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Abstract

We examine the Sprague-Grundy values of the game of R-Wythoff, a restriction
of Wythoff’s game introduced by Ho, where each move is either to remove a positive
number of tokens from the larger pile or to remove the same number of tokens
from both piles. Ho showed that the P -positions of R-Wythoff agree with those of
Wythoff’s game, and found all positions of Sprague-Grundy value 1. We describe
all the positions of Sprague-Grundy value 2 and 3, and also conjecture a general
form of the positions of Sprague-Grundy value g.

Keywords: Wythoff’s Game; Sprague-Grundy values

1 Introduction

Wythoff’s Game is a two-player impartial game played with two piles of tokens. Players
alternate turns and for each move a player can remove either a positive number of tokens
from one pile, or the same positive number of tokens from both piles. The last player to
move wins.
R-Wythoff is a restriction of Wythoff’s game introduced by Ho [3] where each move

is either to remove a positive number of tokens from the larger pile or to remove the same
number of tokens from both piles.

From here on, we assume that both players play optimally - that is, every move leads
to the best possible outcome for that player regardless of his opponent’s responses. An
N -position of the game is one where the next player to move wins, and a P -position is
one where the previous player wins. A generalization of these concepts is given by the
Sprague-Grundy function G, defined as follows:

• The terminal position has Sprague-Grundy value 0.
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• Let N0 be the set of non-negative integers. Given a finite subset S ∈ N0, the
minimal excludant of S is mex(S) = min(N0 \ S), or the smallest non-negative
integer not in S. The Sprague-Grundy value of a position p is defined recursively
as G(p) = mex{G(q) : q ∈ F}, where F is the set of all positions reachable in one
move from p.

This function generalizes P - and N - positions because the P -positions of any game are
exactly the positions with Sprague-Grundy value 0. Additionally, knowing the Sprague-
Grundy function of individual combinatorial games allows fast calculation of the Sprague-
Grundy function, and hence winning strategy, of the sum of these games.

1.1 Previous Results

Wythoff gave a simple closed form for the P -positions of his game.

Theorem 1 ([6]). The P -positions of Wythoff’s game are (bφnc, bφ2nc) and (bφ2nc, bφnc)
for n > 0, where φ = 1+

√
5

2
is the golden ratio.

For the game of R-Wythoff, Ho proved the remarkable fact that the positions of
Sprague-Grundy value 0 are exactly the same set as those of Wythoff’s game. He addi-
tionally showed that the positions of Sprague-Grundy value 1 are exactly the translations
of the P -positions by −1 in both dimensions, with finite exceptions [3].

However, aside from these positions with Sprague-Grundy value 0, the Sprague-Grundy
values of Wythoff’s game are quite chaotic; for example, no polylogarithmic algorithm
has been found to determine the Sprague-Grundy value of a given position [5]. Some
authors analyzed positions of a fixed Sprague-Grundy value. Blass and Fraenkel looked
at all positions of Sprague-Grundy value 1 [1], and Nivasch analyzed positions of value g
for an arbitrary fixed value[5].

Here we analyze the set of positions of a fixed Sprague-Grundy value for the game
R-Wythoff. We determine all positions of Sprague-Grundy value 2 and 3, and conjecture
that for any constant g, the set of all positions having Sprague-Grundy value g has a form
similar to that of 2− and 3− positions. If this conjecture is true, then all positions of
value g can be characterized after finite computation, in contrast to existing results on
Wythoff’s game.

1.2 Notation

Let (a, b) represent a position in R-Wythoff. If G(a, b) = g, we call (a, b) a g-position.
A position q is a follower of p if p→ q is a valid move. If G(q) = g we will sometimes

call q a g-follower of p.
When plotting values of G we will use the following graphical representation. The first

coordinate is plotted vertically, increasing upwards, and the second coordinate is plotted
horizontally (see Figure 1). Consequently we call row r the set of points (r, x) for x > 0
and column c the set of points (x, c) for x > 0. Also, we call diagonal d the set of points
(x, x+ d) for x > 0. In general, when talking about a position (a, b) we assume a 6 b.
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9 9 9 9 5 9 1 9 5 9 10
8 8 8 8 8 8 2 8 6 7 9
7 7 7 7 7 0 7 7 8 6 5
6 6 6 6 1 1 4 5 7 8 9
5 5 5 5 0 5 6 4 7 2 1
4 4 4 4 2 3 5 1 0 8 9
3 3 3 3 4 2 0 1 7 8 5
2 2 0 1 3 4 5 6 7 8 9
1 1 2 0 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9

a/b 0 1 2 3 4 5 6 7 8 9

Figure 1: Sprague-Grundy Values of R-Wythoff

Let Tg = ((ag0, b
g
0), (a

g
1, b

g
1), . . .) denote the sequence of g-values having agn 6 bgn, in

increasing order of first coordinate. For convenience let pgn = (agn, b
g
n) and dgn = bgn − agn.

When it is clear that we are talking about a specific g, the superscript will sometimes be
dropped.

2 Computing Sprague-Grundy Values

2.1 Computing g-positions

We first present an algorithm, based off one of Blass and Frankel’s for Wythoff’s game
[1], which computes the sequence Tg for any positive integer g. Suppose we have already
know Th for 0 6 h < g. Now suppose we have used Algorithm RWSG to compute pgi for
i = 0, . . . , k − 1. We run RWSG again to compute pgk. Intuitively, it is greedily putting
pgk into the smallest viable row and then the earliest column that does not lie on the same
diagonal as an existing g-position.

Algorithm RWSG

1. p← mex{agi , b
g
i : 0 6 i < k}

2. d← smallest non-negative integer such that

(i) d 6∈ {dgi : 0 6 i < k} and

(ii) (p, p+ d) 6∈ Th for 0 6 h < g

3. (agk, b
g
k)← (p, p+ d)

We will now prove the correctness of RWSG on computing Tg given that T0, . . . , Tg−1
are known.

Theorem 2. The sequence determined by Algorithm RWSG is exactly the sequence Tg
of positions with Sprague-Grundy value g.
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Proof. We proceed by induction on k, where we have used the algorithm to compute pgk.
For k = 0 the algorithm computes pg0 correctly as (0, g), since ph0 = (0, h) for 0 6 h < g.
Now suppose we have correctly computed pg0, . . . , p

g
k−1. Let (p, p + d) be the position

RWSG computes next; we must show it is pgk.
First, note that agk > p. This follows from the fact that agk 6= agi and agk 6= bgi for any

0 6 i < k.
Next, each of the positions (p, p+ i) : 0 6 i < d must have not satisfied either 2(i) or

2(ii), or the algorithm would have selected position (p, p + i) instead of (p, p + d). Thus
each of these positions either lies in Th for some h < g, or has a g-position as a follower
along a diagonal. In particular, G(p, p+ i) 6= g for all 0 6 i < d.

Now by Step 2(ii), (p, p+ d) 6∈ T0, . . . , Tg−1, so G(p, p+ d) > g.
Finally, we deduce that G(p, p+ d) 6 g. Otherwise, (p, p+ d) has a follower that is a

g-position from the definition of mex. But we just observed that no position (p, p + i) :
0 6 i < d is a g-position, so it has no g-position left of it along its row. Also, by Step
2(i) it has no g-position on its diagonal. So (p, p+d) does not have a g-follower, implying
that G(p, p+ d) 6 g.

We conclude that G(p, p + d) = g, and since agk > p we must have pgk = (agk, b
g
k) =

(p, p+ d).

In practice, when using RWSG to compute Tg it suffices to pick a large upper bound
U and compute Th for 0 6 h < g up to all ahi 6 U , and then compute Tg up to agi 6 U .

2.2 Alternate Proofs of Previous Results

As a direct consequence of Step 1 of this algorithm, we have an alternate proof of two
theorems of Ho.

Theorem 3 (Theorem 7 of [3]). For integers a and c, there exists an integer b such that
G(a, b) = c.

Theorem 4 (Theorem 8 of [3]). For nonnegative integers a and c, there exists a unique
b such that G(b, a+ b) = c.

Proof. Uniqueness is immediate since no g-position can be a follower of another. For
existence, it suffices to show that the value a is chosen in Step 2 at some iteration in
RWSG. Step 2 will only choose a value greater than a if a fails (i) or (ii). If it fails (i),
then some g-position already lies on diagonal a and we are done. It can only fail (ii) a
finite number of times, once for each h < g. Therefore Step 2 will set d = a after a finite
number of iterations.

3 Characterization of g-Positions

Ho determined the positions of Sprague-Grundy value 0 and 1.

Theorem 5 (Theorem 2 of [3]). The position (a, b) with a 6 b is a P -position if and only
if it is of the form (bφnc , bφ2nc) for n > 0.
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Theorem 6 (Theorem 4 of [3]). The position (a, b) with a 6 b has Sprague-Grundy value
1 if and only if (a, b) is an element of the set

{(2, 2), (4, 6), (bφnc − 1,
⌊
φ2n
⌋
− 1) | n > 1, n 6= 2}

3.1 Positions of Sprague-Grundy value 2 and 3

We begin by giving all positions of Sprague-Grundy value 2. Recall that p0n denotes the
nth 0-position and for shorthand define p0n − (x, y) = (bφnc − x, bφ2nc − y); that is,
subtracting positions is done by coordinate-wise subtraction.

Theorem 7. The first 10 values of T2 are (0, 2), (1, 1), (3, 4), (5, 8), (6, 11), (7, 11),
(9, 16), (10, 16), (12, 21), (13, 21).

Define the sequences

(m1
k)k>0 : m1

0 = 10,m1
1 = 17,m1

k+2 = m1
k+1 +m1

k

(m2
k)k>0 : m2

0 = 11,m2
1 = 18,m2

k+2 = m2
k+1 +m2

k

(m3
k)k>0 : m3

0 = 12,m3
1 = 20,m3

k+2 = m3
k+1 +m3

k

(m4
k)k>0 : m4

0 = 15,m4
1 = 24,m4

k+2 = m4
k+1 +m4

k

For n > 10, p2n = 

p0n − (2, 2) if n = m1
k, k even

p0n − (4, 4) if n = m1
k, k odd

p0n − (2, 2) if n = m2
k, k even

p0n − (4, 4) if n = m2
k, k odd

p0n − (2, 2) if n = m3
k, k even

p0n − (4, 4) if n = m3
k, k odd

p0n − (4, 4) if n = m4
k, k even

p0n − (2, 2) if n = m4
k, k odd

p0n − (3, 3) otherwise.

We first show that the above formula is well-defined because no n can fall into multiple
cases.

Proposition 1. The (mi
k) are disjoint.

Proof. We can inductively show that m1
k < m2

k < m3
k < m4

k < m1
k+1. This is true for

k = 0 and k = 1 by definition of the sequences (note that m1
2 = 27 > m4

1).
Then if

m1
k < m2

k < m3
k < m4

k < m1
k+1,

m1
k+1 < m2

k+1 < m3
k+1 < m4

k+1 < m1
k+2,

adding these inequality chains together yields m1
k+2 < m2

k+2 < m3
k+2 < m4

k+2 < m1
k+3.
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Before proving Theorem 7, we need the following technical propositions.

Proposition 2. Consider a positive integer sequence a0, a1, a2, . . . satisfying an+2 =
an+1 + an for n > 0. Then we can find constants c1 and c2 such that an = c1φ

n + c2ψ
n,

where φ = 1+
√
5

2
and ψ = − 1

φ
. Furthermore, if |c2| < − 1

ψ−1+ψ1 = 1/
√

5 ≈ 0.447, then

(bφanc, bφ2anc) =

{
(an+1, an+2) if c2(−1)n > 0

(an+1 − 1, an+2 − 1) if c2(−1)n < 0

Proof. The fact that we can write an = c1φ
n+c2ψ

n is a standard result of linear recurrences
because φ, ψ are the roots of the characteristic equation x2 − x− 1 = 0.

Therefore φan = φ(c1φ
n + c2ψ

n) = c1φ
n+1 − c2ψn−1 = c1φ

n+1 + c2ψ
n+1 − (c2ψ

n+1 +
c2ψ

n−1) = an+1 + c2ψ
n(−ψ−1 − ψ1). Then the expression for bφanc follows immediately,

and bφ2anc = bφanc+ an which simplifies using an + an+1 = an+2.

Let T ′2 denote the sequence of positions described in Theorem 7; our final goal is to
show that T ′2 = T2, the sequence of 2-positions.

We use Proposition 2 to show the following proposition, which tells us about the
distribution of the elements of T ′2.

Proposition 3. Define p′n = (a′n, b
′
n) to be the nth element of T ′2. Consider the sequence

S ′ := (a′10, b
′
10, a

′
11, b

′
11, a

′
12, . . .).

Then this sequence contains no duplicates and covers the set

N0 \ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 21}.

Proof. We will compare the elements of S ′ to the sequence

S := (b10φc − 3, b10φ2c − 3, b11φc − 3, b11φ2c − 3, . . .)

. Because (bnφc)n>1 and (bnφ2c)n>1 are complementary Beatty sequences [2], the elements
of S are distinct and consist of the integers

N \ {bnφc, bnφ2c : 1 6 n 6 9} = N0 \ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 20}

By definition of T ′2, S
′ and S agree everywhere except along (m1), (m2), (m3), (m4).

It remains to compare these exceptions.
More precisely, let

M1 := (bφm1
0c − 3, bφ2m1

0c − 3, bφm1
1c − 3, bφ2m1

1c − 3, , bφm1
2c − 3, . . .)

M ′1 := (bφm1
0c − 2, bφ2m1

0c − 2, bφm1
1c − 4, bφ2m1

1c − 4, bφm1
2c − 2, . . .)

be the subsequences of S and S ′, respectively, along the indices given by (m1). Define
M2, M ′2, M3, M ′3, M4, M ′4 similarly.
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Note that we can write m1
k = (5+ 12√

5
)φk+(5− 12√

5
)ψk because it satisfies the Fibonacci

recurrence, and 5 − 12√
5
≈ −0.367. Therefore by Proposition 2, we can rewrite these

sequences as

M ′1 = (m1
1 − 3,m1

2 − 3,m1
2 − 4,m1

3 − 4,m1
3 − 3, . . .)

M1 = (m1
1 − 4,m1

2 − 4,m1
2 − 3,m1

3 − 3,m1
3 − 4, . . .)

Thus {M ′1} = {M1} ∪ (m1
1 − 3) \ (m1

1 − 4) = {M1} ∪ 14 \ 13.
Similarly,

m2
k =

(
11

2
+

25

2
√

5

)
φk +

(
11

2
− 25

2
√

5

)
ψk

m3
k =

(
6 +

14√
5

)
φk +

(
6− 14√

5

)
ψk

m4
k =

(
15

2
+

33

2
√

5

)
φk +

(
15

2
− 33

2
√

5

)
ψk

and 11
2
− 25

2
√
5
≈ −0.090, 6 − 14√

5
≈ −0.261, 15

2
− 33

2
√
5
≈ 0.121. Applying Proposition 2 in

the same way as on (m1) gives {M ′2} = {M2} ∪ 15 \ 14, {M ′3} = {M3} ∪ 17 \ 16, and
{M ′4} = {M4} ∪ 20 \ 21.

Therefore

{S ′} = {S} \
(
{M1} ∪ {M2} ∪ {M3} ∪ {M4}

)
∪ {M ′1} ∪ {M ′2} ∪ {M ′3} ∪ {M ′4}

= N0 \ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 21}.

Corollary 1. The elements of T ′2 (and their reflections) cover every row.

Proof. It suffices to show that {a′n, b′n : n > 0} covers N0. Using the notation of Propo-
sition 3, this set can be written as {a′n, b′n : 0 6 n < 10} ∪ {S ′}. The result follows
immediately from the values defined in Theorem 7 and Proposition 3.

As a tool for proving Theorem 7, we will use the following characterization of the
sequence Tg due to Jiao [4].

Proposition 4 (Lemma 8 in [4]). Every Tg consists exactly of the positions having
Sprague-Grundy value g if and only if every Tg satisfies

1. Tg ∩ Th = ∅ for h < g.

2. If p ∈ Tg, then p has no follower in Tg.

3. If p 6∈ T0 ∪ · · · ∪ Tg, then p has a follower in Tg.

Now we can prove Theorem 7.

the electronic journal of combinatorics 22(2) (2015), #P2.13 7



21 2 2

20 0

19 1

18 0

17 1

16 2 2

15 0

14

13 0 2

12 1 0 2

11 2 2 0 1

10 0 2 1

9 1 0 2

8 2 0 1

7 0 2 1

6 1 1 0 2

5 0 2 1

4 2 1 0

3 2 0 1

2 2 0 1

1 1 2 0

0 0 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 2: Positions of Sprague-Grundy value 0, 1, 2

Proof of Theorem 7. It suffices to show that T ′2 satisfies the properties of Proposition 4.
First, direct computation using Algorithm RWSG gives p20, . . . , p

2
9, and we can manually

check that these values satisfy the appropriate properties (see Figure 2).
It suffices to check the properties for the rest of T ′2.

1. Note that the nth element of T ′2, n > 10 lies on diagonal n. By Theorem 4, every
diagonal contains exactly one 0- and one 1-position. By Theorem 5 and Theorem 6
these positions are given by p0n−(0, 0) and p0n−(1, 1), respectively. In other words, they
are offset from p0n along the diagonal by 0, 1 respectively. However, the corresponding
position in T ′2 is offset by 2 or 4. Therefore the positions in T ′2 do not collide with
positions in T0 and T1.

2. Note that {b′n − a′n : 0 6 n 6 9} = {0, 1, 2, . . . , 9}. Furthermore b′n − a′n = n for
n > 10. Therefore no two positions in T ′2 are diagonal followers. Finally, Proposition 3
and noting that {S ′} and {a′n, b′n : 0 6 n 6 9} are disjoint imply that no two positions
are row followers.

3. Let q 6∈ T0 ∪ T1 ∪ T ′2. We will find a p ∈ T ′2 that is a follower of q. Without loss of
generality let q be below the main diagonal and write q as (r, r + d) with d > 0. Let
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p ∈ T ′2 be the unique element on diagonal d. If p is below q we are done, so assume
otherwise. If d 6 9 it is clear from inspecting Figure 2 that the claim holds. Suppose
d > 10.

Then p = p′d. By Corollary 1, there exists k such that a′k = r or b′k = r. In the latter
case (b′k, a

′
k) is a 2-follower of q. In the former case, a′k = r < a′d. Since d > 10 and

(a′n : n > 10) is increasing, k < d. Then the diagonal p′k lies on is less than the
diagonal p′d lies on, so b′k < r + d, and p′k is a row follower of q.

Similarly to the positions of Sprague-Grundy value 2, we may determine positions of
Sprague-Grundy value 3. To save space we let F (a,b) denote the sequence (mk)k>0 : m0 =
a,m1 = b,mk+2 = mk+1 +mk.

Theorem 8. The first 36 values of T3 are (0, 3), (1, 3), (2, 3), (4, 4), (5, 10), (6, 12),
(7, 14), (8, 12), (9, 17), (11, 20), (13, 23), (15, 27), (16, 29), (18, 29), (19, 34), (21, 37),
(22, 39), (24, 38), (25, 44), (26, 44), (28, 49), (30, 50), (31, 53), (32, 55), (33, 57), (35, 60),
(36, 62), (40, 67), (41, 69), (42, 71), (43, 73), (45, 76), (46, 78), (47, 80), (48, 82), (51, 86).

For n > 36,

p3n = p0n − (5, 5) +



(
(−1)k+1, (−1)k+1

)
if n = F

(36,58)
k(

(−1)k, (−1)k
)

if n = F
(42,68)
k(

(−1)k+1, (−1)k+1
)

if n = F
(44,71)
k(

(−1)k+1, (−1)k+1
)

if n = F
(45,72)
k(

(−1)k+1, (−1)k+1
)

if n = F
(46,74)
k(

(−1)k+1, (−1)k+1
)

if n = F
(47,76)
k(

(−1)k, (−1)k
)

if n = F
(53,86)
k(

(−1)k, (−1)k
)

if n = F
(54,88)
k(

(−1)k, (−1)k
)

if n = F
(55,89)
k

0 otherwise.

Proof. Follows similarly to the proof of Theorem 7.

3.2 Positions of Sprague-Grundy Value g

Next we turn out attention to greater g-positions. For the remainder of this section, we
assume g is a fixed integer greater than 3. When talking about positions pgn = (agn, b

g
n) we

will drop the superscripts when it is clear we are using g.
We conjecture that in general, the positions of Sprague-Grundy value g follow a similar

pattern to that of the 2- and 3-positions.
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Conjecture 1. There exists constants N,C, k and disjoint sequences
F (m1,n1), F (m2,n2), . . . , F (mk,nk) and bits xi ∈ {0, 1} for 1 6 i 6 k such that for all n > N ,

(an, bn) =

{
p0n −

(
C + (−1)k+xi , C + (−1)k+xi

)
if n = F

(mi,ni)
k

p0n − (C,C) otherwise

Essentially, there is a offset C such that outside of a finite number of positions in Tg,
the rest lie at p0n− (C,C) except along a finite number of Fibonacci-recurrence sequences,
where they alternate above and below.

We reduce this to a weaker conjecture about the g-positions.

Conjecture 2. There exists a constant M such that for all n >M , dn = n.

We will show that Conjecture 2 implies Conjecture 1, and express C in a computable
way.

Definition. In a sequence (cn)n>0, let an element cj be called a repeat if there exists some
i < j such that ci = cj.

Proposition 5. Suppose Conjecture 2 is true. Then Conjecture 1 is true and C is equal
to the total number of repeats in (bn)n>0.

Proof. We start off with the following useful fact.

Claim 1. The sequence bM , bM+1, bM+2, . . . is increasing and does not contain two con-
secutive integers.

Proof. For n >M , bn+1 = an+1 + n+ 1 > an + 1 + n+ 1 = bn + 2.

Claim 1 implies the sequence (bk)k>0 has a finite number of repeats. Let R denote the
total number of repeats. We will show Conjecture 1 holds and C is this quantity R.

Without loss of generality, we also make the assumption that none of bM ,
bM+1, . . . are repeats of earlier elements; if this is not true, increase M until it is true, and
Conjecture 2 and Claim 1 still hold for this higher value of M .

For n > M , let f(n) be defined such that af(n) = bn − 1 and af(n)+1 = bn + 1. This is
well-defined because Claim 1 implies that bn − 1 and bn + 1 are not in the sequence (bk),
so they must be in the sequence (ak). Furthermore note that

f(n) = |{a0, a1, . . .} ∩ {0, 1, . . . , bn − 2}|

because a0, . . . , af(n)−1 are the only terms of (ak) that lie in the set {0, 1, . . . , bn − 2}.
The sequence b0, b1, . . . , bn−1 contains n−R distinct values, so of the values {0, 1, . . . , bn−

2} exactly n−R of them appear in the sequence (bn) and the rest appear in (an). Finally,
there is exactly one k such that ak = bk by Theorem 4. Combining these facts gives

f(n) = bn − n+R = an +R.
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Now consider the “error” quantity xn = an− (φn−R), similar to a technique used by
Nivasch [5]. Using the above equations we can determine that

xf(n)+1 = af(n)+1 − φ (f(n) + 1) +R = bn + 1− φ(an +R + 1)

= an(1− φ) + n+R(1− φ) + 1− φ

= −1

φ
xn −

1

φ

and similarly

xf(n) = −1

φ
xn − 1.

Define the functions g1(x) = − 1
φ
x− 1

φ
and g2(x) = − 1

φ
x− 1.

Recall that we are trying to show that the an tend to φn + R, so it suffices to show
that xn is close to 0. To do this we will show that for large n, xn can be written in terms
of many compositions of g1 or g2.

Claim 2. For every integer k > 1, there exists a constant Mk such that for all n > Mk,
there is a sequence n = n1 > n2 > · · · > n` such that ` > k, for each i either ni = f(ni+1)
or ni = f(ni+1) + 1, and M 6 n` 6 bM +R.

Proof. Consider some m > bM + R. Then there exists n such that m = f(n) or m =
f(n) + 1: otherwise, neither m − R nor m − R − 1 are in (an), so they are in (bn),
contradicting Claim 1.

Now we induct on k. For k = 1, we claim the constant M1 = M works. Consider
any n > M . If n 6 bM + R the singleton sequence consisting of itself works. Otherwise,
choose n2 such that n = f(n2) or f(n2) + 1, and continue until we reach n` 6 bM +R.

Finally, suppose the statement is true for 1, . . . , k − 1. We claim Mk = f(Mk−1) + 1
works. Consider any n > Mk. Let n1 = n and let n2 be such that n1 = f(n2) or f(n2)+1.
Noting that n1 > Mk implies n2 > Mk−1, and applying the inductive hypothesis finishes
the claim.

Now consider the function h(x) = min{|x−α| : α ∈ [−1, 0]} = max(x− 0,−1−x, 0).
We establish a few properties of h in relation to g1 and g2.

Claim 3 (Properties of h).

(a) h(g1(x)) 6 1
φ
h(x) and h(g2(x)) 6 1

φ
h(x).

(b) If h(x) = 0, then h(g1(x)) = h(g2(x)) = 0.

(c) If 0 < h(x) < 1
φ

, then

i. If x > 0, then h(g1(x)) = 0 and g2(x) < −1.

ii. If x < −1, then h(g2(x)) = 0 and g1(x) > 0.
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Proof. (a) We case on x. First suppose x < 0. Note that gi(x) > −1. If gi(x) 6 0
then h(gi(x)) = 0 and the inequality is true. In particular, if x > −1 then both
g1(x), g2(x) 6 0. So assume x < −1, and at least one gi(x) > 0. Since h(x) = −1−x,
we have h(g2(x)) 6 h(g1(x)) = −1

φ
(x+ 1) = 1

φ
h(x).

Next assume x > 0. Clearly gi(x) < 0. If both gi(x) > −1, then h(gi(x)) = 0 and we
are done. Otherwise, h(g2(x)) 6 h(g1(x)) = −1− (− 1

φ
x− 1) = 1

φ
h(x).

(b) If h(x) = 0, then −1 6 x 6 0. Then 0 6 − 1
φ
x 6 1

φ
. This implies −1 6 gi(x) 6 0, so

h(gi(x)) = 0.

(c) i. Assume 0 < x < 1
φ
. Then −1 < g1(x) < − 1

φ
so h(g1(x)) = 0, and x > 0 =⇒

g2(x) = − 1
φ
x− 1 < 0.

ii. Assume −1 − 1
φ
< x < −1. Then −1 + 1

φ
< g2(x) < 0 so h(g2(x)) = 0, and

− 1
φ
x > 1

φ
=⇒ g1(x) > 0.

Let P = max{h(xn) : M 6 n 6 bM + R}. For every n > Mk, apply Claim 2
to find a sequence n1 > · · · > n`. For each 1 6 i < `, ni = f(ni+1) or f(ni+1) + 1,
so xni

= g1(xni+1
) or xni

= g2(xni+1
). By Claim 3(a), h(xni

) 6 1
φ
h(xni+1

). Therefore

h(xn1) 6
1

φ`−1h(xn`
) 6 1

φk−1P .

In particular, there exists a large M ′ such that for all n >M ′, h(xn) < 1
φ
.

Claim 4. For every n >M ′, h(xn) < 1
φ

, and there is a sequence n = n1 > n2 > · · · > n`
such that for each i either ni = f(ni+1) or ni = f(ni+1) + 1, and M ′ 6 n` 6 bM ′ +R.

Proof. Analogous to the proof of Claim 2.

Thus for every n >M ′, by working backwards we can find a sequence n = n1 > n2 >
· · · > n` such that xni

= g1(xni+1
) or xni

= g2(xni+1
). Furthermore we can ensure that

nk 6 bM ′ +R and nk−1 6 f(bM ′ +R) + 1.
Finally, suppose that h(xn) > 0. By Claim 3(b), none of the ni satisfy h(xni

) = 0. By
Claim 3(c), the sequence (ni) satisfies either

xn1 = g1(xn2) = g1(g2(xn3)) = g1(g2(g1(xn4))) = · · ·
xn1 = g2(xn2) = g2(g1(xn3)) = g2(g1(g2(xn4))) = · · ·

This implies that any three consecutive terms of (ni) has the form m, f(m), f(f(m)) + 1
or m, f(m) + 1, f(f(m) + 1). But by the definition and formula for f , we have

f(f(m)) + 1 = af(m) +R + 1 = bm +R = m+ f(m)

and similarly f(f(m) + 1) = af(m)+1 + R = bn + 1 + R = n + (f(n) + 1). Therefore the
sequence (ni) satisfies the Fibonacci recurrence.
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To relate everything back to the g-positions (an, bn), knowing xn tells us an since
xn = an − (φn−R). For example, if xn ∈ (0, 1], then an = xn + φn−R = 1 + bφnc −R.
The three relevant cases are

0 < xn 6 1 ⇐⇒ an = (bφnc −R) + 1

−1 < xn 6 0 ⇐⇒ an = bφnc −R
−2 < xn 6 −1 ⇐⇒ an = bφnc −R− 1.

In summary we have shown that for all n > M ′, h(xn) < 1/φ =⇒ −2 < xn < 1,
which implies that (an, bn) has the form p0n− (R,R) or p0n− (R±1, R±1) according to the
above cases. If it has the latter form, then we can find a sequence n = n1 > n2 > · · · > n`
satisfying the Fibonacci recurrence where the terms alternate between the form ani

=
p0ni
− (R+ 1, R+ 1) and ani

= p0ni
− (R− 1, R− 1). Since we put bounds on n` and n`−1

there are a finite number of choices for this pair, but the sequence is uniquely determined
by the two smallest values, so there are a finite number of these Fibonacci-recurrence
“exception” sequences. We conclude that Conjecture 1 follows Conjecture 2.

4 Additional Comments

The best result we have shown toward Conjecture 2 is a bound on how far away bgn − agn
can be from n as a constant depending on g.

Proposition 6. For all g and n > 0, |dgn − n| 6 g.

Proof. According to step 2 of Algorithm RWSG, a diagonal is only skipped when a
previous g-position already occupies it, or any h-position for h < g. When calculating pgn,
the former can occur n times, and the latter g times since there is at most one h-position
per row. Thus dgn 6 n+ g.

Now suppose that dgn < n− g. Then out of the n previous g-positions, more than g of
them skipped diagonal dgn. Since it had no g-positions up to this point, it could only have
been skipped by step 2(ii) of RWSG because an h-position was already there. This can
happen at most g times since there can be at most one h-position per diagonal, which is
a contradiction.

Therefore n− g 6 dgn 6 n+ g as desired.

4.1 Empirical Data and Further Directions

We have verified Conjecture 2, and hence Conjecture 1, up to g = 20 using Algorithm
RWSG with computer assistance. Figure 3 give values for constants in the conjectures,
where Cg denotes the value of C in Conjecture 1 for the g-positions and Mg denotes the
value of M in Conjecture 2.

It would be helpful to determine more properties of these values. The following con-
jectures were attempted as progress towards Conjecture 1 and Conjecture 2.
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g Cg Mg

1 1 4
2 3 10
3 5 22
4 12 81
5 9 242
6 22 151
7 53 638
8 33 734
9 86 1456
10 143 3712

g Cg Mg

11 108 6783
12 160 37083
13 198 16207
14 257 35947
15 277 74332
16 1890 116760
17 496 159488
18 1009 339201
19 1174 6150670
20 546 778123

Figure 3: Conjecture constants

Conjecture 3. For every g, the sequence Bg = bg0, b
g
1, . . . has a finite number of repeats.

Conjecture 3 would imply that the values Cg would exist independently of whether
Conjecture 1 is true.

Intuitively, our work shows that having R repeats in Bg means the g-positions lie
approximately at positions p0n − (R,R). If R grows much larger than any of the values
C0, C1, . . . , Cg−1, this position will not collide with any positions of Sprague-Grundy value
0, 1, . . . , g − 1. Then Algorithm RWSG will greedily select the first available diagonal,
which leads to the property in Conjecture 2, which bounds the total number of repeats.

Other partial results that may help are showing that no two Cg are consecutive, aside
from C0 and C1 (this ensures that their positions are consistent with Conjecture 1), or
showing some type of growth behavior of the Cg. Indeed, any further information about
(Cg) would be of interest.

Another interesting statistic is the number of n such that bgn − agn 6= n, or the number
of g-positions which lie on the wrong diagonals. We can call pgn a wrong diagonal position
if it does not lie on diagonal n.

In fact, from viewing the empirical data, most of the repeats come from “single skipped
diagonals,” which occur when pgn skips a diagonal and pgn+1 fills it in; more precisely,
when dgn = n + 1 and dgn+1 = n. Notice that when agn and agn+1 are consecutive, bgn =
bgn+1. Furthermore this phenomenon occurs at a roughly fixed ratio: it is known that the
sequence A0 of P -positions Wythoff’s game has a 1/φ proportion of consecutive an values.
Looking at the empirical data of number of repeats Cg versus number of wrong diagonals
positions Mg, their ratio is a relatively stable constant that seems to hover between 4 and
7 (Figure 4). This supports the close relationship between repeats and wrong diagonals
positions.
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