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Abstract

We prove that the class of permutations generated by passing an ordered se-
quence 12...n through a stack of depth 2 and an infinite stack in series is in bi-
jection with an unambiguous context-free language, where a permutation of length
n is encoded by a string of length 3n. It follows that the sequence counting the
number of permutations of each length has an algebraic generating function. We
use the explicit context-free grammar to compute the generating function:

(1+4q) (1+5q—q2—q3—(1—Q)\/(1—q2)(1—4q—q2))

Z cpt” = 87

n=0

where ¢, is the number of permutations of length n that can be generated, and
q= q(t) — 1-2t—+/1—4t
= 2t

in turn implies that c}z " 524+ 2V5.

is a simple variant of the Catalan generating function. This

Keywords: Pattern avoiding permutation; Algebraic generating function; Context-
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1 Introduction

Let p=pipo...p, and ¢ = q1qs . . . qx be permutations of length n > k. We say p avoids
q if there are no k indices 47 < --- < 15 so that for all s, ¢,

pi. <p;, if and only if ¢ < q;.

For example, 25413 avoids 123 since it has no increasing subsequence of length 3.

Interest in sets of permutations that avoid a small set of “patterns” arose naturally in
the study of stack-sorting (or equivalently stack-generating) algorithms. Knuth showed
that a permutation p can be generated by passing the ordered sequence 12... |p| through
an infinite stack if and only if p avoids 312, and that permutations of length n avoiding
312 are counted by the Catalan numbers [15].

If g is a list of permutations, let Av,(q) be the set of permutations of length n that
avoid ¢ for each ¢ € q. We call Av(q) = U~ , Av,(q) a pattern-avoidance class. A basis
for a pattern avoidance class Av(q) is a set p of pairwise avoiding permutations so that
Av(p) = Av(q). A class is finitely based if it is equal to Av(p) for p finite.

The list of pattern-avoidance classes for which a generating function for the sequence
counting Av,(q) has been computed, or shown to be rational, algebraic or non-algebraic,
is limited. Classes avoiding a single pattern of length 3 are enumerated by the Catalan
numbers [15, 17] and so have an algebraic generating function. For length four, Av({1342})
has an algebraic generating function [8], Av({1234}) has a generating function that is D-
finite but not algebraic [13], and a closed form generating function for Av({1324}) has not
be found [2, 9]. It is known that for any pattern p of length four, Av({p}) is in bijection
with one of these three classes. For single patterns of length greater than four, and classes
avoiding two or more patterns, various isolated results are known [4, 18].

In this article we consider the class of permutations generated by passing an ordered
sequence through a stack of depth 2 and infinite stack is series, which was shown by the
first author to have a finite basis consisting of 20 patterns [11]. The more general case of
two infinite stacks in series has not been enumerated. Pierrot and Rossin recently proved
a polynomial time algorithm to decide if a permutation can be sorted by two stacks in
series [16]. A special case where both stacks are required to remain ordered was solved
by Atkinson, Murphy and Ruskuc [7]. The number of permutations sortable by 2 stacks
in parallel was recently solved by Albert and Bousquet-Mélou [3].

Several authors have considered the language-theoretic complexity of pattern avoid-
ance classes — see for example [1, 5, 6, 10]. Atkinson, Livesey, and Tulley [6] showed
that the set of permutations generated by passing an ordered sequence through a finite
token-passing network is in bijection with a regular language. Initially we applied this
technique to the finite network consisting of a stack of depth 2 followed by a stack of
depth k in series, constructing a sequence of languages and corresponding rational gen-
erating functions for small values of k. As k increased, the rational generating functions
appeared to converge to the algebraic function given in Theorem 11 below. However,
this method does not constitute a proof. To prove the result we instead follow another
path — we establish a bijection between permutations generated and an unambiguous

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(1) (2015), #P2.16 2



context-free language. The generating function is then guaranteed to be algebraic by a
well known theorem of Chomsky and Schiitzenberger.

The main work in this article is to establish the bijection with the context-free lan-
guage. It has been suggested that the method employed to transform the relatively sim-
ple pushdown-automaton description of the language to the quartic generating function
should be much easier than the method we detail here. We would welcome any insights
into this — in our approach we merely apply the standard theory, and give the details for
an interested reader.

2 Establishing a bijection

Let P be the set of permutations that can be generated by a stack of depth 2 and infinite
stack in series, and fix p, A\, u as the stack moves indicated in Figure 1.

H A P 123,

1L

Figure 1: Token passing moves p, A and p for two stacks in series.

Definition 1 (Dgp(w)). If u is a word over an alphabet that includes the letters a and
b, define D, ;(u) to be the number of a letters minus the number of b letters contained in
u.

Definition 2 (Ly,o0). Let & € N. The language Ly « is the set of words w € {p, A\, u}*
satisfying

1. D,(u) € [0,k] and D, ,(u) € [0,00) for all prefixes, u, of w,
2. Dp)\(w) = D,\yu(w) =0.

Lemma 3. A word w € {p, A\, u}* encodes a permutation in P if and only if w € Lo .
Moreover, a word of length 3n in Ly« encodes a permutation of length n.

Proof. The first claim is clear from the definition. If w € Ly has n p letters, then
D, \(w) = 0 implies w has n A letters, and D, ,(w) = 0 then implies w has n p letters,
so the length of w is 3n, and the number of tokens moves through the stacks is n. O]
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The language £ o, consists of all possible ways to pass tokens through the system of
stacks as in Figure 1. We wish to find a sublanguage that is in bijection with P. From
the set of all words in L9 o that generate the same permutation, we will try to choose the
string that outputs tokens as soon as possible, that is, has more p letters closer to the
front. The next definition will help to formalise this.

Definition 4 (p-ordering). Define an ordering, <,,, on words in {p, A, u}* as follows. Let
0 : {p,\,u}* — {v,u}* be a monoid homomorphism defined by 6(x) = p and 0(p) =
O(N\) = v. If u # v as strings then u <, v if |u| = |v| and 6(u) precedes 6(v) in lexographic
ordering on {u,v}* where u < v.

For example, if u = pAupAp and v = pAppAp then u <, v. Note that both words
generate the permutation 12, and wu is obtained from v by replacing the subword pu by
up, which has no affect on the permutation being produced. More generally we have the
following.

Lemma 5. Let w € Lo .

1. If w = woppwy then w' = woupw; generates the same permutation as w, and
w' <, w.

2. If w = wop wi A\pwy with D, \(wy) = 1 and wy € L4, then w' = woApwypiws
generates the same permutation as w, and w' <, w.

3. If w = wolpur Appwy with D, \(wg) = 1 and wy € L4, then w' = wopAw; pAw;
generates the same permutation as w, and w' <p W.

Proof. In each case it is clear that w' <, w. We must show that in each case the two
strings generate the same permutation. For case (1) this is clear since p and p do not
interact.

For case (2), since D, (wp) = 1, there must be one token (say a) left in the first stack
after reading wy, and since the next letter to be read is p, there must be one token (say
b) ready to enter the first stack. See Figure 2.

After reading pA, b moves to the top of stack B and a stays in stack A. Reading w,
leaves a and b in place and outputs some permutation of input tokens. Finally Ay outputs
a, leaving b on the top of stack B and stack A empty.

Starting from the initial configuration in Figure 2, the prefix woApwpuA of w’ moves a
to the top of stack B and places b in stack A. The permutation generated by w; is then
passed across as before, then a is output, and finally b is moved to stack B, leaving the
stacks in the same configuration as the prefix wopAw Ay of w.

A similar argument applies for Case (3) and is left to the reader. O

Definition 6 (£). The language L is the set of words w € Ly, that do not

1. contain a subword pp,
2. have a prefix wopAwiAp with wy € L4 o and D, x(wp) = 1,

3. have a prefix woApwiAp with wy € L4 o and D, \(wp) = 1.
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oo b----

-
After wy:

n
After wopA:

b
\
\
B A
- - - - a - - - =
After wopAwy Ap: I—I
b
\
\
B A

Figure 2: Stack configurations in the proof of Lemma 5.

Lemma 7. Let w € Ly . If either

1. w = wopAun Awapws with D, \(wg) = 1,w1 € L0, and wy € Lo generates a
permutation that avoids 312, or

2. w = worpwiAwapws with D, x(wy) = 1L,wy € Ly, and we € Lo generates a
permutation that avoids 312,

then w & L.
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Proof. Suppose for contradiction that w € £, w = wovwi Awopws with v € {pA, A\p},
D, (wy) = 1, w1 € L4 o, wy generates a permutation that avoids 312, and moreover that
wq is the longest prefix of w with this property. That is, if w = wugvuyAuguus with
v € {p\, A\p}, Dy(ug) = 1,u; € L1 and uy generates a permutation that avoids 312,
then |ug| < |wp.

Since D, \(wovw;) = 1 and A moves a token from stack A to stack B, after reading
wovwi A we have no tokens in stack A, and some token, say a, in stack B. See Figure 3.

oo b----

||

After wovwi A:

a
\
\
B A
]
After wovwi Apy:
a
\
\
B A
b
After wovwi AppsAy ¢
it Dy,(s) > 0: .
\
\
B A

Figure 3: Stack configurations in the proof of Lemma 7.

Since w € L, wy cannot be empty, and since wy is a subword of w € L we have
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wy € L. So wy moves some sequence of tokens completely through the stacks, leaving a
in place. The first letter of ws must be p, which moves some token, say b, onto stack A.
Let py, Ay, 1y be the letters in wo that correspond to moving b through the stacks. Then
ws has prefix pps\ptu, where s, t are subwords.

Since stack A contains b while s is read, if p occurs in s it must be immediately followed
by A, so D, x(u) € [0, 1] for all prefixes u of s, and D, »(s) = 0. Further, if D, ,(u) < 0 for
any prefix u of s, then a would be output. Either D, ,(s) =0 (and s € £) or Dy ,(s) > 0.

If s € £y then t € Ly, and generates a permutation avoiding 312 since it is a
subword of ws. In this case w has prefix w = wovwi AppsAptpy with Dy, (wovw;) = 1 and
t generating a permutation avoiding 312, which contradicts the choice of wy as the longest
such prefix.

Therefore we must have D) ,(s) > 0. In this case, after reading s at least one token,
say ¢, remains on top of a in stack B when b is moved into it. After reading A, the stack
configuration is as in the third diagram shown in Figure 3.

Note that a < b < ¢ since they are input in this order. Let € denote the empty word.
If t # e then it must contain at least one p (it cannot leave a token covering b, and cannot
just be p or pp) so it moves a token d > ¢ to the output. This means wy generates the
subpermutation dbc which is order equivalent to 312, contradicting our assumption. Thus
t = e and wy has prefix pps\yup, with s € {pA, u}*. Either s ends with pA, or s = upAs’
where D) ,(u) = D, ,(s) since D, , starts at zero and increases to this value. Thus s’ € L,
and w = wovwy AppupAs’ Aty with D, \(wovwy Appu) = 1, which contradicts w € L. O

Theorem 8. There is a bijection between permutations in P of length n and words in L
of length 3n.

Proof. Consider the map that sends a word of length 3n in £ C £, o, to the permutation
of length n it generates. If 0 € P then there is some word w € Ls, that generates
it by Lemma 3. If w ¢ L, then w must either contain pu, or have prefix wopAwiAp or
woApwi Ap with D, y(wp) = 1 and wy € L4 . We rewrite w as follows.

While w contains pu or has prefix wopAwy Apr or woApwy Ap:

1. Replace pp with pp
2. Replace wopAwi A with wgpwy A
3. Replace woApwi Ap with wopAwy pA

Each iteration replaces the current word by a word which generates the same permutation
and is shorter in the p-ordering by Lemma 5, so the procedure must terminate (there are
finitely many words less than w in the u-ordering). It follows that the map is surjective.
We complete the proof by showing it is injective.

Suppose we have two words u,v € L that generate the same permutation, and that
u # v as strings. Write

U= Ul ... Uy, and UV = V1Vy ...V,
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where u;, v; € {p, A, i}
Since u,v € L we have u; = v; = p. Let k € [2,n] be such that u; = v; for i < k and
ug # vg. Let 2 =wuy ... up_y =v1...0_1, SO

U= 22U ... U, and UV = 20 . .. Up.

First consider the case that one of wg, vy is p. Without loss of generality assume
U = ZMUgyy ---Uy. Then z must leave some token, say a, at the top of stack B, and
u = p outputs this token.

If v, = A, then a will be covered and v will not be able to generate the same permuta-
tion. So we must have vy, = p. Then vg1 # p. If vp; = A then a is covered. So vy, = p.
Then vgyo # p, if vp12 = A then a is covered, and vg,o # p since stack A contains two
tokens. So we have a contradiction, and it follows that neither ug, vy can be p.

Without loss of generality assume uy = p and vy = A. Then z must leave at least one
token in stack A to be followed by A, and at most one token in stack A to be followed
by p. Let a be the token in A, and b the token moved from the input by u, = p. See
Figure 4. Note that we have D, (z) = 1.

In u, zp must be followed by A since stack A is full after the p and p cannot be followed
by a u. So u has prefix zpA and we have the configuration shown in the second diagram
in Figure 4.

In v, z\ can be followed by either y or p but not A since stack A is empty after v, = .
Suppose vgr1 = . Then after reading zAp we have the configuration shown in the
third diagram in Figure 4. Since u and v are assumed to produce the same permutation,
the next u letter appearing in u after the prefix zp\ must move a to the output. Let
Aa, fte be the letters in u that move the token a. Then u has prefix zpAriA ko, Where
K1, ke € {p,A\}*. The subword ks cannot move tokens to cover a in stack B, so cannot
contain any A letters, and cannot contain any p letters since it is followed by p, so it must
be empty. The subword x; must be of the form (pA)* for i > 0, since it cannot move a.
So u has prefix z(pA\)' pAdapte With D, 5 (2(pA)") =1, s0 u & L.

It follows that vy, 1 = p, so we have

U = ZPAUk42 - . - Up, UV = ZAPV12 . . . Up.

The two configurations of the stacks after reading the length k& + 1 prefixes of v and v
respectively are shown in Figure 5.

We now consider two possibilities: either a precedes b in the permutation generated
by v and v, or b precedes a.

Case 1: a precedes b

Mark the letters A, ;4 in u and v that correspond to moving the token a by appending
the subscript a. So u has prefix zpAwi A\ wsop, and v has prefix 2\, pwp, where w, wy, wy €
{p, A, ™.

First consider the word v. Since w cannot end with p, and b must remain in stack
A until a is output, and w cannot leave any tokens covering a in stack B, and we have
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oo b----

o
After z:

n
After zpA:

-_-a b---

After zAu: I—I

B A

Figure 4: Stack configurations in Theorem 8 where u; = p and v, = A.

w € L1,0. If wis empty then v contains pj, which means v € £. Thus w is nonempty,
so moves some tokens, say ti,...,ts, from the input to the output.

Since u generates the same permutation as v, it must also move the tokens tq, ...,
through the stacks and output them before a is output. The subword w; cannot leave
any tokens covering a in stack A, so wy € {pA, u}*. If wy leaves some token t; in stack
B, then )\, will cover it by a, which means ¢; will appear after a in the output, so u does
not generate the same permutation as v. Thus after w; the stacks are the same as before
wy, 80 Wy € L1 . Let tq,...t, with r < s be the tokens moved to the output by w;. The
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B A B A

Figure 5: Stack configurations after zpA and zAp in Theorem 8.

situtation after reading w; is shown in Figure 6.

_____ tyyq - tg- -

||

— — < Q

B A

Figure 6: Stack configuration after zpAw; ), in Case 1 in Theorem 8.

If wy is empty then w has prefix zpAw;Agp, With w; € £, o which is forbidden, so w,
must move some tokens. Also ws cannot leave any tokens in stack B. Either wy leaves
some tokens in stack A, or not.

If wq leaves a token in stack A, this token cannot be one of t,,1,...,ts or else u would
generate a different permutation to v. Therefore this token is moved into stack A after
t, by a letter p. This letter cannot be followed by p, and since it remains in stack A it is
not followed by A. So this letter is either the last letter of ws, or is followed by another
p, which must also remain in stack A. Thus wy ends with p, but this is a contradiction
since wy is followed by .

Thus ws does not leave any tokens in stacks A or B, so moves t,.1,...,ts from the
input to the output, so wy € L3. Note that w;w, produces the same permutation of
t1,...,ts as w does, and w € L o so generates a 312-avoiding permutation of ¢1,. .., ;.
The subword w; permutes the first r tokens, and so ws must produce a permutation of
tri1,-..,ts that avoids 312. In this case u has prefix zpAwi A wap, where D, \(zpA) =1,
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wy € L1, and wy generates a 312-avoider, so by Lemma 7 v must also contain a prefix
that is not allowed if u € £. This is a contradiction, so this case does not apply.

Case 2: b precedes a

We return to the situation shown in Figure 5 with v = zpAugys...u, and v =
2ZAPUk1a . .. U,. Mark the letters p, A\, 4 in u and v that correspond to moving the token b
by appending a subscript b. Then u has prefix zppA\pywpy, and v has prefix zAppwy Apws iy
where w, wy,wy € {p, A\, u}*.

First consider the word u. Since w is followed immediately by p,, w cannot end with
a p, and since ¢ must remain in stack A until b is output and w cannot leave any tokens
covering b in stack B, we have w € £ .

If w is empty then u has prefix zpy\ppp. For v to produce the same permutation
the next token it must output from the configuration shown in Figure 5 is b, so w; €
{pA}* and wy € {p}*. Since wy is followed by p;, then ws must be empty. Then v
has prefix zApy(pA) Appip for some @ > 0. If 4 = 0 then v has prefix zApyA\ppp with
D, (z) = 1 which violates the third condition of Definition 6, and if i > 0 then v has
prefix (zApp(pA) 1) pA oy with D, \(zApp(pA)* 1) = 1 which violates the second condition
of Definition 6, so v & L.

Thus w is nonempty, so moves some tokens, say ty,...,ts, from the input to the
output. Since v generates the same permutation as wu, it must also move the tokens
ty,...,ts through the stacks and output them before b is output. The subword w; cannot
leave any tokens covering b in stack A, so wy € {pA, u}*.

If w, leaves some token t; in stack B, then A\, will cover t; with b so t; will appear after
b in the permutation generated by v, which is different to the permutation generated by
u. Thus after w; the stacks are the same as before wy, so w; € £ . Let t4,...¢, with
r < s be the tokens moved to the output by w;. The situation is shown in Figure 7.

_____ tryr to oo tg - -

||

b
a
\
\

B A

Figure 7: Stack configuration after zAp,w; ), in Case 2 in Theorem 8.

If wsy is empty then v has prefix zApw; Apptp with wy € L4 oo which is forbidden, so w,
must move some tokens. The subword ws cannot leave any tokens in stack B. Either w,
leaves some tokens in stack A, or not.

If wy leaves a token in stack A, this token cannot be one of ¢4, ...t or else v would
generate a different permutation to u. Therefore this token is moved into stack A after
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t,. by a letter p. This letter cannot be followed by pu, and since it remains in stack A it is
not followed by A. So this letter is either the last letter of ws, or is followed by another
p, which must also remain in stack A. Thus wy ends with p, but this is a contradiction
since wy is followed by .

Thus ws does not leave any tokens in stacks A or B, so moves t,,1,...,t, from the
input to the output, and wy € L5 .. Note that w;w, produces the same permutation of
t1,...,ts as w does, and w € L o so generates a 312-avoiding permutation of ¢,,. .., ;.
The subword w; permutes the first r tokens, and so w, must produce a permutation of
tr41,...,ts that avoids 312. In this case v has prefix zApywy Aywapy, where D, \(zApy) = 1,
wy € L1, and wo generates a 312-avoider, so by Lemma 7 v must also contain a prefix
that is not allowed if v € £. This is a contradiction, so we cannot have two such words u
and v. O

2.1 A related class of permutations

A natural question to ask is whether switching the order of the stacks makes any difference
to the problem. Let Q be the set of permutations that can be generated by passing an
ordered sequence through an infinite stack followed by a depth 2 stack in series. Each
word w € Ly encodes a permutation in Q as follows: reading w from right to left, for
each © move a token from the input to the infinite stack, for each A move a token from
the infinite stack to the depth 2 stack, and for each p move a token from the depth 2
stack to the output. It follows that P and Q are in bijection.

3 Constructing a pushdown automaton

In this section we construct a deterministic pushdown automaton accepting on empty
stack, which accepts the language

LS ={w$ | we L}
A pushdown automaton accepting on empty stack M is the following:
1. @ a finite set of states,
2. X a finite input alphabet,

3. T' a finite stack alphabet,

=~

. Qo € Q the start state,

5. 0 € T" a special stack symbol,

D

.amap 0 from @ x (X Ue) x I to finite subsets of @ x (I'*), called the transition
function,
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which runs as follows. Before reading input, the stack contains a single 0. Input strings are
accepted as soon as the stack becomes empty. A configuration of M is a pair (¢, w) where
q is the current state and w € I'* is a string of stack symbols representing the contents
of the stack (the first letter of w is the top of the stack). The notation 6(g;,a,k) =
{(gjy,m);---,(g;,,7s)} means that if M has the configuration (¢;, kw) and a € ¥ U {e} is
the next input letter to be read, then M can move to the configuration (g;,, v,w) for some
1 <1 < s, removing the token k from the top of the stack and replacing it by ;.

See [14] for more details.

A pushdown automaton is deterministic if for each state ¢ and stack symbol ¢

1. if |0(q,e,4)| = 1 then |d(q,a,i)] =0 for all a € X,

2. for each a € ¥ U {e} the set d(q, a, i) has size at most one.

Note that a determistic pushdown automaton accepting on empty stack cannot accept
the empty string (unless this is the only string it accepts) since there would have to be a
transition 0(qo, £,0) as well as a transition d(qp, a,0) for some letter a.

Let M be the pushdown automaton shown in Figure 8, which accepts on empty stack.

M uses its stack to keep track of D, , as it reads its input, and its states to keep track of

D, . It uses the stack symbol 2 as a device to flag when the input has the potential to
have a prefix of the form wypA or woAp with D, \(wy) = 1. Paths pp are forbidden. We
will prove that the language of this automaton is precisely the language LS.

Here is the formal description of M. Note that states g3, g¢, g7 are reached only when
1 is on top of the stack, and g5, gs are reached when either 1 or 2 are on top of the stack,
so we have omitted transitions from configurations that are not possible.

1.

AR B

states Q = {(Io7 cee aQS}a
input alphabet X = {p, A\, u, $},
stack alphabet T' = {0, 1, 2},

start state qq,

5(Q07 $70) = (9075)
o qO;lLal = 90,

KRR
= s O O
M M M M M

[~}
<
>
@)
[ |
Q
=
=)

)
<
>
[\
|
=)
=
[\

S S S 9 D S 9 O &9 D
NN N N N N N N N N
X
ot
—_

e S S N e S S N
[ N R P e T e e e
[~
iy
(@)

N N N N e e N e e

(=)
)
o

transition function § defined as follows.

5(Q1,p, 1) = (C]Q, 1)
o(q1,p,2) = (g2,2)
5(@37071) = (%:1)
6(q4, p,0) = (g2, 0)
5(Q4,P71) = (QQJ)
5(q47p7 2) = (q272)
0(gs5,p, 1) = (gs, 1)
5(q5,p, 2) = (QS>2)
d(gs, s 1) = (gs, 1)
(g7, p, 1) = (g6, 1)
(g1, A, 0) = (g3, 10
0(q1, A, 1) = (g3, 11
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w1l —e
W,2 — ¢

start

Figure 8: Pushdown automaton M accepting on empty stack, with start configuration
(40,0). The symbol i € {0,1,2} represents a stack token that is kept in place by a
transition.

To prove that M accepts precisely the language £$, we first show that M is deter-
ministic. This allows us to identify input words with unique paths in M and simplify our
arguments slightly.

Lemma 9. The pushdown automaton M s deterministic.
Proof. The claim is easily verified by considering the formal description for M. O
Proposition 10. The pushdown automaton M accepts the language L$ = {w$ | w € L}.
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Proof. Since M is deterministic, we identify input words with their corresponding unique
path in M.
Let w € {p, A\, u}*. We must show that

1. if w contains pu, then w$ is rejected.

2. if w fails to be in Lo o, then w$ is rejected,

3. if w has a bad prefix (conditions (2) and (3) in Definition 6), then w$ rejected.
4. if w$ is rejected, then w & L.

The only states that can be reached by a path up for u € {p, A\, u}* from the start
configuration are ¢, ¢2, ¢ and gg and since none are the source of a y transition, any word
containing pu will be rejected.

Next, we show that if w is not in £y «, then w$ is rejected by M. Each state represents
the endpoint of a path labeling a prefix of an input string accepted by the automaton.
One can verify the values of D, »(u) for each path labeled u ending at state ¢; given by
Table 1.

state || qo | 1 | Q2 | 93 | 94 | 45 | Q6 | 97 | G8
Doy O[1]2]0]1][1]1]0]2

Table 1: Value of D, , for any prefix ending at each state

Let h(u) be the height of the second (infinite) stack after reading u € {p, \, u}* starting
from the start configuration (go,0). Then h(e) = 1, h(up) = h(u), h(uX) = h(u) + 1 and
h(up) = h(u) — 1 since A pushes a token to the stack, u pops a token and p keeps the
stack unchanged. It follows that h(u) = D, ,(u) + 1, and since 0 stays on the stack until
$ is read, h(u) > 1 for all prefixes u € {p, A\, u}*, so D, ,(u) > 0. If w$ is accepted then
the stack must contain only 0 after reading w, so D, ,(w) = 0.

It follows that if D, \(u) > 2, D, \(u) ,D) ,(u) < 0 for some prefix u, or D, ,(w) # 0,
then M will reject wS$.

Next, suppose w € L9 » has no pp substring and a prefix of the form wyvw; Ay where
D, (wo) = 1,v € {pA, A\p} and w; € Ly . The string wy labels a path in the automaton
starting at ¢o and ending at state ¢;,q4, g5 or g¢ by Table 1. From each of these states,
reading v = pA ends in state g5, and reading v = A\p ends in state g¢g.

From g5, the word w; labels a path that visits only states g5 and gs, since D, ,(z) = 0
for all prefixes z of wy, so the 1 on top of the stack before reading w; remains (and is
covered by 2s, which are removed by the 1 loop at ¢5), and ends at g5 since Dy ,(w;) = 0.
From here reading Ap is rejected.

From gg, if w; = & then ulpAp is rejected. Otherwise w; labels a path from gg to ¢s
and then moves between ¢5 and ¢g, and ends at ¢5. From here reading Ay is rejected.

We have now established that if w ¢ £ then w$ is rejected by M. To complete the
proof we must show that if w$ is rejected, then w ¢ L£. To show this, assume w € L o
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with no pu substring, but w$ is rejected by M. We will prove that w must have a bad
prefix.

Let p be the longest prefix of w$ labeling a path that is not rejected by M. Since
w € Lo we have D) ,(w) = 0, so if w = p, after reading w the stack contains just 0 so
w$ will be accepted, a contradiction. Thus p is strictly shorter than w. Let w = pxw’
where x € {pA, 1} is the next letter input after reading p.

We now consider the possible states where p can end.

1. Suppose p ends at go. Then D, (p) = 0 so x # A. If the top of stack is 0 then
Dy ,.(p) = 0 so x # p. Otherwise M cannot reject on reading p, pu.

2. Suppose p ends at ¢y, so its last letter is p, and D, z(p) = 1. Then x # p. Otherwise
M cannot reject on reading p, A.

3. Suppose p ends at go, so its last letter is p, and D,x(p) = 2. Then = # py,p.
Otherwise M cannot reject on reading .

4. Suppose p ends at g3, so D,(p) = 0 and the top of stack is 1. Then = # A.
Otherwise M cannot reject on reading p, (u, 1 — ).

5. Suppose p ends at g4, so D, \(p) = 1. The only way M could reject is if the top of
stack is 0 and x = p, which is not possible since w € L .

6. Suppose p ends at g5, so D,,(p) = 1 and 1 is on top of the stack. Then no letter
will cause M to reject.

7. Suppose p ends at gg, so D, (p) =1 and p ends with A\p. Then z cannot be p, and
otherwise px is not rejected.

8. Suppose p ends at gs, so its last letter is p, and D, (p) = 2. Then = # p, p and M
cannot reject if x = \.

These cases show that if p ends at any state except ¢7, then M does not reject w on
reading the next input letter. We finish the proof by showing that if p ends at ¢;, then
px is a bad prefix.

Since p ends at g7, p ends with A\, D, ,(p) = 2, and D, ,(p) > 0. If z = p then px is
not rejected. If x = A then w ¢ L9 . So we must have z = p.

Let p = piA. If py ends at gg, then p; = poAp, and pr = poApAp where D, 5\ (p2) = 1
and so pr is a bad prefix. The machine correctly rejects the string on reading x = pu.

Otherwise p; ends at ¢5. Either p; ends with pA, or p. If py = papA then D,y (p2) =1
and pr = popAAp is a bad prefix. Otherwise p; ends in y, and must pop a token 2 from
the stack. Let A, be the last A letter in p; that pushed a 1 on top of the stack (which
must exist, since all paths to g5 must cross such an edge). Write p; = paAp3pt.
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The letter A\, labels one of the following edges:
1. from ¢, to gs,
2. from ¢ to gs,
3. from ¢4 to gs,
4. from g5 to g7,
5. from gg to q7.

In the first case, ps ends at g so must have the form p, = up with D, (u) = 1.
Then p3u labels a path that moves between states g; and ¢g, reading pA and pushing a
2, or reading ;v and popping a 2, so psp € L1 . It follows that w has the bad prefix
upA«(psp) A, and so M correctly rejects it.

In the other four cases we have that D, (p2) = 1 since p, ends at state ¢i, g4, g5 or ge,
A« must be immediately followed by a letter p, and py\.p ends at state gg. Let p3s = ppy.
Then pyp labels a path that starts at gg, goes to gg, then moves between states g5 and gs,
reading pA and pushing a 2, or reading p and popping a 2. So psp € L1 . It follows that
w has the bad prefix po\.p(pspr) A, and so M correctly rejects it. O

4 Obtaining the generating function

Theorem 11. The sequence counting the number of permutations of each length in P has
an algebraic generating function:

B (1+4q) (1+5q—q2—q3—(1—q)\/(1—q2)(1—4q—q2))

Z 2" = 87

n=0

1—2z—+/1—4z2

where ¢, is the number of permutations in P of length n, and ¢ = q(z) = B

Proof. We convert the pushdown automaton given in the previous section to an unam-
biguous context-free language, following the standard procedure as described in Hopcroft
and Ullman [14]. Theorem 10.12 of Hopcroft and Ullman guarantees that the grammar
obtained from a deterministic pushdown automaton accepting on empty stack is LR(0)
and hence unambiguous.

We then apply the Chomsky and Schiitzenberger theorem, as outlined for example in
[12] 1.5.4, to obtain an algebraic generating function. Since each step in this procedure is
constructive, we can find the generating function explicitly.

We start by converting the pushdown automaton to a grammar. See Theorem 5.4 [14]
for full details.

Define a grammar with nonterminals S and [g¢;, 7, gx] = N, for each pair of states
i, @& and stack symbol j. The nonterminal [g;, J, gx] represents a path in the configuration
space of the pushdown automaton starting at ¢; with j on top of the stack and ending
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at some state g. The productions “fill out” these paths with subpaths according to the
transitions that are possible.
The production rules are then defined as follows:

1. for each state ¢; we have a production S — Ny,
2. for each transition 6(g;, a,j) = {(qx,€)} with a € {$, u}, add a production N;;;, = a,
3. for each transition (g;, p, ) = {(qx, )}, add productions N;;, = pNy, for 0 < x <8,

4. for each transition 6(g;, A, j) = {(qx,!m)}, add productions Njj; = ANk Nymz 0 <
z,y < 8.

This gives the following set of productions, where 0 < z,y < 8:

Nogp — $ Ny — pNoig Nise — AN31, Ny,
Nowo — Nagz — pNag, Noow — AN51yNyow
Noo — Nie — pNai, Note — AN51,Nyia
Nzig — Nize — pNag, Naow  — AN51,Nyos
Nyjs — p N3 — pNeia Nyow — AN31,Nyos
Naygg — p Niyoe — pNoge Nyw — AN31,Ny1a
Nsiy — Nsiz — pNgie Niow — AN31yNyo,
Nsos — p Nsow — pNgoy Nsiz — AN71yNyia
NOOx — leox N6193 — pNSl:c N52x — AN?lyNny
Note — pNiia Nrie — pNeis Nee — AN71yNy1a
Nozw — pNi2s Nioe — AN31,Nyos Ngiz — ANs2yNyi1a
Nige — pNoge Nie — AN31,Ny1a Ngow  — ANs2yNyos

We can reduce the size of the grammar description as follows. First, observe that
the only productions that eliminate nonterminals (by generating $ or ) are of the form
N,ji for k € {0,4,5}, and j = 0 implies &k = 0. Since all productions with nonterminals
on the right side have the form N,; — pN.; or Ny; — AN Nyj, it follows that any
nonterminal N,,, with £ not equal to 0,4 or 5 cannot be eliminated, so we can exclude
them from the grammar.

Also, if we start a derivation with S — Ny for k& # 0, there will always be a
nonterminal of the form N,q, that cannot be eliminated. Therefore it suffices to make
Nooo the start nonterminal and remove all productions involving S.

Lastly, the resulting grammar contain nonterminals Nxog, N504, N505 that will never
produce a string of only terminals, since the configuration (gs,0) is never realised (to
reach ¢5 the top of stack symbol is either 1 or 2. We modify the above grammar one step
further by removing any production involving these nonterminals.

Taking these factors into consideration, and collecting productions with the same left
side together we obtain the following grammar:
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N N N L e e e T e R A A A A

$ | pN1oo,

pN1o4,

pN1os,

2 | pN110,

pN114,

pN11s,

| pN1ao,

pNi24,

pN1as,

PNaoo | AN310Nooo | AN314N 400,

PNy ’ AN310Noos ’ AN314N404,

PNaos | AN310Noos | AN314Nyos,

pNa1o | AN310No1o | AN314N10 | AN315N510,
PNo1a | AN310No14 | AN314Na14 | AN315N514,
pNais | AN310No1s | AN314Na15 | AN315N515,
pNazo | AN310Nozo | AN314N4z0 | AN315Ns20,
pNags | AN310No2a | AN314Ns24 | AN315N504,
PNaos | AN310No2s | AN314Na25 | AN315N525,
AN510Nooo | ANs14N 400,

AN510Nooa | ANs14N 404,

AN510Noos | AN514N405,

AN510No1o0 | ANs14N110 | AN515N510,
AN510No14 | ANs14Ns14 | AN515N514,
AN510No15 | ANs14Ns15 | ANs15N515,
AN510No20 | AN514Na20 | AN515N520,
AN510No2a | AN514Na24 | AN515N504,
AN510No2s | AN514Ns25 | AN515N525,

1 | pNe1o,

pNe14,

pNe1s,

pNago | AN310Nooo | AN314Ny0,

PNao4 ’ AN310Noos | AN314Nyo4,

pNaos ’ AN310Noos ’ AN314Nyos,

pNaio | AN310No1o | AN314N410 | AN315N5s10,

M | pPNa14 | AN310No14 | AN314Ng14 | AN315N514,
PNo1s | AN310No15 | AN314Na15 | AN315Ns15,
pNa2zo | AN310No20 | AN314Ny20 | AN315Ns20,

1% ’ PNy ’ AN310No24 ’ AN314Ny4 ’ AN315N524,
pNaas | AN310No2s | AN314Nyos | AN315 N5,
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Nsio —  pNsio | AN710No1o | AN714N410 | AN715N510,
Nsis — | pNgia | AN710No1a | AN714Na1a | AN715N514,
Nsis = pNsis | AN710Nows | AN714Na15 | AN715N515,
Nsso — pNsao | AN710No20 | AN714Na20 | AN715N3500,
Nsos = pNgaa | AN710No2a | AN714N424 | AN715N504,
Nsas — | pNsas | AN710No2s | AN714N425 | AN715N505,
Newo —  pNsio | AN710Nowo | AN714N410 | AN715N510,
Neia — pNgia | AN710No1a | AN714Na1a | AN715N514,
Neis — pNgis | AN710No1s | AN714Nais | AN715N315,
N7o — pNeuo,

Ny — pNeua,

N7is — pNeis,

Nsio = ANs20Nowo | ANs24Na1o | ANs25 Ns10,

Ngis = ANs520Nowa | ANs2aNata | ANs25N514,

Nsis — ANso0Nows | ANs2aNais | AN525N515,

Nsao = ANs520No20 | AN524Na2o | AN525 N5,

Nsos  — AN520No2a | ANs24Naoa | AN525 Nsou,

Ngoss  — ANs20Nozs | ANs24Naos | AN525 Nsos.

The next step is to convert nonterminals to generating functions, terminals to z and
productions to equations, as described in [12] 1.5.4.

fooo = 2+ zfioo,

fooa = zfioas

foos = zfio0s,

foro = z+zfio,

foiu = zfiua,

fois = zfus,

Jfozo = 2+ zfi20,

Jfou = zfio4,

fozs = zfis,

Jioo = 2fa00 + 2 f310 000 + 2 f314. 100,

Jioa = 2fooa + 2 f310 004 + 2 f314. 104,

Jios = 2fa0s + 2310 005 + 2314 fa05,

fiio = zfai0 + 2f310f010 + 2f314 410 + 2 f315 f510,
fiia = zfoua + 2fs10fo1a + 2f314fa14 + 2 f315 f514,
Jfiis = zfas + 2 f310f015 + 2 fa1afais + 2 f315 f515,
fi20 = 2fa20 + 2 f310f020 + 2 f31afa20 + 2315 f520,
J124 2 faza + 2 f310 fooua + 2 f314 fa24 + 2 [315 [504,
fi2s = zfos + 2f310f025 + 2 f314 425 + 2 f315 f525,
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Jaoo = zfs10f000 + 2 f514.fa00,

Jaoa = zfs10f004 + 2 f514. 104,

Joos = 2fs10fo05 + 2 f514.fa05,

Jai0 = zfs10fo010 + 2 f514fa10 + 2 f515 f510,

fore = zfsi0fora + 2 f51afa14 + 2f515 f514,

Jais = zfs10fo15 + 2 f514fa15 + 2 f515 [515,

fa2o = zfs10f020 + 2f514fa20 + 2 f515 f520,

fo2a = 2fs10fo24 + 2 f514fa24 + 2 f515 524,

Jazs = zfs10f025 + 2 f514 425 + 2 f515 [525,

fsi0 = z+ zfe10,

fsiu = 2fe1s,

fsis = zfe1s,

Jaoo = zfa00 + 2310 000 + 2 [314f100,

Jaoa = 2fooa + 2310 004 + 2 [f314 fa04,

Jaos = 2fo0s + 2310 005 + 2 f314 fa05,

fao = zfa0 + 2fs10f010 + 2 f314fa10 + 2 f315 f510,
Jua = 2+ 2foa + 2fs10fora + 2 f314fa1a + 2 f315 f514,
Jus = zfas + 2fs10fo15 + 2f314 015 + 2 f315 515,
fa2o = zfa20 + 2f310 020 + 2 f314 420 + 2 f315 f520,
Jai2a = 2+ 2fooa + 2 [f310f004 + 2 f314fa24 + 2 [315 [504,
fazs = zfas + 2f310 025 + 2 f314fa25 + 2 f315 f525,
fsi0 = zfsi0+ zfri0fo10 + 2 friafaro + 2 fr15 f510,
fsia = z+ 2fs1a + 2frofors + 2 fr1afaa + 2 fr15 f514,
fsis = zfsis + 2frofors + 2friafas + 2 fris f51s,
fs20 = zfs20 + 2frofo20 + 2 fr1afaz0 + 2 f715 f520,
fsoa = zfsoa + 2friofoes + 2friafaza + 2 fr15 504,
Jsos = 2+ 2fsos + 2fr0foes + 2 fr1afaos + 2 fr15 525,
fero = zfsi0 + 2froforo + 2 fr1iafa0 + 2 f715 510,
fora = 2zfsia + z2friofora + 2 friafaa + 2 fris fs1a,
fers = zfsis + 2frofors + 2frafas + 2 frs fs1s,

f710 = Zf6107
fria = 2feua,
fris = zfeis,

fsio = zfs20fo10 + 2 fs24 far0 + 2 f525 f510,
fsia = 2fs20fo1a + 2 fsoafara + 2 f525 f514,
Jeis = 2fs20fo1s + 2 fs0afars + 2 f505 f515,
Je20 = 2fs20f020 + 2 [f524fa20 + 2 f525 [520,
fsoa = 2fs20fo24 + 2 f50a faoa + 2 f525 f504,
fa2s = zfs20fo25 + 2 fs2a fa2s + % f505 f505.

Using Maple (version 14) we can solve to obtain an expression for the algebraic gen-
erating function fyoo(2), which counts the number of words in £$ of each length. Since
words in £$ of length 3n + 1 are in bijection with permutations in P of length n, the
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generating function Z@O c,t" where ¢, is the number of permutations of length n in P
is obtained by dividing fyoo by z and substituting 2® = t. O

From the expression for the generating function we can easily obtain the first few
terms of the sequence:

1+ 242224623 + 242 + 11425 + 59225 + 321627 + 179042 + 1011982° 4 57820820 +
33321362 + 19343408212 + . . ..

We can also use standard analytic combinatorial methods [12] to deduce the asymp-
totic growth of the number of such permutations:
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