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Abstract

A theorem due to Tokuyama expresses Schur polynomials in terms of Gelfand-
Tsetlin patterns, providing a deformation of the Weyl character formula and two
other classical results, Stanley’s formula for the Schur q-polynomials and Gelfand’s
parametrization for the Schur polynomials. We generalize Tokuyama’s formula to
the Hall-Littlewood polynomials by extending Tokuyama’s statistics. Our result,
in addition to specializing to Tokuyama’s result and the aforementioned classical
results, also yields connections to the monomial symmetric function and a new
deformation of Stanley’s formula.

Keywords: Hall-Littlewood polynomials; Tokuyama’s formula; Gelfand-Tsetlin
patterns

1 Introduction

Schur polynomials, a special class of symmetric polynomials, play an important role in
representation theory. They encode the characters of irreducible representations of gen-
eral linear groups, which may be computed via the Weyl character formula. Tokuyama
[16] gave a deformation of the Weyl character formula for GLn(C) (Cartan type An). This
formula expresses Schur polynomials in terms of statistics obtained from strict Gelfand-
Tsetlin (GT) patterns and includes two other classical results as specializations, the
Gelfand parameterization formula for Schur polynomials [7] and Stanley’s formula for
the Schur q-polynomials [14].

The ideas in [16] have been extended to other Cartan types. For example, combi-
natorial expressions of deformations of the Weyl denominator for Cartan types Bn, Cn,
and Dn were given by Okada [11] and Simpson [13], [12]. Hamel and King [8] replicate
Tokuyama’s deformation of the Weyl character formula in type Cn, Friedberg and Zhang
[4] derive a similar result for type Bn, and Friedlander et al. [5] conjecture a Tokuyama-
type formula for type G2. These results are also often expressed using other combinatorial
objects such as Young tableaux [6], alternating sign matrices [16], [11], [9], and 6-vertex
or ice-type models [2, Chapter 19], [3], [15]. Hamel and King express the type An case [9]
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and type Cn case [8] using 6-vertex partition functions, and Brubaker and Schultz [1] give
Tokuyama-type deformations for types An, Bn, Cn, and Dn using modified ice models.
One can also try to generalize Tokuyama’s ideas to other symmetric polynomials, such as
the Hall-Littlewood polynomials, and this is the problem we consider.

The Hall-Littlewood polynomials are a class of symmetric polynomials which may be
viewed as a generalization of the Schur polynomials by a deformation along a parame-
ter t. The Hall-Littlewood polynomials also interpolate between the dual bases of the
Schur polynomials and the monomial symmetric functions at t = 0 and t = 1, respec-
tively. These polynomials are used to determine characters of Chevalley groups over local
and finite fields [16]. Stanley’s formula expresses the Hall-Littlewood polynomials at the
singular value t = −1 (commonly known as the Schur q-polynomials [10, Chapter III])
as a summation over strict GT patterns. However, there does not exist an analogue of
Tokuyama’s formula expressing the Hall-Littlewood polynomials as a summation over
combinatorial statistics from GT patterns. In this paper we provide such a result. The-
orem 21, in addition to linking the classical specializations of Tokuyama, reduces to a
different deformation of Stanley’s formula at t = −1, and a formula for the monomial
symmetric functions in terms of GT patterns at t = 1.

2 Preliminary Notation and a Theorem due to Tokuyama

A partition λ = (λ1, λ2, . . . , λn) is a finite tuple of nonnegative integers, referred to as
parts. Unless otherwise stated, a partition will be assumed to be weakly decreasing, i.e.
λi > λi+1 for all i. The length of a partition λ is the number of parts in λ, and the size of
λ is defined as |λ| =

∑n
i=1 λi. Addition of partitions of equal length is done component-

wise, and given two partitions λ and µ of lengths n and m respectively, we express their
concatenation as the tuple λ‖µ = (λ1, . . . , λn, µ1, . . . , µm).
Define the partition ρn as

ρn = (n− 1, n− 2, . . . , 1, 0). (1)

We often write ρ in place of ρn as the value of n is clear from context. We will typically
use α to denote some strictly decreasing partition, often taking α = λ + ρ when λ is
defined.

We write the polynomial f(x) as short for f(x1, . . . , xn), and similarly xλ = xλ11 . . . xλnn .
Furthermore, a permutation σ ∈ Sn acts on f(x) by permuting the variables xi.
The Weyl denominator ∆n is given by the formula

∆n =
∏

16i<j6n

(xi − xj). (2)

A deformation of the Weyl denominator ∆n(t) is given by the similar formula

∆n(t) =
∏

16i<j6n

(xi − txj). (3)

Note that ∆n(1) = ∆n and ∆n(0) = xρ.

Theorem 1 (Weyl Character Formula for GLn). The Schur polynomial corresponding to
the partition λ of length n is

sλ(x) =
∑
σ∈Sn

σ

(
xλ+ρ

∆n

)
. (4)
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We may define the Hall-Littlewood polynomials analogously using the deformation of
the Weyl denominator as follows.

Definition 2. The Hall-Littlewood polynomial for a partition λ of length n is

Rλ(x; t) =
∑
σ∈Sn

σ

(
xλ

∆n(t)

∆n

)
. (5)

It is not difficult to see that Rλ(x; 0) = sλ(x) and Rλ(x; 1) =
∑

σ∈Sn
σ(xλ), the monomial

symmetric function mλ(x).
Note: The Hall-Littlewood polynomials defined in [10, Chapter III] are given by

Pλ(x; t) = vλ(t)Rλ(x; t), (6)

for a stabilizing factor vλ(t). Since the stabilizing factor may easily be multiplied to
Theorem 21 if necessary, we choose to omit it in this paper, and refer to the polynomials
Rλ(x; t) as the Hall-Littlewood polynomials.

Definition 3. A Gelfand-Tsetlin (GT) pattern is a triangular array of nonnegative inte-
gers of the form

a1,1 a1,2 a1,3 . . . a1,n

a2,2 a2,3 . . . a2,n

. . . . . . . . .
an−1,n−1 an−1,n

an,n

where each row ri = (ai,i, ai,i+1, . . . , ai,n) is a weakly decreasing partition, and two con-
secutive rows ri = (ai,i, . . . , ai,n) and ri+1 = (ai+1,i+1, . . . , ai+1,n) satisfy the interleaving
condition:

ai−1,j−1 > ai,j > ai−1,j. (7)

For a partition α, let GT (α) be the set of all GT patterns of top row α = r1. A strict
GT pattern is one in which each row ri is strictly decreasing. Given a partition α, write
SGT (α) ⊆ GT (α) to be the set of all strict GT patterns with top row α.

Definition 4 ([16]). An entry ai,j in a GT pattern is

• left-leaning if ai,j = ai−1,j−1,

• right-leaning if ai,j = ai−1,j, and

• special if it is neither left-leaning nor right-leaning.

The quantities l(T ), r(T ), and z(T ) denote the number of left-leaning, right-leaning
and special entries in a GT pattern respectively.

Given a GT pattern with n rows, define the statistic mi(T ) as

mi(T ) =

{
|ri| − |ri+1| for 1 6 i 6 n− 1

|ri| for i = n
, (8)

and m(T ) as
m(T ) = (m1(T ), . . . ,mn(T )) . (9)

We now state the following theorem due to Tokuyama, which we generalize in the rest
of this paper.
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Theorem 5 ([16]). For any weakly decreasing partition λ of length n, we have

∆n(q) · sλ(x) =
∑

T∈SGT (λ+ρ)

(1− q)z(T )(−q)l(T )xm(T ). (10)

3 Additional Statistics on Gelfand-Tsetlin Patterns

To generalize Theorem 5 to the Hall-Littlewood polynomials, the previous statistics from
Definition 4 of [16] prove inadequate. Instead of only labelling each entry as left-leaning,
right-leaning or special, we need to give each entry both a left-sided property pl(ai,j)
and a right-sided property pr(ai,j). The left-sided property encodes the relationship the
entry ai,j has to the entry directly above it and to its left, namely ai−1,j−1. Similarly, the
right-sided property encodes the relationship that ai,j has to ai−1,j.
The left-sided properties of an entry pl(ai,j) are assigned as

pl(ai,j) =


l (left) if ai,j = ai−1,j−1

al (almost-left) if ai,j = ai−1,j−1 − 1

s (special) otherwise

, (11)

and similarly, the right-sided properties of an entry pr(ai,j) are assigned as

pr(ai,j) =


r (right) if ai,j = ai−1,j

ar (almost-right) if ai,j = ai−1,j + 1

s (special) otherwise

. (12)

Definition 6. For an entry ai,j with i > 1, we define

c(ai,j) =

{
0 if pl(ai,j) = l or pr(ai,j) = r

(1− t)(1− q) otherwise
(13)

and for a property p, we define

g(p) =



−q if p = l

t if p = al

1 if p = r

−qt if p = ar

0 if p = s

(14)

With these we define two more functions: the first is a generalization of the expressions
(−q) and (1 − q) from Tokuyama’s formula; and the second considers the relation of an
entry ai,j to the two entries below it in the GT pattern.

Definition 7. For an entry ai,j with i > 1, we define

w(ai,j) = c(ai,j) + g(pl(ai,j)) + g(pr(ai,j)). (15)

For an entry ai,j with i < j < n, we define

d(ai,j) = g(pr(ai+1,j)) · g(pl(ai+1,j+1)). (16)
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Example 8. Given the following segment of a GT pattern:
5 3 1
4 3

We see that the 4 has properties al and ar. Thus c(4) = (1 − q)(1 − t) and w(4) =
(1 − q)(1 − t) + t − qt = 1 − q. Similarly, we have c(3) = 0 and w(3) = 0 − q + 0 = −q.
For the entries in the second row, we find g(pr(4)) = −qt and g(pl(3)) = −q, thus the 3
in the first row gives d(3) = (−qt) · (−q) = q2t.

For the reader’s convenience, we provide Table 1 which lists all possible values for
w(ai,j) and d(ai,j) that we may need to consider. One may notice that we omit the case
for w(ai,j) when (pl(ai,j), pr(ai,j)) = (l, r); this is simply because we need not consider this
case at any point in our work.

Table 1: Possible w(ai,j) and d(ai,j) values for an entry ai,j.
(pl(ai,j), pr(ai,j)) w(ai,j) pr(ai+1,j) pl(ai+1,j+1) d(ai,j)

(l, s) −q s s 0
(s, r) 1 s l, al 0
(l, ar) −q − qt r, ar s 0
(al, r) 1 + t r l −q
(s, ar) 1− q − t ar l q2t
(al, s) 1− q + qt r al t
(al, ar) (1− q) ar al −qt2
(s, s) (1− q)(1− t)

Example 8 illustrates that to define w(ai,j) and d(ai,j), we only need to know two
consecutive rows of a GT pattern. This leads us to the following definition.

Definition 9. Suppose α is a strictly decreasing partition. We define GT2(α) to be the set
of all partitions µ such that the length of µ is one less than that of α, and αi > µi > αi+1

for all i. For α of length 1, we let GT2(α) = {∅}.

This definition ensures that α and µ satisfy the interleaving condition, and so µ would
be a valid weakly decreasing row directly below a row α in a GT pattern. Arranging α
and µ in this manner, we are able to extend Definition 7 to parts of µ and α, and define
w(µi) and d(αi) for all appropriate i.

Definition 10. Let α and µ be partitions with α strictly decreasing of length n and
µ ∈ GT2(α). Then we define

M(α;µ) = det



w(µ1) 1 0 . . . 0 0
d(α2) w(µ2) 1 . . . 0 0

0 d(α3) w(µ3) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . w(µn−2) 1
0 0 0 . . . d(αn−1) w(µn−1)


. (17)

If α is of length 1, and µ = ∅ ∈ GT2(α), we define M(α;µ) = 1. We also extend this
notation to any pair (α;µ) by defining M(α;µ) = 0 whenever µ /∈ GT2(α).
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4 A Recursive Statement of Main Theorem

We first notice that Tokuyama’s formula can be restated as a summation over the set
GT2(α), as shown in (18), where α = λ+ ρ for some weakly decreasing partition λ.

Let S∞ denote the symmetric group on N and take ζ ∈ S∞ to be the permutation
which maps k 7→ k + 1 for each k ∈ N. Then Theorem 5 is equivalent to

∆n(q) · sλ(x) =
∑

µ∈GT2(α)
µ strict

(−q)l(α;µ)(1− q)z(α;µ) x
|α|−|µ|
1 ζ (∆n−1(q) · sµ−ρ(x)) . (18)

Here, the function l(α;µ) is the number of ‘left-leaning’ parts of µ with respect to α, i.e.
the number of parts µi which satisfy µi = αi. The function z(α;µ) is similarly defined
with ‘special’ parts.

Re-expressing (10) recursively as (18) motivates the search for a generalization of
Tokuyama’s formula expressed as a summation over the set GT2(α), as below. This
theorem is equivalent to Theorem 21.

Theorem 11. Suppose λ is a weakly decreasing partition of length n, and set α = λ+ ρ.
Then, using the notation defined in Section 3, we have

∆n(q) ·Rλ(x; t) =
∑

µ∈GT2(α)

M(α;µ)x
|α|−|µ|
1 ζ (∆n−1(q) ·Rµ−ρ(x; t)) . (19)

It is worth noticing that unlike (18), this expression requires all partitions in GT2(α),
including those that are non-strict, distinguishing it from Tokuyama’s formula.

Theorem 11 uses a determinant M(α;µ) to determine the coefficient of the expression

x
|α|−|µ|
1 ζ (∆n−1(q) ·Rµ−ρ(x; t)) in the relevant expansion of ∆n(q) · Rλ(x; t). We use in-

duction on the length of λ and cofactor expansion of the determinant M(α;µ) to prove
Theorem 11. We omit the computations of the base cases in which λ has length 1 or 2,
which are easy to verify.

We move on to the general case of some weakly decreasing partition λ of length n > 2.
For the remainder of this proof, we fix some general notation for partitions. Firstly, the
partition λ and its length n are now fixed, and in any new notation to follow, these will
remain independent of the variables in the expression. We consequently fix the partition
α = λ+ ρ, also of length n. When referring to an arbitrary partition, we use κ of length
m. Finally, the partition µ will consistently be used as an arbitrary element of some set
of the form GT2(κ).

Given a partition κ = (κ1, . . . , κm), we will write

κ1̂ = (κ2, . . . , κm) and κ1̂,2̂ = (κ3, . . . , κm). (20)

Also, we define

δi(xl; t) :=
∏

16a6n
a6=i

xl − txa, (21)

and similarly

δi,j(xl; t) :=
∏

16a6n
a6=i,j

xl − txa, and δi,j,k(xl; t) :=
∏

16a6n
a6=i,j,k

xl − txa. (22)
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As with ∆n, we define δi(xl) = δi(xl; 1) and similarly δi,j(xl) = δi,j(xl; 1) and δi,j,k(xl) =
δi,j,k(xl; 1).

Our inductive hypotheses will be

Rλ1̂
(x; t) · δ1,n(x1; q) =

∑
µ∈GT2(α1̂)

M(α1̂;µ)x
|α1̂|−|µ|
1 ζ (Rµ−ρ(x; t)) , (23)

and
Rλ1̂,2̂

(x; t) · δ1,n−1,n(x1; q) =
∑

µ∈GT2(α1̂,2̂)

M(α1̂,2̂;µ)x
|α1̂,2̂|−|µ|
1 ζ (Rµ−ρ(x; t)) . (24)

Note that multiplying both sides of (23) by ζ (∆n−1(q)) and (24) by ζ1,2 (∆n−2(q))
gives the form seen in Theorem 11.

Prior to the proof, we require another operator: We generalize the notion of ζ to
ζi ∈ S∞ which is defined to take k 7→ k + 1 for each k ∈ N with k > i. Furthermore, we
also define ζi,j = ζj,i = ζjζi ∈ S∞ when i < j. We notice that these operators act on a
polynomial f(x) = f(x1, . . . , xm) to obtain

ζi(f(x)) = f(x1, . . . , xi−1, xi+1, . . . , xm+1), (25)

and
ζi,j(f(x)) = ζj,i(f(x)) = f(x1, . . . xi−1, xi+1, . . . xj−1, xj+1, . . . , xm+2). (26)

Notice that ζ1 = ζ, and we shall use the latter in the proof to follow.
We begin with a series of lemmas.

Lemma 12. For an arbitrary partition κ of length m > 2, we express Rκ(x; t) recursively
as

Rκ(x; t) =
∑

16i6m

xκ1i

(
δi(xi; t)

δi(xi)

)
ζi
(
Rκ1̂

(x; t)
)
, (27)

and

Rκ(x; t) =
∑

16i6m

∑
16j6m
j 6=i

xκ1i x
κ2
j

(
δi(xi; t)

δi(xi)

δi,j(xj; t)

δi,j(xj)

)
ζi,j

(
Rκ1̂,2̂

(x; t)
)
. (28)

Proof. Let the permutation ψi = (i i−1 · · · 1), and let H be the symmetric group acting
on the (n− 1) indices (2, 3, . . . , n). Then

Rκ(x; t) =
∑

16i6m

∑
σ∈H

ψi σ

(
xκ∆m(t)

∆m

)
=
∑

16i6m

∑
σ∈H

ψi σ

(
xκ11

δ1(x1; t)

δ1(x1)
ζ

(
xκ1̂∆m−1(t)

∆m−1

))
.

Because σ ∈ H does not permute x1, we have

Rκ(x; t) =
∑

16i6m

ψi

(
xκ11

δ1(x1; t)

δ1(x1)
ζ
(
Rκ1̂

(x; t)
))

=
∑

16i6m

xκ1i

(
δi(xi; t)

δi(xi)

)
ζi
(
Rκ1̂

(x; t)
)
.

We further obtain (28) by applying (27) to the Rκ1̂
(x; t) in (27).

Lemma 13. Let Oi =
(
(xi − tx1)xλ1i − (x1 − txi)xλ1−λ21 xλ2i

)
/(xi − tx1). Then we have

Rλ(x; t) =
∑

26i6n

Oi

(
δi(xi; t)

δi(xi)

)
ζi
(
Rλ1̂

(x; t)
)

− xλ1−λ21

∑
26i6n

∑
26j6n
j 6=i

txλ2i x
λ2
j

δ1,i(xi; t)

δ1,i(xi)

δ1,i,j(xj; t)

δ1,i,j(xj)
ζi,j

(
Rλ1̂,2̂

(x; t)
)
. (29)
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Proof. We begin by observing that

0 =
∑

26i6n

∑
26j6n

(−1)i+jxλ2i x
λ2
j (xi − xj) ζi,j

(
∆n−2 ·Rλ1̂,2̂

(x; t)
)
δ1,i(xi; t)δ1,j(xj; t).

This can easily be seen by swapping the subscripts i and j in the right hand side, revealing
RHS = −RHS.

We divide through the equality above by ∆n, altering the products and the bounds of
the summation, and multiply by x1(1− t) to find

0 =
∑

26i6n

∑
26j6n
j 6=i

x1(1− t)(xj − txi)xλ2i x
λ2
j

(xj − x1)(xi − tx1)
ζi,j(Rλ1̂,2̂

(x; t))
δi(xi; t)

δi(xi)

δ1,i,j(xj; t)

δ1,i,j(xj)
.

Using the identity

x1(1− t)(xj − txi)
(xj − x1)(xi − tx1)

=
(x1 − txi)(xj − tx1)

(xi − tx1)(xj − x1)
+ t

xi − x1

xi − tx1

,

we break the double summation into two parts; in particular, if we take

L =
∑

26i6n

∑
26j6n
j 6=i

txλ2i x
λ2
j

δ1,i(xi; t)

δ1,i(xi)

δ1,i,j(xj; t)

δ1,i,j(xj)
ζi,j

(
Rλ1̂,2̂

(x; t)
)
, (30)

then

0 = L+
∑

26i6n

∑
26j6n
j 6=i

(x1 − txi)xλ2i x
λ2
j

(xi − tx1)
ζi,j(Rλ1̂,2̂

(x; t))
δi(xi; t)

δi(xi)

δi,j(xj; t)

δi,j(xj)
. (31)

Now, one can see that

− xλ21

δ1(x1; t)

δ1(x1)
ζ
(
Rλ1̂

(x; t)
)

= xλ21

∑
26i6n

δi(xi; t)

δi(xi)

δ1,i(x1; t)

δ1,i(x1)

(x1 − txi)xλ2i
(xi − tx1)

ζ1,i

(
Rλ1̂,2̂

(x; t)
)

(32)

holds by expressing Rλ1̂
(x; t) of the left hand side explicitly using (27) and rearranging

the result.
We notice that the right hand side of (32) is equivalent to setting j = 1 in the double

summation of (31). Thus, adding either side of (32) to either side of (31) respectively, we
have

− xλ21

δ1(x1; t)

δ1(x1)
ζ
(
Rλ1̂

(x; t)
)

= L+
∑

26i6n

∑
16j6n
j 6=i

(x1 − txi)xλ2i x
λ2
j

(xi − tx1)
ζi,j(Rλ1̂,2̂

(x; t))
δi(xi; t)

δi(xi)

δi,j(xj; t)

δi,j(xj)
.

Multiplying through by −xλ1−λ21 , and adding∑
26i6n

xλ1i
δi,j(xj; t)

δi,j(xj)
ζi(Rλ1̂

(x; t)),
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to both sides, we may apply (27) once on either side of the equality to obtain

Rλ(x; t) = −xλ1−λ21 L+
∑

26i6n

(
δi(xi; t)

δi(xi)

)(
xλ1i − x

λ1−λ2
1 xλ2i

x1 − txi
xi − tx1

)
ζi(Rλ1̂

(x; t)).

Recalling Oi as

Oi =
(xi − tx1)xλ1i − (x1 − txi)xλ1−λ21 xλ2i

xi − tx1

= xλ1i − x
λ1−λ2
1 xλ2i

x1 − txi
xi − tx1

,

we combine the two summations on the right hand side and recall L from (30) to write

Rλ(x; t) =
∑

26i6n

Oi

(
δi(xi; t)

δi(xi)

)
ζi
(
Rλ1̂

(x; t)
)

− xλ1−λ21

∑
26i6n

∑
26j6n
j 6=i

txλ2i x
λ2
j

δ1,i(xi; t)

δ1,i(xi)

δ1,i,j(xj; t)

δ1,i,j(xj)
ζi,j

(
Rλ1̂,2̂

(x; t)
)
.

We introduce two related functions that will be used in the upcoming lemmas. For
some non-negative integers u and v, we define

Fλ1̂(u) :=
∑

µ∈GT2(α1̂)

M(α1̂;µ)x
|α1̂|−|µ|
1 ζ

(
R(u)‖µ−ρ(x; t)

)
, (33)

and
Fλ1̂,2̂(u, v) :=

∑
µ∈GT2(α1̂,2̂)

M(α1̂,2̂;µ)x
|α1̂,2̂|−|µ|
1 ζ

(
R(u,v)‖µ−ρ(x; t)

)
. (34)

Lemma 14. Suppose u and v are some non-negative integers. Then, assuming the in-
ductive hypotheses in (23) and (24), we have

Fλ1̂(u) =
∑

26i6n

xui
δ1,i(xi; t)

δ1,i(xi)
ζi
(
Rλ1̂

(x; t)
)
δ1,i(x1; q), (35)

and

Fλ1̂,2̂(u, v) =
∑

26i6n

∑
26j6n
j 6=i

xui x
v
j

δ1,i(xi; t)

δ1,i(xi)

δ1,i,j(xj; t)

δ1,i,j(xj)
ζi,j

(
Rλ1̂,2̂

(x; t)
)
δ1,i,j(x1; q). (36)

Proof. The proof of (36) is almost identical to that of (35), apart from using (28) and
(24) in place of (27) and (23). For brevity, we only present the detailed proof of (35).

By applying (27) to write R(u)‖(µ−ρ)(x; t) in terms of u and Rµ−ρ(x; t), the left hand
side of (35) becomes∑

µ∈GT2(α1̂)

M(α1̂;µ)x
|α1̂|−|µ|
1 ζ

( ∑
16i6n−1

xui
δi,n(xi; t)

δi,n(xi)
ζi (Rµ−ρ(x; t))

)
.

We rearrange this expression to write this as

∑
26i6n

xui
δ1,i(xi; t)

δ1,i(xi)
ζi

 ∑
µ∈GT2(α1̂)

M(α1̂;µ)x
|α1̂|−|µ|
1 ζ (Rµ−ρ(x; t))

 .

Finally, we replace the argument of ζi using the inductive hypothesis in (23) to give the
desired result.
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Lemma 15. Recall Oi =
(
(xi − tx1)xλ1i − (x1 − txi)xλ1−λ21 xλ2i

)
/(xi − tx1) from Lemma

13. Then we have∑
µ∈GT2(α)

w(µ1)M(α1̂;µ1̂)x
|α|−|µ|
1 ζ (Rµ−ρ(x; t))

=
∑

26i6n

Oi

(
δi(xi; t)

δi(xi)

)
ζi
(
Rλ1̂

(x; t)
)
δ1(x1; q). (37)

Proof. First, notice that (xi − tx1)Oi/(xi − x1) = Qi/(x1 − qxi), where

Qi = −qxλ1+1
i + tx1x

λ1
i − qtx

λ1−λ2
1 xλ2+1

i

+ xλ1−λ2+1
1 xλ2i +

∑
λ2<i6λ1

(1− q)(1− t)xλ1+1−i
1 xii.

This can be shown through simple algebraic manipulation, considering three cases for λ,
namely (1): λ1 = λ2, (2): λ1 = 1 + λ2 and (3): λ1 > 1 + λ2.

Substituting the above identity in the right hand side of the lemma gives

RHS =
∑

26i6n

δ1,i(xi; t)

δ1,i(xi)
ζi
(
Rλ1̂

(x; t)
)
Qi δ1,i(x1; q).

Then, expanding Qi and applying (35), we have

RHS = −q · Fλ1̂(λ1 + 1) + tx1 · Fλ1̂(λ1)− qtxλ1−λ21 · Fλ1̂(λ2 + 1)

+ xλ1−λ2+1
1 · Fλ1̂(λ2) +

∑
λ2<i6λ1

(1− q)(1− t)xλ1+1−i
1 · Fλ1̂(i).

Examining Definition 6, we see that the first two coefficients above are precisely the
nonzero possibilities of g(pl(µ1)); the next two are precisely the nonzero possibilities of
g(pr(µ1)); and the final summation is over all the nonzero possibilities of c(µ1). Recalling
from Definition 7 that w(µ1) = c(µ1) + g(pl(µ1)) + g(pr(µ1)), we simply have

RHS =
∑

µ∈GT2(α)

w(µ1)M(α1̂;µ1̂)x
|α|−|µ|
1 ζ (Rµ−ρ(x; t)) .

Lemma 16. We have∑
µ∈GT2(α)

d(α2)M(α1̂,2̂;µ1̂,2̂)x
|α|−|µ|
1 ζ (Rµ−ρ(x; t))

= xλ1−λ21

∑
26i6n

∑
26j6n
j 6=i

txλ2i x
λ2
j

δ1,i(xi; t)

δ1,i(xi)

δ1,i,j(xj; t)

δ1,i,j(xj)
ζi,j

(
Rλ1̂,2̂

(x; t)
)
δ1(x1; q). (38)

Proof. Expanding the factor (x1 − qxi)(x1 − qxj) from the product δ1(x1; q), the right
hand side of the above equality becomes∑
26i6n

∑
26j6n
j 6=i

txλ1−λ21 xλ2i x
λ2
j (x1−qxi)(x1−qxj)

δ1,i(xi; t)

δ1,i(xi)

δ1,i,j(xj; t)

δ1,i,j(xj)
ζi,j

(
Rλ1̂,2̂

(x; t)
)
δ1,i,j(x1; q).

the electronic journal of combinatorics 22(2) (2015), #P2.11 10



We see from Proposition 20 that Fλ1̂,2̂(λ2, λ2+1) = t·Fλ1̂,2̂(λ2+1, λ2). Then distributing

(q2xixj − qx1xi − qx1xj + x2
1) over the summation and applying (36) yields

RHS = q2txλ1−λ21 · Fλ1̂,2̂(λ2 + 1, λ2 + 1)− qxλ1−λ2+1
1 · Fλ1̂,2̂(λ2, λ2 + 1)

− qt2xλ1−λ2+1
1 · Fλ1̂,2̂(λ2 + 1, λ2) + txλ1−λ2+2

1 · Fλ1̂,2̂(λ2, λ2, µ− ρ).

Recalling from Definition 6 that d(α2) = g(pr(µ1)) · g(pl(µ2)), we notice that each of the
four coefficients in the previous expression corresponds exactly to each of the four possible
nonzero values for d(α2). Thus, we have

RHS =
∑

µ∈GT2(α)

d(α2)M(α1̂,2̂;µ1̂,2̂)x
|α|−|µ|
1 ζ (Rµ−ρ(x; t)) .

We return to the proof of Theorem 11.

Proof. Lemma 13 gave us that

Rλ(x; t) =
∑

26i6n

Oi

(
δi(xi; t)

δi(xi)

)
ζi
(
Rλ1̂

(x; t)
)

− xλ1−λ21

∑
26i6n

∑
26j6n
j 6=i

txλ2i x
λ2
j

δ1,i(xi; t)

δ1,i(xi)

δ1,i,j(xj; t)

δ1,i,j(xj)
ζi,j

(
Rλ1̂,2̂

(x; t)
)
.

Furthermore, assuming the inductive hypotheses (23) and (24), Lemmas 15 and 16 state
that∑
µ∈GT2(α)

w(µ1)M(α1̂;µ1̂)x
|α|−|µ|
1 ζ (Rµ−ρ(x; t)) =

∑
26i6n

Oi

(
δi(xi; t)

δi(xi)

)
ζi
(
Rλ1̂

(x; t)
)
δ1(x1; q).

and ∑
µ∈GT2(α)

d(α2)M(α1̂,2̂;µ1̂,2̂)x
|α|−|µ|
1 ζ (Rµ−ρ(x; t))

= xλ1−λ21

∑
26i6n

∑
26j6n
j 6=i

txλ2i x
λ2
j

δ1,i(xi; t)

δ1,i(xi)

δ1,i,j(xj; t)

δ1,i,j(xj)
ζi,j

(
Rλ1̂,2̂

(x; t)
)
δ1(x1; q).

Hence, it is clear that

δ1(x1; q) ·Rλ(x; t) =
∑

µ∈GT2(α)

w(µ1)M(α1̂;µ1̂)x
|α|−|µ|
1 ζ(Rµ−ρ(x; t))

−
∑

µ∈GT2(α)

d(α2)M(α1̂,2̂;µ1̂,2̂)x
|α|−|µ|
1 ζ(Rµ−ρ(x; t)).

Finally, cofactor expansion gives us M(α;µ) = w(µ1)M(α1̂;µ1̂) − d(α2)M(α1̂,2̂;µ1̂,2̂) and
observing that ∆n(q) = δ1(x1; q) · ζ(∆n−1(q)), we multiply by ζ(∆n−1(q)) to conclude

∆n(q) ·Rλ(x; t) =
∑

µ∈GT2(α)

M(α;µ)x
|α|−|µ|
1 ζ(∆n−1(q) ·Rµ−ρ(x; t)).
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5 Weakly Decreasing Partitions and Raising Operators

Theorem 11 expresses the Hall-Littlewood polynomial recursively in terms of
Hall-Littlewood polynomials in one fewer variables. The partitions µ ∈ GT2(α) indexing
these polynomials are guaranteed to be weakly decreasing by the interleaving condition,
but they are not necessarily strictly decreasing.

To express µ ∈ GT2(α) in terms of strictly decreasing partitions, we relate the Hall-
Littlewood polynomial associated to a weakly decreasing partition to one associated to a
specific strictly decreasing partition, which is related to the weakly decreasing partition
through a specified sequence of Young’s raising operators.

Definition 17. A raising operator φ is a product of operations [i j] with i 6 j acting on
some finite tuple λ of nonnegative integers such that

[i j] · (λ1, . . . , λn) = (λ1, . . . , λi − 1, . . . , λj + 1, . . . , λn). (39)

(Note that these are the inverses of Young’s raising operators as defined in [10, Chapter
I].)

The length of a raising operator φ, denoted l(φ), is defined as the number of operators
in the minimal decomposition of φ into elementary operators of the form [i i + 1]. The
identity raising operator Id acts trivially on the partition and is assigned length zero.

Definition 18. Given a strictly decreasing partition α of length n, we recursively define
Ω(α) to be the set of raising operators such that

• The identity raising operator Id ∈ Ω(α), and

• for all raising operators φ ∈ Ω(α), if the tuple φ(α) = (α′1, . . . , α
′
n) contains consec-

utive parts α′i and α′i+1 such that α′i = α′i+1 + 2, then [i i+ 1] · φ ∈ Ω(α).

Example 19. For the partition α = (6, 4, 3, 1), we have the set

Ω(α) = {Id, [1 2], [1 3], [2 4], [3 4], [1 2][3 4]}.

Proposition 20. Suppose λ is some weakly decreasing partition and α = λ + ρ. Then,
for each φ ∈ Ω(α), the following identity holds:

Rφ(λ)(x; t) = tl(φ) ·Rλ(x; t). (40)

Proof. It is clear that (40) holds for φ = Id. Therefore, by the recursive definition of Ω,
it suffices to prove that for an arbitrary tuple λ = (λ1, . . . , λn) and α = λ + ρ such that
αi = αi+1 + 2, or equivalently λi = λi+1 + 1, we have

R[i i+1](λ)(x; t) = t ·Rλ(x; t). (41)

To prove (41), let g(x) = ∆n(t)/(xi − txi+1) and f(x) = xλ11 · · · x
λi−1

i−1 · x
λi+2

i+2 · · ·xλnn ,
noting that both g(x) and f(x) are invariant under the permutation (i i + 1). Then, if
we take λi+1 = a and λi = a + 1 for some integer a, and let sgnσ be the standard sign
function for a permutation σ ∈ Sn, we see that∑

σ∈Sn

(sgn σ)σ
(
xλ∆n(t)

)
=
∑
σ∈Sn

(sgn σ)σ
(
f(x)g(x)xa+2

i xai+1 − tf(x)g(x)xa+1
i xa+1

i+1

)
.
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If some polynomial h(x) = (i j)(h(x)) for (i j) ∈ Sn, then
∑

σ∈Sn
(sgn σ)σ (h(x)) = 0.

Therefore, since tf(x)g(x)xa+1
i xa+1

i+1 is invariant under the permutation (i i + 1), we
have ∑

σ∈Sn

(sgn σ)σ
(
xλ∆n(t)

)
=
∑
σ∈Sn

(sgn σ)σ
(
f(x)g(x)xa+2

i xai+1

)
. (42)

Similarly, we can find that∑
σ∈Sn

(sgn σ)σ
(
x[i i+1](λ)∆n(t)

)
= (−t) ·

∑
σ∈Sn

(sgn σ)σ
(
f(x)g(x)xai x

a+2
i+1

)
= t ·

∑
σ∈Sn

(sgn σ)σ
(
f(x)g(x)xa+2

i xai+1

)
, (43)

and combining (42) and (43) returns∑
σ∈Sn

(sgn σ)σ
(
x[i i+1](λ)∆n(t)

)
= t ·

∑
σ∈Sn

(sgn σ)σ
(
xλ∆n(t)

)
.

Dividing through by ∆n gives us (41), as desired.

6 A Deformation of Tokuyama’s Formula

By enabling us to express Hall-Littlewood polynomials Rµ−ρ(x; t) with nonstrict µ in
terms of those with strict µ, Proposition 20 allows us state Theorem 11 non-recursively
as Theorem 21, providing a deformation of Tokuyama’s formula.

Theorem 21. Suppose λ is a weakly decreasing partition of length n. Then, the product
∆n(q) · Rλ(x; t) of the deformed Weyl denominator and the Hall-Littlewood polynomial
can be expressed as a summation over the set SGT (λ + ρ) of all strict Gelfand-Tsetlin
patterns of top row λ+ ρ by

∆n(q) ·Rλ(x; t) =
∑

T∈SGT (λ+ρ)

n−1∏
i=1

 ∑
φ∈Ω(ri+1)

tl(φ)M(ri;φ(ri+1))

xm(T ). (44)

Here, the determinant M(ri;φ(ri+1)) and the set Ω(ri+1) are defined in Definitions 10 and
18 respectively.

Proof. We use induction, where our inductive hypothesis is that (44) holds for all Hall-
Littlewood polynomials in (n−1) variables. The base case formula of one variable is easy
to check.

We now prove that (44) holds for a Hall-Littlewood polynomial corresponding to an
arbitrary weakly decreasing partition λ of length n > 1, assuming the inductive hypoth-
esis. Let α = λ + ρ. We notice that, while α must be strictly decreasing, a partition
µ ∈ GT2(α) may be weakly decreasing. If µ is not strictly decreasing, the computed
Hall-Littlewood polynomial Rµ−ρ(x; t) has an increasing partition µ − ρ. Proposition 20
allows us to express these Hall-Littlewood polynomials in terms of some Hall-Littlewood
polynomials that are obtained from strictly decreasing µ̃ ∈ GT2(α). In particular, for
each non-strict µ ∈ GT2(α), there exists a unique strict µ̃ ∈ GT2(α) and a unique element
φ ∈ Ω(µ̃) such that φ(µ̃) = µ. Furthermore, for each φ ∈ Ω(µ̃), the tuple φ(µ̃) will either
be a valid element of GT2(α) or will cause M(α;φ(µ̃)) = 0 and can be neglected. Hence,
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we may rewrite (19) of Theorem 11 as an equivalent summation over strictly decreasing
partitions in the set GT2(α):

Rλ(x; t) ·∆n(q) =
∑

µ∈GT2(α)
µ strict

∑
φ∈Ω(µ)

tl(φ)M(α;φ(µ))x
|α|−|µ|
1 ζ(∆n−1(q) ·Rµ−ρ(x; t)). (45)

By applying the inductive hypothesis to the Hall-Littlewood polynomials Rµ−ρ(x; t) of
(n− 1) variables in (45), we are reduced to (44).

Example 22. We present an example of Theorem 21 by computing the term obtained
from a particular GT pattern. We take λ = (1, 0, 0), so α = (3, 1, 0), and we compute the
coefficient obtained from the GT pattern

3 1 0
2 0

1

Having fixed a particular T ∈ SGT (3, 1, 0), we iterate i, starting with i = 1. Then we
have the set Ω(r2) = {Id, [1 2]}. We denote [1 2] as φ. Then φ(r2) = (1, 1) and l(φ) = 1.

We thus have two possibilities to consider: one for each raising operator. In each case,
we display the relevant GT2 patterns and compute M . To minimize confusion, we have
subscripts for integers that appear multiple times in a pattern.
Below is the GT2 pattern associated to the raising operator Id:

3 1 01

2 02

These rows give the matrix and corresponding coefficient:∣∣∣∣(w(2) 1
d(1) w(02)

)∣∣∣∣ =

∣∣∣∣1− q 1
−qt2 1 + t

∣∣∣∣ = 1− q + t− qt+ qt2. (46)

Below is the GT2 pattern associated to the raising operator φ:
3 11 0

12 13

As l(φ1) = 1 we multiply the determinant of the associated matrix by t1 to obtain

t ·
∣∣∣∣(w(12) 1
d(11) w(13)

)∣∣∣∣ = t ·
∣∣∣∣ 1 1
−q −q − qt

∣∣∣∣ = −qt2. (47)

That concludes the consideration of possible second rows. We add all of the coefficients
from each case of a second row, i.e. (46) and (47), to find the total coefficient of

1− q + t− qt+ qt2 − qt2 = (1− q)(1 + t). (48)

Now iterating to i = 2, we have that Ω(r3) contains only the identity. Thus the only
GT2 pattern to be considered is of the following form:

2 0
1

The determinant is simply
|w(1)| = (1− q). (49)

Finally, we take the product of all the coefficients we got from each row, i.e. (48) and
(49), and multiply this with xm(T ) where m(T ) = (2, 1, 1). Thus, by Theorem 21, the GT
pattern contributes the monomial

(1− q)2(1 + t)x2
1x2x3, (50)
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to the summation. As this is the unique GT pattern with top row α = (2, 1, 0) and
m(T ) = (2, 1, 1), we should find that (50) gives the coefficient of x2

1x2x3 in the expansion
of ∆3(q) ·R(1,0,0)(x; t). The reader can verify that this is indeed the case.

7 Specializations

The results of this paper generalize Tokuyama’s formula and several other existing results.
We demonstrate a few of these specializations.

7.1 Tokuyama’s formula.

Recall from Definition 2 that Rλ(x; 0) = sλ(x). We know that for all raising operators
φ 6= Id, the length of φ is at least 1. Therefore, setting t = 0 reduces Theorem 21 to

∆n(q) · sλ =
∑

T∈SGT (α)

n−1∏
i=1

M(ri; ri+1)xm(T ).

As these are all the identity cases on strict Gelfand-Tsetlin patterns, every row is strictly
decreasing. This implies that consecutive entries cannot have pr(ai,j) = r and pl(ai,j+1) =
l, and consequently d(ai,j) cannot be −q. All the remaining possibilities of d(ai,j) are
reduced to 0 when t = 0. Thus, if we let ri+1 = (µ1, . . . , µn−i), the matrix M(ri; ri+1)
simplifies to

M(ri; ri+1) = det


w(µ1) 1 . . . 0

0 w(µ2) . . . 0
...

...
. . .

...
0 0 . . . w(µn−i)


Therefore, we have

M(ri; ri+1) =
n−i∏
k=1

w(µk). (51)

Finally, returning to Tokuyama’s terminology of left-leaning, right-leaning and special
entries from Definition 4, we find that w(ai,j) simplifies to

w(ai,j) =


−q if ai,j is left-leaning

1− q if ai,j is special

1 if ai,j is right-leaning

, (52)

and, substituting this into (51) from earlier, we conclude with Tokuyama’s formula:

∆n(q) · sλ =
∑

T∈SGT (α)

(−q)l(T )(1− q)z(T )xm(T ).

Comparing the results of this paper with Tokuyama’s formula reveals some interesting
distinctions regarding the structure of the Hall-Littlewood polynomials in relation to the
Schur polynomials. Theorem 11 demonstrates that when expressing Rλ(x; t) recursively in
terms of Rµ−ρ(x; t), it is more natural to include several non-strictly decreasing partitions
µ in the summation. This is not an issue for Tokuyama’s formula as Schur polynomials
of such non-strictly decreasing partitions µ are just sµ−ρ(x) = 0.
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In fact, whilst Theorem 21 is stated as summations over strict GT patterns, the use of
Ω is to allow an implicit summation over all possible non-strict rows. We thus naturally
seek a way to consider the contributions of such rows directly, eliminating the more ad
hoc use of Ω. Both theorems also highlight the added complexity in a Hall-Littlewood
polynomial as they account for the ordering among the entries in a GT pattern instead
of simply counting entries as Tokuyama does with z(T ) and l(T ).

7.2 Stanley’s formula.

In [14], Stanley gave a formula for the Hall-Littlewood polynomials at the singular value
t = −1, also known as the Schur q-polynomials, as a generating function of strict GT
patterns of top row λ:

Rλ(x;−1) =
∑

T∈SGT (λ)

2z(T )xm(T ). (53)

Tokuyama subsequently showed in [16] that his formula yields (53) when the deformation
parameter q is set to −1. Theorem 21 thus specializes to (53) at t = 0 and q = −1, by
virtue of specializing to Tokuyama’s result. However, setting t to −1 in Theorem 21 also
gives a deformation along q of (53), and we can show that this deformation reduces to
(53) at q = 0.

If ai,j is an entry in a GT pattern, then we call ai,j a p entry (where p is a property)
if either pl(ai,j) or pr(ai,j) = p.

With this terminology, examining Theorem 21 at the singular values of t = −1 and
q = 0, we see that any pattern containing an l entry gives an overall coefficient of zero,
which is evident through cofactor expansion of M(ri; ri+1).

Thus we may simply sum over the set SGTl(α) ⊂ SGT (α) that contains all GT
patterns without l entries. Furthermore, any non-trivial element φ ∈ Ω(ri) will either
cause an element of φ(ri) to be an l entry with respect to ri+1, or result in φ(ri) /∈
GT2(ri−1), both resulting in an overall coefficient of zero. Furthermore, we show that GT
patterns with consecutive r then al entries give coefficient 0.

We define

D =
n∏
i=2

M(ri−1; ri). (54)

Assume for the sake of contradiction that there is a GT pattern with consecutive r then
al entries for which D 6= 0. Let ai,j and ai,j+1 be a pair of consecutive r then al entries in
the lowest row containing such pairs. Then the r entry ai,j = u for some u ∈ N, and the al
entry ai,j+1 = u− 1. Now consider the entry ai+1,j+1. Since it cannot be l, or else D = 0,
we must have ai+1,j+1 = u − 1. Then w(ai+1,j+1) = 0; so to ensure M(ri; ri+1) 6= 0 (and
consequently that D 6= 0), we must have that either pr(ai+1,j) = r or pl(ai+1,j+2) = al.
But this contradicts our hypothesis. Therefore, any GT pattern containing consecutive r
then al entries yields an overall coefficient of zero.

Let the set SGTl∗(α) ⊂ SGTl(α) contain all GT patterns without l entries or con-
secutive r then al entries. For an entry ai,j in a strict GT pattern T ∈ SGTl∗(α), we
see that the only allowable value of d(ai,j) is (−qt)(t). Since q = 0 we have d(ai,j) = 0
for all entries here, simplifying M(ri; ri+1) to the product

∏
j w(ai+1,j). Thus Theorem 21

simplifies to

∆n(0) ·Rλ(x;−1) =
∑

T∈SGTl∗(α)

∏
w(ai,j)x

m(T ), (55)
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where the product is taken over all possible ai,j. This leads us to introduce a bijective
mapping, similar to one used in [16]:

SGTl∗(α) −→ SGT (λ)
Θ : ai,j 7−→ ai,j + j − n

m(T ) 7−→ m(T )− ρ
. (56)

After applying this mapping, we have that w(ai,j) = 2 for all special entries and w(ai,j) = 1
otherwise, and thus (55) reduces to

xρ ·Rλ(x;−1) = xρ ·
∑

T∈SGT (λ)

2z(T )xm(T ).

Dividing out by xρ, we obtain (53).

7.3 Monomial symmetric function.

Recall from Definition 2 that the monomial symmetric function

mλ(x) =
∑
σ∈Sn

σ(xλ) (57)

We note that, since Rλ(x; 1) = mλ(x), we may obtain a new q-deformation of (57) by
setting t = 1 in Theorem 21, although the result does not appear as elegant as the t = 0
and t = −1 cases. This specialization is, however, not difficult to prove independently.
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