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Abstract

Let a, b and n be positive integers with a > b. In this note, we prove that

(2bn + 1)(2bn + 3)

(
2bn

bn

)∣∣∣∣3(a− b)(3a− b)

(
2an

an

)(
an

bn

)
.

This confirms a recent conjecture of Amdeberhan and Moll.
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1 Introduction

In 2009, Bober [1] determined all cases such that

(a1n)! · · · (akn)!

(b1n)! · · · (bk+1n)!
∈ Z,

where as 6= bt for all s, t,
∑
as =

∑
bt and gcd(a1, . . . , ak, b1, . . . , bk+1) = 1.

Recently, Z.-W. Sun [12, 13] studied divisibility properties of binomial coefficients and
obtained some interesting results. For example,

2(2n+ 1)

(
2n

n

)∣∣∣∣(6n

3n

)(
3n

n

)
,

∗Supported by the National Natural Science Foundation of China, Grant No. 11371195 and the
Startup Foundation for Introducing Talent of NUIST, Grant No. 2014r029.

the electronic journal of combinatorics 22(1) (2015), #P1.9 1



(10n+ 1)

(
3n

n

)∣∣∣∣(15n

5n

)(
5n− 1

n− 1

)
.

Later, Guo and Krattenthaler (see [5, 8]) obtained some similar divisibility results. Re-
lated results appear in [2]-[4] and [7]-[11].

Introduce the notation

Sn =

(
6n
3n

)(
3n
n

)
2(2n+ 1)

(
2n
n

) and tn =

(
15n
5n

)(
5n−1
n−1

)
(10n+ 1)

(
3n
n

) .
In [6], Guo proved the conjectures due to Z.W. Sun [12, 13].

Theorem A. ([12, Conjecture 3(i)].) Let n be a positive integer. Then

3Sn ≡ 0 (mod 2n+ 3).

Theorem B. ([13, Conjecture 1.3].) Let n be a positive integer. Then

21tn ≡ 0 (mod 10n+ 3).

Recently, T. Amdeberhan and V. H. Moll proposed a conjecture related to Theorems
A and B, which was only presented as Conjecture 7.1 in Guo’s paper [6] by private
communication.

This notes provides a proof of this conjecture.

Theorem 1. Let a, b and n be positive integers with a > b. Then

(2bn+ 1)(2bn+ 3)

(
2bn

bn

)∣∣∣∣3(a− b)(3a− b)
(

2an

an

)(
an

bn

)
.

Remark 2. Theorem A is the special case a = 3, b = 1 of Theorem 1.

2 Proofs

For a real number z, denote the greatest integer not exceeding z by bzc and {z} denotes
the fractional part of z. For an integer n and a prime p, write pk‖n if pk|n and pk+1 - n.
The integer k above is denoted by νp(n).

It is well known that

νp(n!) =
∞∑
i=1

⌊
n

pi

⌋
. (1)

The proof of Theorem 1 begins with a preliminary result.

Lemma 3. Let x and y be two real numbers. Then

b2xc+ byc > bxc+ bx− yc+ b2yc .
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Proof. The identity 2x + y = x + (x − y) + 2y shows that it suffices to {2x} + {y} 6
{x} + {x − y} + {2y}. The proof now follows by comparing {x} and {y} to 1/2. The
details are left to the reader.

Proof of Theorem 1. Let

T (a, b, n) :=

(
2an

an

)(
an

bn

)/(
2bn

bn

)
=

(2an)!(bn)!

(an)!(an− bn)!(2bn)!
.

By (1), for any prime p,

νp(T (a, b, n)) =
∞∑
i=1

(⌊
2an

pi

⌋
+

⌊
bn

pi

⌋
−
⌊
an

pi

⌋
−
⌊
an− bn

pi

⌋
−
⌊

2bn

pi

⌋)
.

Lemma 3 shows that each term of νp(T (a, b, n)) is nonnegative. Hence νp(T (a, b, n)) > 0.
Therefore, T (a, b, n) ∈ Z.

Since gcd(2bn+ 1, 2bn+ 3) = 1, it suffices to prove that

2bn+ 1|3(a− b)(3a− b)T (a, b, n)

and
2bn+ 3|3(a− b)(3a− b)T (a, b, n).

The second statement is established here. The proof of the first statement is similar
and the details are omitted. Suppose that pα‖2bn+ 3 with α > 1. It is shown that

pα|3(a− b)(3a− b)T (a, b, n). (2)

Let pβ‖a − b and pγ‖3a − b with β > 0 and γ > 0. Write τ = max{β, γ}. If α 6 τ ,
then (2) clearly holds. Now we assume α > τ .

Suppose that p > 5. The statement⌊
2an

pi

⌋
+

⌊
bn

pi

⌋
−
⌊
an

pi

⌋
−
⌊
an− bn

pi

⌋
−
⌊

2bn

pi

⌋
= 1

is established for i = τ + 1, τ + 2, . . . , α. This is proven next. Noting that p|2bn+ 3 and
p > 5, it follows that gcd(p, n) = 1.

Observe that pα‖2bn+ 3, it follows that 2bn ≡ pα − 3 (mod pα) and bn ≡ (pα − 3)/2
(mod pα).

Take i ∈ {τ + 1, τ + 2, . . . , α}. Then 2bn ≡ pi − 3 (mod pi) and bn ≡ (pi − 3)/2
(mod pi). Now we divide into several cases according to the value of an (mod pi).

Case 1. an ≡ t (mod pi) with 0 6 t < (pi − 3)/2. It follows that 2an ≡ 2t (mod pi)
and 0 6 2t < pi − 3. Also

an− bn ≡ t− (pi − 3)/2 + pi (mod pi),
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where 0 6 t− (pi − 3)/2 + pi < pi. Hence⌊
2an

pi

⌋
+

⌊
bn

pi

⌋
−
⌊
an

pi

⌋
−
⌊
an− bn

pi

⌋
−
⌊

2bn

pi

⌋
=

2an− 2t

pi
+
bn− (pi − 3)/2

pi
− an− t

pi

−
(
an− bn− (t− (pi − 3)/2 + pi)

pi

)
− 2bn− (pi − 3)

pi

= 1.

Case 2. an ≡ (pi− 3)/2 (mod pi). Then, an− bn ≡ 0 (mod pi). Since gcd(p, n) = 1,
it follows that pi|a− b. However, pβ‖a− b and β 6 τ < i. This is a contradiction.

Case 3. an ≡ (pi − 1)/2 (mod pi). It follows that

3an− bn ≡ 3(pi − 1)

2
− (pi − 3)

2
≡ 0 (mod pi).

The fact that gcd(p, n) = 1 implies pi|3a− b. This contradicts pγ‖3a− b and γ < i.
Case 4. an ≡ t (mod pi) with (pi + 1)/2 6 t < pi. Then

2an ≡ 2t− pi (mod pi), 0 6 2t− pi < pi,

and
an− bn ≡ t− (pi − 3)/2 (mod pi), 0 6 t− (pi − 3)/2 < pi.

Hence ⌊
2an

pi

⌋
+

⌊
bn

pi

⌋
−
⌊
an

pi

⌋
−
⌊
an− bn

pi

⌋
−
⌊

2bn

pi

⌋
=

2an− (2t− pi)
pi

+
bn− (pi − 3)/2

pi
− an− t

pi

−
(
an− bn− (t− (pi − 3)/2)

pi

)
− 2bn− (pi − 3)

pi

= 1.

Therefore, νp(T (a, b, n)) > α− τ , and this implies

νp(3(a− b)(3a− b)T (a, b, n)) > α.

The proof of (2), for p > 5, is complete.
Now assume p = 3. If 9|n, then 3|2bn + 3 and 9 - 2bn + 3. It follows that α = 1, and

then (2) clearly holds. If 9 - n, then the proof of the case p > 5 applies to this situation.
In Case 2, an−bn ≡ 0 (mod 3i) gives 3i−1|a−b. In Case 3, 3i−1|3a−b. Thus, if i > τ +2,
then i− 1 > τ + 1. It is a contradiction in both cases. Hence⌊

2an

3i

⌋
+

⌊
bn

3i

⌋
−
⌊an

3i

⌋
−
⌊
an− bn

3i

⌋
−
⌊

2bn

3i

⌋
= 1
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for i = τ + 2, τ + 3, . . . , α. It follows that ν3(T (a, b, n)) > α− τ − 1, and then

ν3(3(a− b)(3a− b)T (a, b, n)) > α.

That is, (2) also holds. Hence, 2bn+ 3|3(a− b)(3a− b)T (a, b, n).
Therefore,

(2bn+ 1)(2bn+ 3)

(
2bn

bn

)∣∣∣∣3(a− b)(3a− b)
(

2an

an

)(
an

bn

)
.

This completes the proof of Theorem 1.
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