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Abstract

Locating-dominating sets and identifying codes are two closely related notions in
the area of separating systems. Roughly speaking, they consist in a dominating set of
a graph such that every vertex is uniquely identified by its neighbourhood within the
dominating set. In this paper, we study the size of a smallest locating-dominating set
or identifying code for graphs of girth at least 5 and of given minimum degree. We
use the technique of vertex-disjoint paths to provide upper bounds on the minimum
size of such sets, and construct graphs who come close to meeting these bounds.
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1 Introduction

Various forms of distinguishing problems in graphs arising from several applications have
been studied. Imagine a setting where one wants to detect a hazard in a network (graph)
using simple local detectors. Every network node should be within reach of some detector,
say at graph distance at most 1: in this case the detectors must form a dominating set.
If, in addition, one wants to be able to precisely locate the hazard, every node must be
uniquely determined by the set of detectors monitoring (dominating) it. This is the notion
of a locating-dominating set or an identifying code (depending on whether the detector
nodes should be distinguished themselves).

Since the introduction of locating-dominating sets by Slater [24, 25] and identify-
ing codes by Karpovsky, Chakrabarty and Levitin [13], these concepts have been widely
studied and applied to hazard- or fault-detection in networks and facilities [13, 27|, rout-
ing [16], as well as in relation with graph isomorphism [3] and logical characterizations
of graphs [14]. An online bibliography on these topics is maintained by Lobstein [17].
We remark that these problems belong to the more general set of distinguishing or sep-
arating problems in graphs and hypergraphs; see the concept of hypergraph separating
systems [5, 22] (which is also known under the name of test covers [7, 19] or discriminating
codes [8], and is related to a celebrated theorem of Bondy [6]).

In this paper, we study locating-dominating sets and identifying codes in graphs of
girth at least 5 (that is, containing no triangle or 4-cycle). Their behaviour in this class
is quite different from the class of graphs with girth 3 or 4. We are able to give upper
bounds on the smallest size of such sets in terms of the order of the graph, and discuss
the tightness of our bounds.

Definitions. All graphs in this paper will be undirected and finite. The order of a graph
will be denoted by the letter n. The open and closed neighbourhoods of a vertex x
are denoted N(x) and NJ[z|, respectively, and the degree of x is the size of its open
neighbourhood. A graph is cubic if all its vertices have degree 3. A path along vertices
x1,...,x is denoted x; — ... — x3. The order of a path is the number of its vertices, and
its length is the number of its edges (that is, its order minus one). We may also denote
the concatenation of two paths P, P’ by P — P’. A Hamiltonian path of a graph is a
path containing all its vertices. Given a set X of vertices in a graph G, G[X] denotes the
subgraph of G induced by X. A graph G is vertez-transitive if, given any two vertices x
and y, there is an automorphism of G mapping x to y.

In a graph G, a vertex dominates itself and all its neighbours. A set D of vertices
dominates vertex x if some vertex of D dominates x. Similarly, D 2-dominates x if at least
two distinct vertices of D dominate x. Set D is called a dominating set if D dominates
all vertices in V(G). If a vertex = belongs to the symmetric difference N[u|AN[v] (i.e.
dominates exactly one of u,v) we say that x separates u from v.

We have the following definitions of the core concepts of this paper:

Definition 1 ([13, 24, 25]). Given a graph G, a subset C' of vertices of V' (G) which is both
a dominating set and such that all vertex-pairs in V(G) \ C are separated by some vertex
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of C'is called a locating-dominating set of G. If all vertex-pairs in V(G) are separated by
some vertex of C, it is called an identifying code of G.

Note that a graph always has a locating-dominating set, but it has an identifying
code (it is identifiable) if and only if it has no twins, i.e. vertices with the same closed
neighbourhood. However, for triangle-free graphs (and thus for graphs of girth at least 5),
twins cannot have any common neighbour, leading to the following observation:

Observation 2. A triangle-free graph is identifiable if and only if it has no connected
component with two vertices.

The minimum size of a dominating set, a locating-dominating set, and an identifying
code of a graph G are called the domination number v(G), the location-domination number
v*P(G) and the identifying code number v'°(G) of G, respectively. If G is identifiable we
have 7(G) < 7"(G) < "(G).

Related work. A classic result in domination due to Ore [20] is that for every graph G of
order n with minimum degree at least 1, v(G) < §. Later, McCuaig and Shepherd [18]
proved that besides seven exceptional graphs, if GG is connected and has minimum degree
at least 2, then v(G) < %” For minimum degree at least 3, Reed [21] proved the bound
7(G) < %”. More generally, it is known that any graph G with minimum degree § has
domination number y(G) = O (10(%5) n (see [1]), and this bound is asymptotically tight [2].
On the other hand, for connected cubic graphs with n > 9, Kostochka and Stodolsky [15]
proved that y(G) < 2.

A bound of this form does not exist for locating-dominating sets or identifying codes.
Indeed, d-regular graphs with locating-dominating number and identifying code number of

O(d)
these constructions contain either triangles or 4-cycles, and the same authors showed that
for any graph G of order n, girth at least 5 and minimum degree §, an (asymptotically
tight) upper bound of the form +"°(G) < 4" (G) = O (k’%;) n (similar to the one for
dominating sets) holds. However, for small values of § the bound of [10] is not meaningful;
when § = 2, the second author showed the bound 4™(G) < % = 0.875n in his PhD
thesis [9].
In this paper, we study the following question:

the formn (1 — L) were constructed by the second author and Perarnau [10]. However,

Question 3. What are tight upper bounds on v*?(G) and 4'°(G) for graphs G of given
(small) minimum degree 0 > 2 and girth at least 57

Our results and structure of the paper. We study the cases where the minimum degree
d € {2,3}, and also the case of cubic graphs. In Section 2, we give upper bounds on
parameters v"° and " for these graph classes, and discuss their tightness by constructing
examples with large values of ¥*” and +'® in Section 3. We briefly conclude in Section 4.
A summary of our results is given in Table 1. To obtain the upper bounds, we use the
technique of building vertex-disjoint paths of the graph, that was introduced by Reed [21]
for dominating sets and was used in related works, see e.g. [15, 28].

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(2) (2015), #P2.15 3



Location-domination number Identifying code number
largest known examples largest known examples
upper bound upper bound
small arb. large small arb. large
5—2 0.5 0.5—c¢ % 0.6 —¢
Cs [25] Prop. 21 05 Cr [4] Prop. 25 5 <0715
5 450363 | w8 5 Q454 | b 13
>3 " Prop. 23 " Prop. 27
3> 0.428 rop- 0.5 rop-
Prop. 24 29 Prop. 29 3
cubic P 1 Z < 0.489 0.4 31 <0.689
Thm. 18 [26] Cor. 12 Thm. 18 [13] Cor. 17

Table 1: Upper bounds and largest known ratios (in terms of the graph’s order) of location-
domination and identifying code numbers in connected graphs of girth at least 5 and
minimum degree 9.

2 Upper bounds using vertex-disjoint path covers

This section contains the proofs of our upper bounds. We start with some preliminary
tools.

2.1 Preliminary lemmas and definitions

Next, we give useful characterizations of locating-dominating sets and identifying codes
in graphs of girth 5.

Lemma 4. Let G be a graph of girth at least 5, and let C' be a dominating set of G. Let
X={zeV(G)\C : |[N@x)NC|=1}. Then C is a locating-dominating set of G if and
only if there is an injective function f : X — C such that f(x) € CNN(z) for allz € X.

Proof. 1f C'is a locating-dominating set, N (z)NC' # N(y)NC for each pair z, y of vertices
of X. Then clearly the function f : X — C such that f(z) = N(z) N C is injective (if
there are two vertices x,y € X with y # z and f(x) = f(y), then z,y would not be
separated, a contradiction).

For the sufficiency, suppose that there is an injective function f : X — C such that
f(x) e CNN(x)forallz € X. Let Y = V(G)\ (CUX) and let u, v be distinct vertices of
V(G)\C. If u,v € X, evidently f(u) # f(v) and thus N(u)NC # N(v)NC. Ifu € X and
v €Y, then [N(u)NC| =1and |[N(v)NC| > 2 and thus N(u)NC # N(v)NC. Lastly, if
u,v € Y, then [N(u)NC| > 2 and |[N(v) NC| = 2. But then N(u)NC # N(u)NC since
otherwise there would be a cycle of length 4. Thus, C' is a locating-dominating set. [

Lemma 4 means that in a graph of girth 5, the fact that a dominating set is also
locating only depends on the vertices that are dominated by exactly one vertex.

The following is a more complicated version of Lemma 4 for identifying codes. It is a
more precise extension of a lemma used by the second author and Perarnau in [10].
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Lemma 5. Let G be an identifiable graph of girth at least 5. Let C be a dominating set of
G and let Cs3 be the set of vertices of C' belonging to a connected component of G[C] of
size at least 3. Then, C' is an identifying code of G if and only if the following conditions
hold:

(i) None of the components of G[C| have size 2;

(i1) For X = {x € V(G)\ C : |N(z)NC| =1}, there is an injective function f : X — C
such that f(x) € Cs3 N N(x) for all x € X.

Proof. First, assume that C' is an identifying code of G. Then, Property (i) is clear
(otherwise the two vertices of some component C; of order 2 would not be separated).
The proof that Property (ii) holds is similar as for Lemma 4 (by letting f(z) = N(z)NC
for each z € X). Observe that f(x) € Cs3, otherwise x and f(z) would not be separated.

For the other side, assume that C' is a dominating set fulfilling Properties (i) and (ii)
and, by contradiction, assume that there are two distinct vertices x,y that are not sepa-
rated by C, i.e. N[z]NnC = N[y|nC.

Assume first that = and y are adjacent. As N[z]NC = N[y NC # 0, it follows that
N[z]nC = Nly|NnC C {z,y} (since there is no triangle in G). If both x,y belong to C,
x and y induce a component of G[C| of size 2, a contradiction. Otherwise, exactly one of
them belongs to C' (say x). But then y is only dominated by x, which does not belong to
(-3, a contradiction to Property (ii).

Thus, x and y are non-adjacent and, since there are no 4-cycles, |[N(xz) N N(y)| < 1.
Hence, there is a vertex z with N(z)NC = N(y) NC = {z}. It follows that =,y € X but
f(z) =z = f(y), a contradiction. O

We now define the key concept of vertex-disjoint path cover of a graph, and introduce
some related notation.

Definition 6. A wvertez-disjoint path cover (vdp-cover for short) of G is a partition of
V(@) into sets of vertices, each of them inducing a graph with a Hamiltonian path.

For 0 < ¢ < 4, a path whose order is congruent to ¢ modulo 5 is called an (i mod 5)-
path, and a path of order j is a j-path (an empty path is a O-path). Given a vdp-cover S,
we will denote by S; the set of (i mod 5)-paths in S, and by 7;, the set of i-paths in S.

The following result of Reed [21] will be used.

Theorem 7 ([21]). Every connected cubic graph of order n has a vdp-cover with at most

n
9 sets.

2.2 Locating-dominating sets

The bound given in the following theorem also follows from a stronger result in a recent
paper by Garijo, Gonzalez and Marquez [11] (see there Proposition 6.6). However, we
give an independent proof by a completely different method, which is a good and simple
illustration of this technique that will be used several times in this paper.

Theorem 8. Let G be a graph of order n, girth at least 5 and minimum degree at least 2.
Then v*"(G) < 5.
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Proof. Let S be a vdp-cover of G and let T; and T3 be the sets of paths of order 1 and 3in S,
respectively. Let S be chosen such that 2|77 |4| 73| is minimized. Without loss of generality,
we can assume that all paths in S have length at most 5, since otherwise we can split any
longer path into paths of lengths 2 or 5 without affecting the minimality condition. For
each path P € § of length 1 < r < 5, we define an order P = 9y — 21 — ... — x,_1 with
x; adjacent to x;41 for 0 <7 <r — 1. Let D be the set of vertices containing all vertices
of the paths of S of odd index (i.e. all z;’s and all x3’s). Note that D clearly dominates
all vertices, except possibly the vertices in a 1-path. Also, we define a function f on all
vertices with index 0 or 4 in the following way. If P = xqg — xy — ... — x,_1 is an r-path
with 2 <r <5, then f(z9) = 21 and, if r =5, f(z4) = 3. According to Lemma 4, if the
end-vertices of the 3-paths in § have, besides of their neighbour on the path, a second
neighbour in D and if all vertices of the 1-paths from & have two neighbours in D, then
the restriction of f to the set of 1-dominated vertices is injective and therefore D is a
locating-dominating set.

We will show that every vertex of a 1-path and every end-vertex of a 3-path has no
neighbour outside of D; which by the previous discussion suffices for D being a locating-
dominating set. Herefor, we say that a vertex z is a (p, ¢)-vertex if it belongs to a path
P of order p+ ¢+ 1 of § and the two paths obtained from P by removing = have orders
p and ¢. Observe that a (p, ¢)-vertex is the same as a (g, p)-vertex. Further, we say that,
for fixed p and ¢, the (p, q)-vertices are good if they all belong to D, otherwise they are
bad. Taking into account that p + ¢ + 1 < 5, we have the following pairs (p, ¢) such that
(p, q)-vertices are bad: (0,0),(0,1),(0,2),(0,3),(0,4),(1,2) and (2,2).

Let P =z € Ty be a 1-path. If x is adjacent to a (0, g)-vertex for some g € {0,1,2,3,4},
then we can replace the 1-path and the (¢ + 1)-path by a (¢ + 2)-path, obtaining in all
cases a lower value for the sum 2|77| 4+ |73|, a contradiction. Hence suppose that x is
adjacent to either a (1,2)-vertex or to a (2,2)-vertex. Then we can substitute the 1-path
and the 4- or 5-path by a 2-path and a 3- or 4-path, obtaining in each case a lower value
for the sum 2|7;|+ 73|, which is a contradiction. Hence, z has to be adjacent only to good
vertices. As §(G) > 2, it follows that x is adjacent to two vertices from D. Completely
analogous we obtain a contradiction when P is a 3-path having an end-vertex adjacent to
a bad vertex. Altogether, it follows that all vertices not in D have either an assignment
via f or two neighbours in D. Hence, by Lemma 4, D is a locating-dominating set. Since
each path from S has at most half of its vertices in D, we obtain v"*(G) < |D| < 5. [

Theorem 8 is tight for the cycles Cg and Cg, which can easily be seen to have location-
domination numbers 3 and 4, respectively (see also [25]). In Proposition 21, we will give
a construction of arbitrarily large connected graphs based on copies of Cg.

Next, given a vdp-cover S of a graph G with girth 5, we will show how to construct
a set D(S) and an injective function f : X — D(S) (where X is the set of 1-dominated
vertices of V(G) \ D(S)) meeting the conditions of Lemma 4. We will build D(S) by
taking roughly two vertices out of five in each path of S, then adding a few vertices for
each path whose length is nonzero modulo 5.
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Definition 9. Let GG be a graph of girth at least 5 and § be a vdp-cover of G. Then, the
set D(S) and the function fp(s) are constructed as follows.

For each path P = 2y — ... — 7,1 in §, we do the following. Assume that P € §;
(0 < i < 4), that is, p = bk + i for some k > 0. If £ > 1, D(S) contains the set
{z; e V(P),7 =1,3mod 5, j < 5k}.

Now, if k£ > 0 and P belongs to S\ Sy, we add some vertices to D(S) according to the
following case distinction:

o If P e Sy, welet D(S) contain z,_.

o If P S,, D(S) also contains ,—9 and fp(s)(Tp—1) = Tp—2.

o If P € S35, D(S) also contains {z,_3, 2,2} and fps)(2p-1) = Tp—2.
o If P €Sy, D(S) also contains {z,_3, 7,1} and fps)(Tp-a) = Tp—3.

To finish the construction of the function fp(s), for j < 5k, if z; ¢ D(S) and j =
0mod 5, fps)(@;) = 115 if j =4 mod 5, fpes)(x;) = j-1.
An illustration of Definition 9 is given in Figure 1.

To €y T2 z3 Ty

P e S o——e—0—e—0— ---
To T1 Tz T3 Ty Tp—1
PesS: O—e —0—e—0— -+ —®
xq €1 X9 Ts Ty Tp—2 Tp—1
PeSs: o— e 0 e 0 --- ——0
To Ty Ty T3 T4 Lp—3 Tp—2 Tp—1
P e Ss: o—e 0 e —0— -+ —8—e—0
To T1 T2 T3 T4 Lp—4 Tp-3 Tp—2 Tp-1
PeS;: oO——e —0—e—o0— ---

Figure 1: Ilustration of set D(S).

Lemma 10. Let G be a graph of girth at least 5 having a vdp-cover S. Then D(S) is a
locating-dominating set of G.

Proof. The proof follows from Lemma 4; indeed, each vertex x of a path P € § and
x ¢ D(S) that is not 2-dominated has an image fp(s)(z) € P (and no other such vertex
y has fps)(z) = fos)(y)). It follows that the restriction of fp(s) to the set X of 1-
dominated vertices is injective. O

Now, using Theorem 7 and the above construction of the set D(S), we can give an
improved bound for cubic graphs, based on the following general theorem:

Theorem 11. Let G be a graph of order n, girth at least 5 and having a vdp-cover with

- n paths. Then v*°(G) < #2%n.
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Proof. Let S be a vdp-cover of G of size at most a - n. We consider the set D(S) defined
in Definition 9. By Lemma 10, D(S) is a locating-dominating set of GG. It remains to
estimate the size of D(S).

For each path P in &; with 5k + i vertices (k > 0) blue, we have added 2 vertices of
P to D(S) in the first step of the construction. Then, in the second step, for each path
in §; US, and S3 U Sy, we have added one and two additional vertices, respectively. So
in total we get:

2
ID(S)I < g (n = [81] = 2IS2] = 3IS5] = 4ISa]) + [S81] + [S2l + 2[5 + 2[4

2 3 1 4 2

= gn—Fg|81|+5|82|+5|83|+5|84|
2 4

< —-|S
5n—|—5| ]
24+ 4o

N n.

5}

We get the following corollary of Theorems 7 and 11:

Corollary 12. Let G be a connected cubic graph of order n and girth at least 5. Then
YP(G) < £n < 0.489n.

2.3 Identifying codes

The methods used in this subsection are similar to the ones of Subsection 2.2, but the
proofs are more intricate.

Theorem 13. Let G be an identifiable graph of order n, girth at least 5 and minimum
degree 6 > 2. Then, v'*(G) < %n < 0.715n.

Proof. Given a vdp-cover S of G, let T; be the set of paths of order exactly ¢ of S (in this
proof we do not consider the orders modulo 5). We choose S such that

AT U Tl + 3[T2 U Ts] + 2[Ts U T (1)

is minimized. Let P € S be an r-path with » > 10. Then we can replace P by paths of
orders 5, 6 and 7 without affecting the minimality of (1):

e [f =0 mod 5, then we can replace P by 5-paths.

e If r =1 mod 5, then we can replace P by one 6-path and the remaining part by
5-paths.

e If r =2 mod 5, then we can replace P by one 7-path and the remaining part by
5-paths.
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o [fr =3 mod 5, then we can replace P by one 6-path, one 7-path, and the remaining
part by 5-paths.

e If r =4 mod 5, then we can replace P by two 7-paths and the remaining part by
5-paths.

Hence, without loss of generality, we can assume that there are no paths of length 10
or more in §. Now, we define a set C' in the following way. For each r-path P =
xo—x1 —...—x._1 of S, we add some vertices to C' and define a function f according to
the following distinction:

o If r =2 then let C contain z;.

e If r = 3, then let C' contain x; and x,.

If r =4, then let C' contain xy and x3; let f(z1) = z¢ and f(z3) = x3.

If 5 <7 <7, then let C' contain xq,xs, ... 2, 9; let f(xg) = 21 and f(x,_1) = z,_o.
o If r =8, then let C contain xy, x9, x3, x¢ and x7; let f(z4) = x5 and f(z5) = 6.
e If r =9, then let C contain x1, z9, x3, x4, 7 and zg; let f(z5) = x4 and f(zg) = x7.

An illustration of set C' is given in Figure 2. We will show that C' is an identifying code
of G.

r=1: o
o 7
r=2: o—e

Lo T1 X2
r=3: o——o—o

ZTo T i) I3
r=4: e—Oo0—o0—=

To x ) €3 Ty
r=2>5: O—e—e—e—0

Lo L1 X2 T3 T4 Tp
r=0: O—eo—e —e—e—O

Zo Z1 T2 Z3 Ty Ty Tg
r="7T: O—e—¢—¢ —o o O

To a1 o) T3 Ty Ty Te X7

Zo Z1 ) €3 Tq Ty Te X7 Ts

Figure 2: Illustration of set C' in the proof of Theorem 13.
As in the proof of Theorem 8, we say that a vertex x is a (p, q)-vertex if it belongs to
a path P of order p+ ¢+ 1 of S and the two paths obtained from P by removing x have

orders p and ¢. Observe that a (p, q)-vertex is the same as a (¢, p)-vertex. Further, we
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say that, for fixed p and ¢, the (p, q)-vertices are good if they all belong to C', otherwise
they are bad. Taking into account that p+¢+1 < 9, we have the following set B of pairs
(p, q) such that (p, q)-vertices are bad:

B ={(0,0),(0,1),(0,2),(0,4), (0,5), (0,6), (0,7), (0,8), (1, 2), (3,4), (2,5), (2,6), (3,5) }.

Now we will prove the following claims.

Claim 13.A. For a path P € S of order r € {8,9}, we can assume that the end-vertex
xp_1, which belongs to C, has either a second neighbour in P contained in C (i.e. different
from its predecessor x,_o in P) or it has a neighbour outside P.

Let r = 8 and P = 2y — &1 — ... — x7 and, following the construction of C', we
have x1, x9, 23, 26,27 € C. By contradiction, suppose that x; is not adjacent to any of
T1, Ta, r3. Suppose also that x; has no neighbour outside P. Since G has girth at least 5,
x7 is neither adjacent to x4 nor to xs. Hence, as 0 > 2, z7 has to be adjacent to x.
Now, either G = Cy or one of the vertices from P has one neighbour outside P. In the
first case, an independent set of size 4 is an identifying code of G = Cg and satisfies the
desired bound. Hence we may assume that G # Cg and thus there is a vertex from P
having a neighbour outside P. In this case, we may reorder the vertices along the cycle
such that z; has one neighbour outside P. Hence, Claim 13.A follows for » = 8. The
same argument can be used to prove the case r = 9.

Claim 13.B. Letr € {1,2,3,4,8,9} and let = be an end-vertex of an r-path P € S. Then
all neighbours of x outside P are good vertices.

Suppose that, for some r € {1,2,3,4,8,9}, there is an end-vertex of an r-path P
which is adjacent to a (p, ¢)-vertex in P’ € § with P # P’" and (p,q) € B. Note that we
can replace P and P’ by either an (r 4+ p + 1)-path and a g-path or by a p-path and an
(r +q+ 1)-path.! We will see that, in each case, we obtain a vdp-cover which contradicts
the minimality of (1). If p = 0, then we can join the r-path together with the (¢+ 1)-path
obtaining an (r + ¢ + 1)-path. This gives in all cases a lower value for the sum (1), which
is a contradiction. Hence we can suppose that (p,q) € {(1,2),(3,4),(2,5),(2,6),(3,5)}.
When r = 4 and (p, q) is arbitrary or when r = 2 and (p,q) = (1,2), we can replace the
r- and the (p 4+ ¢+ 1)-path by an (r + ¢ + 1)- and a p-path and we obtain in all cases a
lower value for (1). For r € {1,3,8,9} and (p, q) is arbitrary or r = 2 and (p, q) # (1, 2),
we can replace the r- and the (p + ¢ + 1)-paths by an (r + p + 1)- and a ¢-path and we
obtain always a lower value for (1). Since we obtain in all cases a contradiction to the
minimality of (1), it follows that, for r = 1,2,3,4,8,9, every end-vertex of an r-path is
adjacent to a good vertex, proving Claim 13.B.

Claim 13.C. FEvery vertex from a 1-path is adjacent to two vertices of C.

As § > 2 and since by Claim 13.B, the vertex of a 1-path cannot be adjacent to a bad
vertex, then it has to be adjacent to at least two good vertices, proving Claim 13.C.

"'Whenever we consider a new s-path with s > 10, we implicitely assume that, as done in the beginning
of the proof, it is cut into smaller paths.
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Claim 13.D. There are no components of G[C] that have size at most 2.

Since the girth of GG is at least 5 and § > 2, all end-vertices of a 2-, 3- or 4-path P have
a neighbour outside P. By Claim 13.B, these neighbours have to be good vertices. Hence,
there are no 1-components in G[C]. On the other side, if P is an 8- or a 9-path, Claim 13.A
implies that the end-vertices of P have either a further neighbour in P belonging to C' or
they have a neighbour outside P, which, by Claim 13.B, is a good vertex. Thus, the only
possibilities to have 2-components in G[C] are given when two 2-paths or one 2-path and
one 4-path or two 4-paths are connected through their good end-vertices. In these cases
we could transform them into a 4-path, a 6-path or an 8-path which would contribute less
to the sum (1) than the original paths, which is a contradiction, proving Claim 13.D.

Hence, by Claims 13.A, 13.B, 13.C and 13.D and by the construction of the function
f, C tulfils the conditions of Lemma 5, which certifies that it is an identifying code. Since
at most $|P| vertices from every path P € S belong to (', C' is an identifying code of G
of cardinality at most %n O]

Theorem 13 is tight for the cycle C7, which can easily be seen to have identifying code
number 5 (see also [4]).

As for locating-dominating sets, given a vdp-cover S of a graph G with girth 5, we
define a set C'(S) and a function fe(s) as follows.

Definition 14. Let G be a graph of girth at least 5 and S be a vdp-cover of GG. Then,
the set C'(S) and the function f = fe(s) are constructed as follows.

For each path P = 2y — ... — 2,1 of §, we do the following. Assume that P € §;
(0 < i < 4), that is, p = bk + i for some k > 0. If k£ > 1, C(S) contains the set
{z; e V(P),7=1,2,3mod 5,j < 5k}.

Now, for £ > 0, if P belongs to S\ Sy, we add some vertices to C'(S) according to the
following case distinction:

o If Pe S and k > 1, we let C(S) contain x,_» and f(z,-1) = zp—2. If £ =0, C(S)

contains xg.

o If Pe Sy and k > 1, C(S) also contains {z,_3, 2,2} and f(x,_1) =xp_o. If k=0,
C(S) contains {xzg, x1}.

o If Pe S;and k> 1, C(S) also contains {x,_3, 2, 2, 2,1} If k=0, C(S) contains
{$Oaxlax2}-

o If Pe Syand k > 1, C(S) also contains {z,_4, xp_3, 2,2} and f(x,_1) = xp_o. If
k =0, C(S) contains {xg,x1, 22} and f(z3) = 5.

To finish the construction of the function f, for j < 5k, if z; ¢ C(S) and j = 0 mod 5,
f(xj) = xj1q; if j =4 mod 5, f(z;) = x;_1. Note that each vertex x € P of V(G) \ C(S)
has an image f(x) belonging to P.

An illustration of Definition 14 is given in Figure 3.
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Zo X1 P T3 Ty Tp-5 Tp—gq Tp-3 Tp—2 Tp-—1

Pes: O— o o e o ... —0 o o o o
To T1 X2 T3 T4 Tp—6 Tp—5 Tp—4 Tp-3 Tp—2 Tp—1
Pes: o o o o 5 ... 5o e & ‘o ‘¢ &5
Zo 1 T T3 Xy Tp—7 Tp—6 Tp—5 Tp—4 Tp—3 Tp—2 Tp—1
PesS,: o— o o e O . —O & & & o o 0o
To T1 X2 T3 T4 Tp—8 Tp—7 Tp—6 Tp—5 Tp—4 Tp—3 Tp—2 Tp—1
Pe 83: o—eo—0——0— ---
Xo T To X3 Xy Tp—9 Tp—8 Tp—7 Tp—6 Tp—5 Tp—4 Tp-3 Tp—2 Tp—1
P e Sy O——e — e —0— ---

Figure 3: Illustration of set C(S).

Lemma 15. Let G be an identifiable graph of girth at least 5 having a vdp-cover S. Then
C(S) is a dominating set, and all pairs of vertices are separated, except possibly pairs .,y
of vertices such that x —y forms a path of S.

Proof. The proof follows from Lemma 5; indeed, each vertex z of V/(G)\C(S), with x € P
and P € S, that is not 2-dominated has an image fe(s)(z) € P, the restriction of fo(s) to
the set of 1-dominated vertices is injective, and the only potentially isolated vertices in
C(8S) are vertices v belonging to a path of S of order 1 (hence by construction no vertex

x has fos)(x) =v). O

Similarly to Theorem 11 for locating-dominating sets, we have the following generic
theorem:

Theorem 16. Let G be an identifiable graph of order n, girth at least 5 and having a

vdp-cover with « - n paths. Then v'(G) < 3+54an

Proof. Let S be the vdp-cover of G. The idea is to construct a set C' and an injective
function f : X — C (where X is the set of 1-dominated vertices of V(G)\ C') meeting the
conditions of Lemma 5. We will build C' by taking roughly three vertices out of five in
each path of §, then adding a few vertices for each path whose length is nonzero modulo
five, and finally performing a few local modifications.

Step 1: Constructing an initial pseudo-code. We construct C' = C(S) and f = feos) by
the procedure described in Definition 14.

Step 2: Taking care of components of G|C] of order 2. By Lemma 15, all conditions of
Lemma 5 (where we consider the restriction of f to the set X of 1-dominated vertices)
are fulfilled, except for Property (i): there might be some paths in S, of order exactly 2
and forming a connected component of G[C] (second item of our case distinction). Let
P be such a path, and V(P) = {zg,z1}. Then, since G is identifiable, one of xq, z; (say
x1) has a neighbour y, and since P is a connected component in G[C], y ¢ C. By the
construction of C, y belongs to a path and is adjacent to vertex f(y) in C. We perform
the following modification: remove zy from C, put y instead, and let f(xg) = x;. It is
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clear that repeating this for each such case, we get rid of all components of order 2 in
G[C].

Now, all conditions of Lemma 5 are fulfilled, hence C' is an identifying code of G.

Step 3: Saving one vertex for each path of Ss.

We consider all paths in S3 one by one, in an arbitrary order. For each such path P
with V(P) = {xo,...,2p_1} (p = 5k + 3 for some k > 0), we remove z,_3, T,_2, T,—1 from
C. We now distinguish some cases.

If z; € {xp_2, 7,1} has a neighbour in C, then, we add both x,_5,z,_1 to C' and let
f(xp—3) = xp—o. Similarly, if x,,_3 has a neighbour in C, we add both z,_3, x,_» to C' and
let f(xp_1) = x,_2. Note that in both cases, the two new code-vertices are now part of a
component of G[C] of order at least 3, hence all conditions of Lemma 5 are preserved.

If none of z,_3, 2, 2,2, 1 have a neighbour in C, we add x,_3 and x,_; to C. Note
that x,_o is now 2-dominated, hence all conditions of Lemma 5 are again preserved.

Repeating this at every step, C' is still an identifying code, and we have decreased the
size of C by |S;].

Step 4: FEstimating the size of the code. It remains to compute the size of C.

For each path P in §; with 5k + ¢ vertices, we have added % vertices of P to C' in
the first phase of the construction of C'(S) (Definition 14). Then, in the second phase of
the construction of Definition 14, for each path in &7, 8,5, S3, Sy, we have added one, two,
three and three additional vertices, respectively. In Steps 2 and 3, we did not change the
size of C, but in Step 4, we were able to reduce the size of C' by one for each path in Ss.
So in total we have:

3
IC| < 5(” — |S1] — 2|Sa| — 3|S3| — 4|S4]) + |S1| + 2|Sa| + 3|S3| + 3|Sa| — | S5

3 2 4 1 3

= - -|S -|S -|S -|S
Snt 2181+ £1Sa] + 153] + SIS
3 4

< - -|S
5n—1—5| |

<3—|—4an'

5

O

We get the following improvement for cubic graphs, a corollary of Theorems 7 and 16:

Corollary 17. Let G be a connected cubic identifiable graph of order n and girth at least 5.
Then v"(G) < 3tn < 0.689n.

3 Constructions

In this section, we provide constructions of connected graphs with girth at least 5 and
large location-domination or identifying code number. First of all, the following result
is a lower bound on parameters ¥*® and 7' depending on the maximum degree A of a
graph. It will be useful since it also applies to A-regular graphs.
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Theorem 18 ([9, 13, 26]). Let G be a graph of order n and mazimum degree A. Then
YP(G) = AQ—_tg. If G is identifiable, then v'°(G) > AQ—ZQ, and any identifying code of this
size is an independent 2-dominating set whose vertices all have degree A in G.

We remark that the last part of the statement is not very difficult to obtain from the
proof of the bound; a proof is available in the first author’s PhD thesis [9, Section 4.1].
3.1 Generic constructions

We now define constructions based on the Petersen graph that will be used later on.

Definition 19. Denote by Pjo the Petersen graph with V(Po) = {0,1,2,3,4,5,6,7,8,9},
and 0—1—2—...—9 one of its Hamiltonian paths, such that vertices 1 and 9 are adjacent.
Let Py be the graph obtained from Py, by subdividing once the edge {0,1}, and calling
the new vertex x.

The graphs of Definition 19 are illustrated in Figure 4.

(a) Graph Pyp.

Figure 4: The Petersen graph Pjy and its modification P;;. The black vertices form an
optimal identifying code and locating-dominating set of Py.

Definition 20. For any k > 2, let G%, be the graph formed by a vertex y connected to
k copies of Pp; (each attached via vertex ).

The graph G%, is illustrated in Figure 5.

3.2 Locating-dominating sets

We now give constructions with large location-domination number. The first construction
is based on copies of the 6-cycle Cy.

Proposition 21. There are infinitely many connected graphs G of order n, girth 5 and

minimum degree 2 with v**(G) = “5*.
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(a) An optimal locating-dominating set of G¥,. (b) An optimal identifying code of G¥,.

Figure 5: The graph G¥,.

Proof. Consider the graph G obtained from one vertex x and k£ > 2 disjoint copies of
Cs, each joined to x by exactly one edge. We have n = 6k + 1, and we claim that
Y*P(G) = 3k. It is easy to check that a set consisting of three vertices in each copy
of Cg (see Figure 6) is locating-dominating. For the lower bound, assume that D is an
optimal locating-dominating set, and that = ¢ D. Then, each copy of Cy contains at least
v*P(Cs) = 3 vertices of D, and we are done. Hence, assume that x € D. Each copy of
Cs has at least two vertices from D (otherwise D is not dominating). Assume some copy
contains exactly two (y, z): then the neighbour of z in that copy must be only dominated
by z. Indeed, if this is not the case (say he is dominated also by y), there would be two
vertices in this copy of Cg that are not in D but only dominated by z, a contradiction. But
now observe that in the whole graph, at most one vertex of V(G) \ D can be dominated
only by x, hence all other copies of Cg contain three vertices of D, and we are done. [

Figure 6: A family of connected graphs with location-domination number ”T_l

We will use the following lemma about the graph Py;.

Lemma 22. Let G be a graph of girth 5 containing a copy P of Py1 as an induced subgraph,
such that in P, only vertex x has neighbours out of P. Let D be a locating-dominating
set of G. Then, we have |D NV (P)| > 4.
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Proof. By contradiction, we assume that Dp = D N V(P) has size 3. If © ¢ Dp, then
Dp must form a locating-dominating set of P\ {z}. By Theorem 18, v"*(G) > %0 >3, a
contradiction. Hence, x € Dp. But now it is not possible to even dominate the remaining
vertices with just two vertices, a contradiction. O]

Proposition 23. There are infinitely many connected graphs G of order n, girth 5 and
minimum degree 3 with v**(G) = &(n — 1) > 0.363n.

Proof. Consider the graph G¥, (k > 3) from Definition 20, which has n = 11k +1 vertices.
A locating-dominating set of size 4k is given by selecting vertices {x, 3,6,9} of each copy
of Pi; (see Figure 5(a)). By Lemma 22, this is optimal. O

The Heawood graph Hi4 is a well-known Hamiltonian cubic vertex-transitive graph
on 14 vertices and with girth 6. Given its vertex set {0, 1,...,13}, its edges are given by
a Hamiltonian cycle 0—1—-2—...—13 and {0,5}, {1,10}, {2, 7}, {3,12}, {4,9}, {6,11}
and {8,13}. See Figure 7 for an illustration.

Figure 7: The Heawood graph with a minimum locating-dominating set (black vertices).

Proposition 24. The Heawood graph Hyy has v*"(Hy) = 6 = 2n > 0.428n.

Proof. A locating-dominating set of size 6 is for example {1,4, 6,8, 10, 13}.

We now prove that no locating-dominating set of size 5 exists. Assume by contradiction
that there is a locating-dominating set D of Hyy of size 5. Let m(D) and m(D, .S) count
the number of edges between vertices of D and the edges between D and S = V(Hy4)\ D,
respectively. Since at most |D| vertices from S can be dominated by a single vertex of
D, we have m(D,S) > |D| + 2(]S| — |D|) = 13. On the other hand, since Hy4 is cubic,
m(D,S) =15 —2m(D). Hence, we have m(D) < 1.

Therefore, we have at least three vertices in D that are adjacent only to vertices of S.
Since Hy4 is vertex-transitive, we assume without loss of generality that vertex 0 is such
a vertex. Among the neighbours of 0 (vertices 1,5, 13), at most one is dominated only by
0.

Assume that one of them is in that case. By the symmetries of the graph, there are
automorphisms pairwise exchanging edges {0, 1},{0,5},{0,13}. Hence, without loss of

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(2) (2015), #P2.15 16



generality, we can assume that vertex 5 is 1-dominated, but vertices 1, 13 are 2-dominated.
Hence, vertices 4,6 ¢ D but at least one vertex among 2,10 and 8,12 belongs to D,
respectively. Moreover, in order to dominate vertices 4 and 6, one of 3,9 and 7, 11 belongs
to D, respectively. Since these four sets are disjoint and |D| = 5, D contains ezactly one
of each.

We first assume that 2 € D: hence 10 ¢ D. Ifalso7 € D (and 11 ¢ D), both 9,12 € D
in order to dominate 10 and 11, respectively. Then D = {0,2,7,9,12} but 4,10 are both
dominated only by 9, a contradiction. Hence, 7 ¢ D and 11 € D. Then, 9 € D in order
to separate 6,10; then, 3 ¢ D and 12 € D, otherwise 6,12 are not separated. Hence
D ={0,2,9,11,12} but 4,8 are both dominated only by 9, a contradiction.

Hence, 2 ¢ D and 10 € D. If 3 ¢ D, then 9 € D and moreover 12 € D in order to
dominate 3 (hence 8 ¢ D). Since 7 is dominated, 7 is the last vertex of D. But then 2,6
are both dominated only by 7, a contradiction. Hence, 3 € D and 9 ¢ D. To separate
2,4, 7 € D (hence 11 ¢ D). Then 8 is the last vertex of D, otherwise it would not be
separated by 6. But then 4,12 are not separated, a contradiction.

Therefore, we can assume that all neighbours of 0 are 2-dominated. Hence, at least
one vertex among {2,10}, {4,6} and {8, 12}, respectively, belongs to D. Assume first
that 2 € D. Then, in order for 10 to be dominated, one of 9,10, 11 belongs to D. Then,
exactly one of 8 12 belongs to D. If 10 € D, one of 8,12 would not be dominated, a
contradiction. If 9 € D, then 12 € D (otherwise it is not dominated). But then, both
8,10 are only dominated by 9, a contradiction. A similar contradiction follows if 11 € D.

Hence, 2 ¢ D, and 10 € D. Then, (exactly) one of 3,7 belongs to D, otherwise 2 is
not dominated. If 3 € D and 7 ¢ D, 8 € D (otherwise 8 is not dominated). Since 6 must
be dominated, 6 itself is the last vertex of D; but then, 4,12 are both only dominated
by 3, a contradiction. Hence, If 7 € D and 3 ¢ D. Then, 12 € D (otherwise it is not
dominated). Hence, 8 ¢ D. But now, both 2,8 are only dominated by 7, a contradiction.

Therefore, D does not exist, which completes the proof. O

3.3 Identifying codes

We now give constructions with large identifying code number. We start with a construc-
tion based on the 5-cycle C, which has identifying code number 3 [4].

Proposition 25. There are infinitely many connected graphs G of order n, girth 5 and

minimum degree 2 with v'*(G) = 2(n —1).

Proof. Consider a vertex = attached to k > 2 copies of C5 via one of each copy’s vertex
(Figure 8). The set formed by three consecutive vertices of each copy of C5 (centered
in the neighbour of z) is clearly an identifying code. For the lower bound, assume that
some copy contains at most two vertices of an identifying code C'. Then they must be
non-adjacent (otherwise some vertex is not dominated). But then at least one of these
two vertices is not separated from one of its neighbours, a contradiction. Hence each copy
of C5 contains at least three vertices of C', proving the bound. O

The following lemma is about the graph P;.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(2) (2015), #P2.15 17



Figure 8: A family of connected graphs with identifying code number £(n — 1).

Lemma 26. Let G be an identifiable graph of girth 5 containing a copy P of P11 as an
induced subgraph, such that in P, only vertex x has neighbours out of P. Let C' be an
identifying code of G and C NV (P) = Cp. Then:

(1) |Cp| = 4;
(i) if |Cp| =4, then x is only dominated by a vertex y ¢ V(P);

Proof. (i) By contradiction, assume that |Cp| = 3. If C'p induces a connected graph, then
one can check that there are some non-dominated vertices in P. Hence, by Lemma 5(i),
either C'p induces a Ky containing x and an isolated vertex, or three isolated vertices. In
both cases some vertices of P would not be separated, a contradiction.

(ii) Assume that |Cp| = 4 and by contradiction, that x is dominated by a vertex of
Cp. If © ¢ Cp, then Cp must form an identifying code of P\ {z}. Then, the bound
YP(G) = ﬁ—ﬁz of Theorem 18 is tight, and by the same theorem, all vertices in Cp have
degree 3 in P\ {z}. Hence the neighbours of x do not belong to Cp, a contradiction.
Hence, = € Cp.

Let m(Cp) and m(Cp, S) count the number of edges between vertices of Cp and edges
between vertices of Cp and S = V(P) \ Cp, respectively. Let i denote the number of
vertices in C'p that are not adjacent to any other vertex of Cp (note that 0 < ¢ < 2 since
x € Cp and x is dominated by a vertex of Cp). Then, we have m(Cp) =4 —i— 1 (indeed
Cp must induce a forest). We also have m(Cp,S) = 11 — 2m(Cp) (since z € Cp and has
degree 2 in P). We get that m(Cp, S) = 54 2i. On the other hand, at most 4 — i vertices
in S can be 1-dominated, and the other ones must be at least 2-dominated. Since |S| =7,
we get m(Cp,S) >4 —i+2(7—(4—1i)) =10 +i. Putting both inequalities together, we
get that ¢ > 5, a contradiction. O

Proposition 27. There are infinitely many connected graphs G of order n, girth 5 and

minimum degree 3 with y'*(G) = 2 (n — 1) > 0.454n.

Proof. Consider the graph G¥, from Definition 20. An identifying code of size 5k, formed
by vertices {x,2,4,7,9} of each copy of Py, is illustrated in Figure 5(b). Now, consider an
identifying code C of the graph. By Lemma 26(i), every copy of Pj; contains at least four
vertices of C'. By Lemma 26(ii), for each copy of Pj; containing ezactly four code-vertices,
then y € C and vertex z is dominated only by y. Hence there can be only one such copy,
proving the lower bound. O
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We now define a cubic graph on 12 vertices with girth 5.

Definition 28. Let G5 be the 12-vertex graph with vertex set {0,1,...,11} and edges
given by a hamilitonian cycle 0 — 1 —2 — ... — 11 — 0 and {0,4}, {1,8}, {2,6}, {3,10},
{5,9}, and {7,11}.

An illustration is given in Figure 9. We remark that, alternatively, G5 can be obtained
from the Petersen graph by subdividing two edges that are at maximum distance (i.e.
distance 2) from each other and joining the two new vertices by an edge. A third way is
to take the Heawood graph, delete two adjacent vertices =,y and adding an edge between
the two neighbours of z and an edge between the two neighbours of y.

Figure 9: The graph G, with a minimum identifying code (black vertices).

Proposition 29. The graph G2 has v (G13) = 6 =

0|3

Proof. An identifying code of size 6 is given for instance by the set {0,2,5,6,7,10},
implying that v(G12) < 6.

To prove our claim, it is sufficient to show that there is no identifying code on 5
vertices. Assume for contradiction that there is an identifying code C' of G5 of size 5.
Let I be the set of isolated vertices in C, S = V(G12) \ C. Let m(C) and m(C, S) count
the number of edges between vertices of C' and the edges between C' and 5, respectively.
By Lemma 5, at least |S| —|C'\ I| vertices from S have to be 2-dominated. Hence, there
are at least |C'\ I| +2(|S| — |C \ I|) edges from S to C. On the other hand, there are
3|C| —2m(C) = 15 — 2m(C') edges from C' to S. Hence,

15 —2m(C) = m(C,5) = |C\ 1] +2(]5| = |C\ 1))
=2[S| = |C\ 1]
=2(12 - |C]) = |C[+ [I] = 9+ |1],

which gives
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By Lemma 5(i), the subgraph induced by C' consists either of a single component of
order 5, a component of order 4 and an isolated vertex, a component of order 3 and two
isolated vertices, or C' is an independent set. We distinguish now between these cases.

Case a: C consists of a single component of order 5. Then m(C) > 4 and thus, by
Inequality (2), 4 < 3, which is a contradiction.

Case b: C consists of a component of order 4 and an isolated verter. Again, by Inequal-
ity (2), 3 < m(C) < 2.5, a contradiction.

Case c: C consists of a component C,. of order 3 and two isolated vertices x and y. Then
C. is a path of length 2, say uvw, and m(C) =2 =3 — %', giving equality in the above
inequality chain. Hence, three vertices from S have exactly one neighbour in C', while the
other four have exactly two neighbours in C. With S = {s1, s9, $3, S4, S5, S6, S7}, let us say
that s1, s9, and s3 are the vertices being dominated once and let {s1,u}, {sq2,v}, {s3, w}
be the edges hereby involved. Then the edges incident with v have been all assigned, while
u and w can still contribute dominating one more vertex from .S. However, to 2-dominate
the vertices in {sy, ss5, s, $7}, necessarily two of them will be adjacent to both z and v,

building a cycle of length 4, which is not allowed. Thus, this case is not possible.

Case d: C =1 = {x1,29,13,24,25}. By Lemma 5(ii), all vertices from S have to be
2-dominated by I, and hence m(C,S) > 14. But since G5 is cubic, each vertex of S is
incident to at most one further edge. Since |S| = 7, at most six vertices in S can be
paired, and m(C,S) > 15. On the other hand, each vertex of C' has three neighbours,
hence m(C,S) < 15. This implies that while one vertex from S, say s7, has exactly three
neighbours in I, the other six vertices from S have exactly two neighbours in /. Since G,
is cubic, the vertices in {s1, 9, S3, S4, S5, S} are paired by a matching, say {s1, s2}, {s3, 54},
{s5,56}. Consider the edge {s1,s2} and its neighbours in I, say {1, z2, x5, 24}. Going
through all edges from the graph G5 and considering their four independent neighbours,
there are only two possibilities where the corresponding independent sets can be completed
to an independent set of size 5. These are the edges {3,4} and {7, 8} which give each two
possible independent sets {0,2,5,7,10}, {0,2,5,8,10} and {1,3,6,9,11}, {1,4,6,9,11}.
Hence, C' = I has to be one of these sets. However, it is easy to check that none of them
is an identifying code.

Hence, G2 has no identifying code of size 5 and 7'°(G15) = 6. ]

4 Conclusion

We proved the two tight upper bounds v'*(G) < § and 7'°(G) < %n for graphs G of
girth at least 5 and minimum degree at least 2, as well as improved bounds for cubic
graphs. While the first bound is asymptotically tight for large values of n, we do not
know whether this holds for the latter one.

For minimum degree at least 3, either our bounds are not tight, or we have not found
the graphs with highest value of parameters 4*® and ~'. In particular, the question

whether for every graph G of girth at least 5 and minimum degree at least 3, we have
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7P(G) < § seems intriguing. By Proposition 29 this would be tight for the graph Gi,.
Though we have tried to get better bounds when 6 > 3, it seems that our technique is
not powerful enough for such an improvement (at least without any new idea).

To conclude, we remark that another interesting question would be to conduct a similar
study for the open location-domination number and the locating-total domination number,

related concepts introduced in [23] and [12], respectively.

Acknowledgements. We thank the anonymous referee for carefully reading the paper,
therefore helping to improve its presentation.
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