05D99

Abstract

A set partition of [n] is a collection of pairwise disjoint nonempty subsets (called
blocks) of [n] whose union is [n]. Let B(n) denote the family of all set partitions of
[n]. A family A ⊆ B(n) is said to be m-intersecting if any two of its members have at
least m blocks in common. For any set partition P ∈ B(n), let τ(P ) = {x : {x} ∈ P}
denote the union of its singletons. Also, let µ(P ) = [n] − τ(P ) denote the set of
elements that do not appear as a singleton in P . Let

F2t = {P ∈ B(n) : |µ(P )| 6 t} ;

F2t+1(i0) = {P ∈ B(n) : |µ(P ) ∩ ([n] \ {i0})| 6 t} .

In this paper, we show that for r > 3, there exists a constant n0 = n0(r) depending
on r such that for all n > n0, if A ⊆ B(n) is (n− r)-intersecting, then

|A| 6

{
|F2t|, if r = 2t;

|F2t+1(1)|, if r = 2t+ 1.

Moreover, equality holds if and only if

A =

{
F2t, if r = 2t;

F2t+1(i0), if r = 2t+ 1,

for some i0 ∈ [n].

Keywords: t-intersecting family, Erdős-Ko-Rado, set partitions
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1 Introduction

Let [n] = {1, . . . , n}, and let
(
[n]
k

)
denote the family of all k-subsets of [n]. A family A of

subsets of [n] is t-intersecting if |A ∩ B| > t for all A,B ∈ A. One of the most beautiful
results in extremal combinatorics is the Erdős-Ko-Rado theorem.

Theorem 1 (Erdős, Ko, and Rado [13], Frankl [15], Wilson [46]). Suppose A ⊆
(
[n]
k

)
is

t-intersecting and n > 2k − t. Then for n > (k − t+ 1)(t+ 1), we have

|A| 6
(
n− t
k − t

)
.

Moreover, if n > (k − t + 1)(t + 1) then equality holds if and only if A = {A ∈
(
[n]
k

)
:

T ⊆ A} for some t-set T .

In the celebrated paper [1], Ahlswede and Khachatrian extended the Erdős-Ko-Rado
theorem by determining the structure of all t-intersecting set systems of maximum size for
all possible n (see also [3, 14, 16, 17, 20, 25, 31, 36, 40, 42, 43, 45] for some related results).
There have been many recent results showing that a version of the Erdős-Ko-Rado theorem
holds for combinatorial objects other than set systems. For example, an analogue of the
Erdős-Ko-Rado theorem for the Hamming scheme is proved in [41]. A complete solution
for the t-intersection problem in the Hamming space is given in [2]. Intersecting families
of permutations were initiated by Deza and Frankl in [10]. Some recent work done on this
problem and its variants can be found in [5, 7, 8, 11, 12, 19, 26, 28, 35, 37, 38, 39, 44].
The investigation of the Erdős-Ko-Rado property for graphs started in [23], and gave rise
to [4, 6, 21, 22, 24, 47]. The Erdős-Ko-Rado type results also appear in vector spaces
[9, 18], set partitions [27, 29, 30] and weak compositions [32, 33, 34].

Let Sn denote the set of permutations of [n]. A family A ⊆ Sn is said to be m-
intersecting if for any σ, δ ∈ A, there is an m-set T ⊆ [n] such that σ(j) = δ(j) for all
j ∈ T . Given any σ ∈ Sn, set µ(σ) = {j ∈ [n] : µ(j) 6= j}, i.e., µ(σ) is the set of all
elements in [n] that are not fixed by σ. Let

F r =

{
{σ ∈ Sn : |µ(σ)| 6 t} , if r = 2t;

{σ ∈ Sn : |µ(σ) ∩ ([n] \ {1})| 6 t} , if r = 2t+ 1.

It can be verified easily that F r is (n − r)-intersecting. Furthermore, Deza and Frankl
[10] proved the following theorem.

Theorem 2 (Deza-Frankl). For r > 3, there exists an n0 = n0(r) such that for all n > n0,
if A ⊆ Sn is (n− r)-intersecting, then

|A| 6 |F r|.

A set partition of [n] is a collection of pairwise disjoint nonempty subsets (called
blocks) of [n] whose union is [n]. Let B(n) denote the family of all set partitions of [n].
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It is well-known that the size of B(n) is the n-th Bell number, denoted by Bn. A block
of size one is also known as a singleton. We denote the number of all set partitions of [n]
which are singleton-free (i.e. without any singleton) by B̃n.

A family A ⊆ B(n) is said to be m-intersecting if |P ∩ Q| > m for all P,Q ∈ A, i.e.,
any two of its members have at least m blocks in common. Let I(n,m) denote the set of
all m-intersecting families of set partitions of [n].

For any set partition P ∈ B(n), let τ(P ) = {x : {x} ∈ P} denote the union of its
singletons. Also, let µ(P ) = [n]− τ(P ) denote the set of elements that do not appear as a
singleton in P . For any two partitions P , Q, we make the following simple observations:

• P and Q cannot intersect in any singleton {x} where x ∈ µ(P )4µ(Q) (here the
operation 4 denotes the symmetric difference of two sets).

• P and Q must intersect in every singleton {x} where x ∈ [n]− (µ(P ) ∪ µ(Q)).

Let

F2t = {P ∈ B(n) : |µ(P )| 6 t} ;

F2t+1(i0) = {P ∈ B(n) : |µ(P ) ∩ ([n] \ {i0})| 6 t} .

It can be readily verified that F2t ∈ I(n, n−2t) and F2t+1(i0) ∈ I(n, n−2t−1). Moreover,

|F2t| =
t∑
i=0

B̃i

(
n

i

)
, (1)

|F2t+1(i0)| =
t∑
i=0

B̃i

(
n

i

)
+ B̃t+1

(
n− 1

t

)
. (2)

In this paper, we will prove the following theorem.

Theorem 3. For r > 3, there exists an n0 = n0(r) such that for all n > n0, if A ⊆ B(n)
is (n− r)-intersecting, then

|A| 6

{
|F2t|, if r = 2t;

|F2t+1(1)|, if r = 2t+ 1.

Moreover, equality holds if and only if

A =

{
F2t, if r = 2t;

F2t+1(i0), if r = 2t+ 1,

for some i0 ∈ [n].

Note that Theorem 3 can be considered as an analogue of Theorem 2 for set partitions.
Let A0 = {{x} : x ∈ [n]} and A1 = {{x} : x ∈ [n] \ {1, 2}}∪{{1, 2}}. Then F2 = {A0}
and {A0, A1} ∈ I(n, n − 2). So, |{A0, A1}| = 2 > |F2| = 1. This explains why r > 3 is
required in Theorem 3.
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2 Splitting operation

In this section, we summarize some important results regarding the splitting operation
for intersecting family of set partitions. We refer the reader to [27] for proofs which are
omitted here.

Let i, j ∈ [n], i 6= j, and P ∈ B(n). Denote by P[i] the block of P which contains i.
We define the (i, j)-split of P to be the following set partition:

sij(P ) =

{
P \ {P[i]} ∪ {{i}, P[i] \ {i}} if j ∈ P[i],
P otherwise.

For a family A ⊆ B(n), let sij(A) = {sij(P ) : P ∈ A}. Any family A of set partitions
can be decomposed with respect to given i, j ∈ [n] as follows:

A = (A \ Aij) ∪ Aij,

where Aij = {P ∈ A : sij(P ) 6∈ A}. Define the (i, j)-splitting of A to be the family

Sij(A) = (A \ Aij) ∪ sij(Aij).

Surprisingly, it turns out that for any A ∈ I(n,m), splitting operations preserve the
size and the intersecting property.

Lemma 4 ([27], Proposition 3.2). Let A ∈ I(n,m). Then Sij(A) ∈ I(n,m) and |Sij(A)| =
|A|.

A family A of set partitions is compressed if for any i, j ∈ [n], i 6= j, we have Sij(A) =
A.

Lemma 5 ([27], Proposition 3.3). Given a family A ∈ I(n, t), by repeatedly applying the
splitting operations, we eventually obtain a compressed family A∗ ∈ I(n, t) with |A∗| =
|A|.

Lemma 6. Let a, b be positive integers with a + b 6 n. Let P,Q ∈ B(n) be such that
|P ∩ Q| > n − a. If |τ(P ) \ µ(Q)| 6 n − a − b, then P and Q have at least b blocks of
size at least 2 in common and |µ(P ) ∩ µ(Q)| > 2b.

Proof. Since |τ(P ) \ µ(Q)| 6 n − a − b, P and Q have at most n − a − b singletons in
common. Now, |P ∩ Q| > n − a means that P and Q have at least n − a blocks in
common. Therefore, P and Q must have at least b blocks of size at least 2 in common.
Let W1, . . . ,Wb ∈ P ∩ Q with |Wi| > 2 for all i. Then

⋃b
i=1Wi ⊆ µ(P ) ∩ µ(Q) and

Wi ∩Wj = ∅ for i 6= j. This implies that 2b 6
∑b

i=1 |Wi| 6 |µ(P ) ∩ µ(Q)|.

Lemma 7. If A ∈ I(n, n− r), then maxP∈A |µ(P )| 6 2r.

Proof. Suppose maxP∈A |µ(P )| = 2r + s where s > 1. Let P0 ∈ A with |µ(P0)| = 2r + s.
Then |τ(P0)| = n− 2r− s. Note that |P0| > n− r for A ∈ I(n, n− r). By Lemma 6 (take
Q = P = P0 with a = r, b = r + s), we have 2r + s = |µ(P0)| > 2(r + s). Thus, we have
s 6 0, a contradiction. Hence, the lemma follows.
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The following theorem says that the family F2t+1(i0) is preserved when ‘undoing’ the
splitting operations.

Theorem 8. If t > 1, n > 5t + 3, A ∈ I(n, n − 2t − 1) and Sij(A) = F2t+1(i0), then
A = F2t+1(i0).

Proof. Suppose A 6⊆ F2t+1(i0). Then maxP∈A |µ(P )∩ ([n] \ {i0})| = t+ s with s > 1. Let
P0 ∈ A with |µ(P0) ∩ ([n] \ {i0})| = t + s. Then |µ(P0)| = t + 1 + s or t + s, depending
on whether i0 ∈ µ(P0) or not. By Lemma 7, |µ(P0)| 6 4t+ 2. Since n > 5t+ 3, there is a
t-set T ⊆ [n] \ (µ(P0) ∪ {i0}). Let A1 = {{x} : x ∈ [n] \ (T ∪ {i0})} ∪ {T ∪ {i0}}. Then
A1 ∈ F2t+1(i0) = Sij(A).

Now, |τ(P0)\(T ∪{i0})| = n−2t−1−s, |T ∪{i0}| = t+1 > 2 and (T ∪{i0}) 6⊆ µ(P0).
The only block in A1 that has size greater than one is T ∪{i0}. Since (T ∪{i0}) 6⊆ µ(P0),
T ∪ {i0} /∈ P0. So, P0 and A1 have singletons in common only. Note that the number of
singletons that P0 and A1 have in common is exactly |τ(P0) \ (T ∪{i0})| = n− 2t− 1− s.
Thus, |P0 ∩A1| 6 n− 2t− 1− s 6 n− 2t− 2. This means that A1 /∈ A and A1 = sij(C1)
for some C1 ∈ A.

Now, there are two possibilities for C1 depending on whether j is in T ∪ {i0} or not:

(i) C1 = {{x} : x ∈ [n] \ (T ∪ {i, i0})} ∪ {T ∪ {i, i0}} and j ∈ T ∪ {i0}.

(ii) C1 = {{x} : x ∈ [n] \ (T ∪ {i, i0, j})} ∪ {(T ∪ {i0}), {i, j}}.

If (i) holds, then (T ∪{i, i0}) /∈ P0 since (T ∪{i0}) 6⊆ µ(P0), and |τ(P0)\(T ∪{i, i0})| 6
|τ(P0) \ (T ∪ {i0})| = n − 2t − 1 − s. Thus, |P0 ∩ C1| 6 n − 2t − 1 − s 6 n − 2t − 2, a
contradiction.

Suppose (ii) holds. The number of singletons that P0 and C1 have in common is
at most |τ(P0) \ (T ∪ {i, i0, j})| 6 |τ(P0) \ (T ∪ {i0})| 6 n − 2t − 1 − s. Recall that
T ∪{i0} /∈ P0. If {i, j} /∈ P0, then |P0 ∩C1| 6 n− 2t− 1− s 6 n− 2t− 2, a contradiction.
If {i, j} ∈ P0, then |P0∩C1| 6 n−2t−s. Since |P0∩C1| > n−2t−1, we must have s = 1,
|P0∩C1| = n−2t−1, and C1 = {{x} : x ∈ [n]\(T ∪{i, i0, j})}∪{(T ∪{i0}), {i, j}}. But
then |µ(C1)∩([n]\{i0})| = |T ∪{i, j}| = t+2 > t+1 = |µ(P0)∩([n]\{i0})|, contradicting
the choice of P0. Thus, A ⊆ F2t+1(i0). By Lemma 4, |A| = |Sij(A)| = |F2t+1(i0)|. Hence,
A = F2t+1(i0).

3 Main result

Lemma 9. Let t > 1, A ⊆ B(n) and W ⊆ [n]. Suppose that |W | 6 q and |µ(P ) \W | 6
t− 1 for all P ∈ A. Then there exists an n0 = n0(q, t) such that for all n > n0,

|A| < nt−0.5.

Proof. Note that for each P ∈ A,

µ(P ) = C1 ∪ C2,
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where C1 ⊆ [n] \W , |C1| 6 t− 1 and C2 ⊆ W . The number of such C1 is at most

t−1∑
i=0

(
n− |W |

i

)
6

t−1∑
i=0

(
n

i

)
,

and the number of such C2 is at most 2|W | 6 2q. Furthermore, |µ(P )| = |µ(P ) \W | +
|µ(P ) ∩W | 6 t − 1 + q. Therefore the number of Q ∈ A with µ(Q) = µ(P ) is at most
B̃|µ(P )| 6 B̃t−1+q, where Bm is the number of singleton-free set partitions of [m]. Thus

|A| 6 B̃t−1+q2
q

t−1∑
i=0

(
n

i

)
.

If t = 1, then |A| 6 B̃q2
q < n0.5 provided that n > (Bq2

q)2. Suppose t > 2. Then

|A| 6 B̃t−1+q2
q

(
1 +

t−1∑
i=1

ni

i!

i−1∏
j=1

(
1− j

n

))

< B̃t−1+q2
q

(
1 +

t−1∑
i=1

nt−1

)
= B̃t−1+q2

qtnt−1 < nt−0.5,

provided that n > (B̃t−1+q2
qt)2. This completes the proof of the lemma.

Lemma 10. For t > 2, there exists an n0 = n0(t) such that for all n > n0, if A ∈
I(n, n− 2t), then

|A| 6 |F2t|.
Moreover, equality holds if and only if A = F2t.

Proof. Suppose A 6⊆ F2t. Then maxP∈A |µ(P )| = t + s with s > 1. Let P0 ∈ A with
|µ(P0)| = t+ s. By Lemma 7, maxP∈A |µ(P )| 6 4t.

Claim∗. |µ(P ) \ µ(P0)| 6 t− 1 for all P ∈ A.
Suppose there is a Q ∈ A with |µ(Q) \ µ(P0)| > t. Then |τ(P0) \ µ(Q)| 6 n− 2t− s.

Since |P0 ∩ Q| > n − 2t, by Lemma 6, |µ(P0) ∩ µ(Q)| > 2s. Therefore |µ(Q)| = |µ(Q) \
µ(P0)| + |µ(P0) ∩ µ(Q)| > t + 2s. On the other hand, |µ(Q)| 6 |µ(P0)| = t + s by the
choice of P0. This implies that s 6 0, a contradiction. Hence, the claim follows.

By Claim∗ and Lemma 9 (take W = µ(P0) and q = 4t), |A| < nt−0.5. Note that
B̃t > B̃2 = 1 for t > 2. So, by equation (1),

|F2t| =
t∑
i=0

B̃i

(
n

i

)
> B̃t

(
n

t

)
>

1

t!

t−1∏
j=0

(n− j) > nt

t!2t−1
> nt−0.5,

provided that n > max
(

(t!2t−1)
2
, 2t− 2

)
. Thus, |A| < |F2t|.

Suppose A ⊆ F2t. Then |A| 6 |F2t| and equality holds if and only if A = F2t.
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Lemma 11. For t > 1, there exists an n0 = n0(t) such that for all n > n0, if A ∈
I(n, n− 2t− 1) and A is compressed, then

|A| 6 |F2t+1(1)|.

Moreover, equality holds if and only if A = F2t+1(i0) for some i0 ∈ [n].

Proof. Since t > 1, B̃t+1 > B̃2 = 1. Therefore, by equation (2), for all a ∈ [n],

|F2t+1(a)| =
t∑
i=0

B̃i

(
n

i

)
+ B̃t+1

(
n− 1

t

)
> B̃t

(
n

t

)
+

(
n− 1

t

)
= B̃t

(
n

t

)
+

1

t!

t−1∏
j=0

(n− 1− j)

> B̃t

(
n

t

)
+

nt

t!2t
, (3)

provided that n > 2t.
Suppose maxP∈A |µ(P )| 6 t. Then |µ(P ) ∩ ([n] \ {1})| 6 t for all P ∈ A. Hence,

A ⊆ F2t+1(1) and the lemma follows.
Suppose maxP∈A |µ(P )| = t + s with s > 1. Let P0 ∈ A with |µ(P0)| = t + s. By

Lemma 7, maxP∈A |µ(P )| 6 4t+ 2.

Claim∗∗. If s > 2, then |µ(P ) \ µ(P0)| 6 t− 1 for all P ∈ A.
Suppose there is a Q ∈ A with |µ(Q) \µ(P0)| > t. Then |τ(P0) \µ(Q)| 6 n− 2t− s =

n − 2t − 1 − (s − 1). Since |P0 ∩ Q| > n − 2t − 1, by Lemma 6, P0 and Q have at least
(s − 1) blocks of size at least 2 in common and |µ(P0) ∩ µ(Q)| > 2(s − 1). Therefore
|µ(Q)| = |µ(Q) \ µ(P0)| + |µ(P0) ∩ µ(Q)| > t + 2(s − 1). On the other hand, |µ(Q)| 6
|µ(P0)| = t + s by the choice of P0. This implies that s 6 2. Since s > 2, we must have
s = 2, |µ(Q)| = |µ(P0)| = t+ 2 and P0 and Q have exactly one block of size 2 in common,
say {i, j}. Since A is compressed, sij(Q) ∈ A. Note that µ(sij(Q)) = µ(Q) \ µ(P0). So,
|µ(sij(Q)) \ µ(P0)| = t and |τ(P0) \ µ(sij(Q))| = n − 2t − 2 = n − 2t − 1 − 1. Since
|P0 ∩ sij(Q)| > n − 2t − 1, by Lemma 6, |µ(P0) ∩ µ(sij(Q))| > 2. This contradicts that
µ(sij(Q)) = µ(Q) \ µ(P0). Hence, the claim follows.

Suppose s > 2. By Claim∗∗ and Lemma 9 (take W = µ(P0) and q = 4t + 2),
|A| < nt−0.5 for sufficiently large n. It then follows from equation (3) that

|A| < nt−0.5 <
nt

t!2t
6 |F2t+1(1)|,

if n > (t!2t)
2
.

Suppose s = 1. Then µ(P ) 6 t+ 1 for all P ∈ A. Let P0, P1, . . . , Pm ∈ A be such that
for all 1 6 i 6 m, we have
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(i) |µ(Pi)| = t+ 1, and

(ii) |µ(Pi) \ (
⋃i−1
j=0 µ(Pj))| = t.

We may assume that m is the largest integer in the sense that there is no R ∈ A with
|µ(R)| = t+ 1 and |µ(R) \ (

⋃m
j=0 µ(Pj))| = t.

If there is a Q ∈ A with |µ(Q) \ (
⋃m
j=0 µ(Pj))| > t + 1, then |µ(Q)| = t + 1 and

µ(Q)∩µ(P0) = ∅. So, |P0∩Q| = |τ(P0)\µ(Q)| = n−2t−2 < n−2t−1, a contradiction.
Thus, |µ(P ) \ (

⋃m
j=0 µ(Pj))| 6 t for all P ∈ A, and A = A1 ∪ A2 where

A1 =

{
P ∈ A :

∣∣∣∣∣µ(P ) \

(
m⋃
j=0

µ(Pj)

)∣∣∣∣∣ 6 t− 1

}
,

A2 =

{
P ∈ A :

∣∣∣∣∣µ(P ) \

(
m⋃
j=0

µ(Pj)

)∣∣∣∣∣ = t and |µ(P )| = t

}
.

Suppose m 6 t. Then
∣∣∣⋃m

j=0 µ(Pj)
∣∣∣ 6 ∑m

j=0 |µ(Pj)| 6 (t + 1)2. By Lemma 9 (take

W =
⋃m
j=0 µ(Pj) and q = (t + 1)2), |A1| < nt−0.5 for sufficiently large n. Note that the

number of µ(R) with R ∈ A and |µ(R)| = t is at most
(
n
t

)
and the number of Q ∈ A with

µ(Q) = µ(R) is at most B̃t. Thus,

|A2| 6 B̃t

(
n

t

)
.

It then follows from equation (3) that

|A| 6 |A1|+ |A2| < nt−0.5 + B̃t

(
n

t

)
<

nt

t!2t
+ B̃t

(
n

t

)
6 |F2t+1(1)|,

if n > (t!2t)
2
.

Suppose m > t+ 1.

Claim∗∗∗. There is a i0 ∈ [n] with i0 ∈ Pi for i = 0, 1, 2, . . . , t+ 1.
Note that if µ(Pi)∩µ(Pj) = ∅ for i 6= j, then |Pi∩Pj| = |τ(Pi)\µ(Pj)| = n−2t−2 <

n − 2t − 1, a contradiction. So, µ(Pi) ∩ µ(Pj) 6= ∅ for i 6= j. By properties (i) and (ii),
we may conclude that |µ(Pi) ∩ µ(Pj)| = 1 for all i, j with i 6= j.

Let µ(P1)∩µ(P0) = {i0}, µ(Pi)∩µ(P0) = {j1} and µ(Pi)∩µ(P1) = {j2} where 2 6 i 6
t+ 1. Since |µ(Pi)| = t+ 1 and |µ(Pi) \ (

⋃i−1
j=0 µ(Pj))| = t, j1 = j2 ∈ µ(P1)∩µ(P0) = {i0}.

Thus, i0 ∈ Pi for i = 0, 1, 2, . . . , t+ 1. This completes the proof of the claim.
By Claim∗∗∗,

µ(Pi) = Wi ∪ {i0},
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for i = 0, 1, . . . , t + 1 and Wi ∩Wj = ∅ for i 6= j. Suppose A 6⊆ F2t+1(i0). Then there is
a Q ∈ A with |µ(Q) ∩ ([n] \ {i0})| = t + 1, i.e., |µ(Q)| = t + 1 and i0 /∈ µ(Q). Note that
µ(Q)∩µ(Pi) 6= ∅ for all i, for otherwise, |Q∩Pi| = |τ(Q)\µ(Pi)| = n−2t−2 < n−2t−1.
Therefore µ(Q) ∩Wi 6= ∅. Since Wi ∩Wj = ∅ for i 6= j, µ(Q) will have at least t + 2
elements, a contradiction. Hence, A ⊆ F2t+1(i0), |A| 6 |F2t+1(i0)| and equality holds if
and only if A = F2t+1(i0).

This completes the proof of the lemma.

Proof of Theorem 3. If r = 2t, then the theorem follows from Lemma 10. Suppose r =
2t+1. By repeatedly applying the splitting operations, we eventually obtain a compressed
family A∗ ∈ I(n, n − 2t − 1) with |A∗| = |A| (Lemma 5). It then follows from Lemma
11 that |A| = |A∗| 6 |F2t+1(1)| and equality holds if and only if A∗ = F2t+1(i0) for some
i0 ∈ [n]. By Theorem 8, we may conclude that A∗ = F2t+1(i0) implies that A = F2t+1(i0).
This completes the proof of Theorem 3.
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