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Abstract

As a generalization of the sum of digits function and other digital sequences,
sequences defined as the sum of the output of a transducer are asymptotically ana-
lyzed. The input of the transducer is a random integer in [0, N). Analogues in higher
dimensions are also considered. Sequences defined by a certain class of recursions
can be written in this framework.

Depending on properties of the transducer, the main term, the periodic fluctua-
tion and an error term of the expected value and the variance of this sequence are
established. The periodic fluctuation of the expected value is Hölder continuous and,
in many cases, nowhere differentiable. A general formula for the Fourier coefficients
of this periodic function is derived. Furthermore, it turns out that the sequence
is asymptotically normally distributed for many transducers. As an example, the
abelian complexity function of the paperfolding sequence is analyzed. This sequence
has recently been studied by Madill and Rampersad.
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1 Introduction

Over the last decades, asymptotic properties of digital sequences have been studied by
many authors. The simplest example is the q-ary sum of digits, see Delange [7]. This has
been generalized to various other number systems (cf. [26], [27], [12], [34], [18], [3], [15],
[16], [23], [21]). Similar results have been obtained for other digital sequences (cf. [6] and
[4]). Frequently observed phenomena in the asymptotic analysis of these sequences include
periodic fluctuations in the second order term and asymptotic normality (see also [9]).

The purpose of this article is to use finite state machines as a uniform framework to
derive such asymptotic results. The results mentioned above will follow as corollaries from
our main results, see the end of the introduction for more details. As an example of a
new result fitting into this framework, we study the abelian complexity function of the
paperfolding sequence (cf. [28]), see Example 2.8.

Our main focus lies on transducers: these finite state machines transform input words
to output words using a finite memory (see Section 2 for a more precise definition). In
our case, the input is the q-ary digit expansion of a random integer in the interval [0, N).
We then asymptotically study the sum of the output of the transducer for N →∞. This
is also extended to higher dimensions.

While some of the examples can easily be formulated by transducers, other examples
are more readily expressed in terms of recursions of the shape

a(qκn+ λ) = a(qκλn+ rλ) + tλ for 0 6 λ < qκ (1)

with fixed κ, κλ, rλ ∈ Z, tλ ∈ R and κλ < κ. We transform such a recursion into a
transducer in Theorem 4 in Section 2.6.

Several notions abstracting the sum-of-digits and related problems have been studied.
One of them is the notion of completely q-additive functions a : N0 → R with

a(qn+ λ) = a(n) + a(λ)

for 0 6 λ < q (cf. [4]). These have been generalized to digital sequences as defined in [1, 6]:
A sequence a(n) is a digital sequence if it can be represented as a sum

∑
w f(w) where

f is a given function and w runs over all windows of a fixed length κ of the q-ary digit
representation of n. These digital sequences can easily be formulated by a recursion as in
(1).

For a transducer T , let T (n) be the sum of the output labels of T when reading the
q-ary expansion of n. For a positive integer N , we study the behavior of T (n) for a
uniformly chosen random n in {0, . . . , N − 1}. Assuming suitable connectivity properties
of the underlying graph of the transducer, we obtain the following results.

• The expected value is given by

E(T (n)) = eT logqN + Ψ1(logqN) + o(1)

for a constant eT and a periodic, continuous function Ψ1 (Theorem 1).

An extended abstract with less general Theorems 1, 2 and 4 and without proofs appears as [22].
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• The variance is

V(T (n)) = vT logqN −Ψ2
1(logqN) + Ψ2(logqN) + o(1)

with constant vT and a periodic, continuous function Ψ2(x) (Theorem 1).

• After suitable renormalization, T (n) is asymptotically normally distributed (Theo-
rem 1).

• The Fourier coefficients of Ψ1 are given explicitly in Theorem 2 and the Fourier
series converges absolutely and uniformly.

• The function Ψ1 is nowhere differentiable provided that eT is not an integer (The-
orem 3).

The exact assumptions for the various results are given in detail in the respective theo-
rems. Results for higher dimensional input are available for expectation, variance, normal
distribution and Fourier coefficients.

Our theorems are generalizations of the following known results.

• For the sum of digits of the standard q-ary digit representations (cf. [7]), we obtain an
asymptotic normal distribution, the Fourier coefficients and the non-differentiability
(for even1 q). The error term vanishes, as stated in Remark 3.4. Therefore, the for-
mula is not only asymptotic but also exact. The formulas for the Fourier coefficients
by Delange [7] also follow from our Theorem 2.

• The occurrence of subblocks in standard and non-standard digit representations is
defined by a strongly connected, aperiodic transducer. Thus we obtain the expected
value, the variance, the limit law and the Fourier coefficients (cf. [26, 27, 15] for
the expected value). For one dimensional digit representations, we also obtain the
non-differentiability (assuming eT 6= 0, 1) of the fluctuation in the expectation.

• The Hamming weight is a special case of the occurrence of subblocks. Thus, Theo-
rem 1 is a generalization of the results about the width-w non-adjacent form [21],
the simple joint sparse form [16] and the asymmetric joint sparse form [21].

• A transducer defining a completely q-additive function consists of only one state.
Therefore, we obtain an asymptotic normal distribution (as in [4]), the Fourier
coefficients and the non-differentiability (assuming eT 6∈ Z and integer output).
Here, the error term vanishes, too.

• A digital sequence is defined by a strongly connected, aperiodic transducer. Thus,
digital sequences are asymptotically normally distributed or degenerate. Assuming
eT 6∈ Z and integer output, the periodic fluctuation Ψ1(x) is non-differentiable. The
Fourier coefficients can be computed by Theorem 2. See also [6] for results on the
expected value.

1Our approach in Theorem 3 requires that the constant eT of the main term of the expected value is
not an integer. In this case, eT = q−1

2 , which is an integer if q is odd.

the electronic journal of combinatorics 22(2) (2015), #P2.19 3



• Automatic sequences [1] are also defined by transducers: The output labels of all
transitions are 0 and the final output labels are as in the definition of such sequences.
Theorem 1 gives the expected value with eT = 0 (see also [30]) and, depending on the
transducer, also the variance with vT = 0. The Fourier coefficients of the periodic
fluctuation of the expected value are given explicitly in Theorem 2.

• In [18], Grabner and Thuswaldner investigate the sum of digits function for negative
bases s−q(n). They give a transducer to compute the function s−q(n) − s−q(−n).
Their result about the limit law follows directly from our Theorem 1.

As an example of a new result obtained by Theorem 1, we give an asymptotic estimate
of the abelian complexity function of the paperfolding sequence in Example 2.8. In [28],
the authors prove that this sequence satisfies a recursion of type (1). As consequences
of Theorem 1, the expected value is ∼ 8

13
log2N , the variance is ∼ 432

2197
log2N and the

sequence is asymptotically normally distributed.
In the sequel, we discuss the relation of our setting and our results with the notion of

q-regular sequences introduced in [1].
A sequence is q-regular if it is the first coordinate of a vector v(n) and there exist

matrices V0, . . . , Vq−1 such that

v(qn+ ε) = Vεv(n) (2)

for ε ∈ {0, 1, . . . , q − 1}.
The concept of q-regular sequences is more general than our setting, but a broader

variety of asymptotic behavior is observed which precludes any generalization of our results
to general q-regular sequences.

While T (n) is a q-regular sequence for any transducer T (see Remark 3.10), the
converse is not necessarily true: Obviously, the sum of the output of a transducer reading
the input n is always bounded by O(log n). However, the 2-regular sequence2

a(n) =

{
n if n is a power of 2,

0 otherwise

can clearly not be bounded by O(log n).
Asymptotic estimates for q-regular sequences are given by Dumas [10, 11]. By restrict-

ing our attention to sequences defined by transducers, we obtain an asymptotic estimate
of the variance, explicit expressions for the Fourier coefficients of the fluctuation in the
second term of the expected value, non-differentiability of this fluctuation as well as a
central limit theorem.

Section 2 contains all the theorems and the required notions. In Section 2.2, Theo-
rem 1, formulas for the first and second moment of the output sum of a transducer and
its limiting distribution are presented. In Theorem 2 in Section 2.4, the Fourier coeffi-
cients of the periodic fluctuation Ψ1(x) of the expected value are stated. We discuss the
non-differentiability of Ψ1(x) in Theorem 3 in Section 2.5.

2Use v(0) = (0, 1)> (where > denotes transposition), V0 =
(
2 0
0 1

)
and V1 =

(
0 1
0 0

)
.
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Section 2.6 deals with sequences satisfying the recursion (1) and higher dimensional
analogues. We construct a transducer computing this sequence in Theorem 4. Thus, from
Theorem 1, the expected value, the variance and the limit distribution follow in many
cases.

This construction and the computations for the constants eT , vT and the Fourier
coefficients can be done algorithmically by the mathematical software system Sage [32]:
The general framework is included in Sage version 6.4.1 using its finite state machine
package described in [20]. The code for the Fourier coefficients and the construction
from a recursion is submitted for inclusion in future versions of Sage, see http://trac.
sagemath.org/17222 and http://trac.sagemath.org/17221, respectively.

In Sections 3 to 6, we give the proofs of all the theorems from Section 2.

2 Results

This section starts with the definition of some notions about the connectivity of a trans-
ducer. Then we will state the theorems about the moments and the limiting distribution,
the Fourier coefficients, the non-differentiability, and the construction of a transducer
computing a sequence given by a recursion as in (1).

2.1 Notions

We consider complete, deterministic and subsequential transducers (cf. [5, Chapter 1]).
In our case, the input alphabet is {0, . . . , q − 1}d for a positive integer d and the output
alphabet R. A transducer is said to be deterministic and complete if for every state and
every digit of the input alphabet, there is exactly one transition starting in this state
with this input label. A subsequential transducer T (cf. [31]) is defined to be a finite
deterministic automaton with one initial state, an output label for every transition and a
final output label for every state.

0 1 1

1 | 0 1 | 1
0 | 0

0 | 0

1 | 0

0 | 1

Figure 1: Transducer computing the Hamming weight of the non-adjacent form.

Figure 1 presents an example of a complete, deterministic, subsequential transducer.
The label of a transition with input ε and output δ is written as ε | δ.

The input of the transducer is the standard q-ary joint digit representation of an
integer vector n ∈ Nd

0, i.e. the standard q-ary digit representation at each coordinate of
the vector n. The input is read from right (least significant digit) to left (most significant
digit), without leading zeros. Then the output of the transducer is the sequence of the
outputs of the transitions along the unique path starting in the initial state with the given
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input and the final output of the last state of this path. The element T (n) of the sequence
defined by the transducer T is the sum of this output sequence.

Using final output labels is convenient for our purposes. Clearly, it would also be
possible to model the final output labels by using an “end-of-input” marker and additional
transitions. In the context of digital expansions, the behavior can usually also be obtained
by reading a sufficient number of leading zeros. But the approach using final outputs is
more general as it is not required that the final outputs are compatible with the output
generated by leading zeros.

For the various results, different properties of the complete, deterministic, subsequen-
tial transducer and its underlying digraph are needed. All states of the underlying digraph
are assumed to be accessible from the initial state. Contracting each strongly connected
component of the underlying digraph gives an acyclic digraph, the so-called condensation.
A strongly connected component is said to be final strongly connected if it corresponds
to a leaf (i.e., a vertex with outdegree 0) in the condensation. Let c be the number of
final strongly connected components. We call a transducer or a digraph finally connected
if c = 1.

For the asymptotic expressions, only the final strongly connected components are
important. All other strongly connected components only influence the error term. Thus,
we are not interested in the periodicity of the whole underlying digraph, but in the
periodicity of the final strongly connected components. The period of a digraph is defined
as the greatest common divisor of all lengths of directed cycles of the digraph. For
j = 1, . . . , c, let pj be the period of the final strongly connected component Cj. Define
the final period of the digraph as

p = lcm{pj | j = 1, . . . , c}.
We call a digraph finally aperiodic if p = 1. If the underlying digraph is strongly connected,
its final period is equal to its period.

For proving the non-differentiability of the fluctuation, we not only need a finally
aperiodic, finally connected digraph (p = c = 1), but also a reset sequence. A reset
sequence is an input sequence such that starting at any state and reading this sequence
leads to a specific state s. If the transducer is not finally aperiodic and finally connected,
then there cannot exist a reset sequence.

2.2 Moments and Limiting Distribution

This section contains the theorem about the moments of the output sum T (n) and the
limiting distribution. Further results about the periodic fluctuation can be found in
Theorems 2 and 3.

As probability space, we use ΩN = {0, 1, . . . , N−1}d endowed with the equidistribution
measure.

Denote by Φµ,σ2 the cumulative distribution function of the normal distribution with
mean µ and variance σ2 6= 0. Thus,

Φµ,σ2(x) =
1

σ
√

2π

∫ x

−∞
exp

(
−1

2

(y − µ
σ

)2)
dy.
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Theorem 1. Let d > 1, T be a complete, deterministic, subsequential transducer with
input alphabet {0, 1, . . . , q−1}d, output alphabet R, final period p, and c final components.

Then T (n) has the expected value

E(T (n)) = eT logqN + Ψ1(logqN) +O(N−ξ logN) (3)

where the constants eT and ξ > 0 are given in (5) in Section 2.3 and Ψ1(x) is a p-periodic,
Hölder continuous function.

If all bj given in (5) are positive, the distribution function of T (n) can be approximated
by a mixture of c Gaussian distributions with weights λj, means aj logqN and variances
bj logqN for some constants aj and λj > 0 with

∑c
j=1 λj = 1, given in (5). In particular,

P
( T (n)√

logqN
6 x

)
=

c∑
j=1

λjΦaj
√

logq N,bj
(x) +O

(
log−

1
2 N
)

for all x ∈ R.
If all aj are equal, then T (n) has the variance

V(T (n)) = vT logqN −Ψ2
1(logqN) + Ψ2(logqN) +O(N−ξ log2N) (4)

with constant vT ∈ R (given in (5)) and a p-periodic, continuous function Ψ2(x). Other-
wise, the variance is V(T (n)) = Θ(log2N).

If all aj are equal, T (n) converges in distribution to a mixture of Gaussian (or degen-
erate) distributions with means 0 and variances bj, weighted by λj. In particular, if all
bj > 0,

P
(T (n)− E(T (n))√

logqN
6 x

)
=

c∑
j=1

λjΦ0,bj(x) +O
(
log−

1
2 N
)

holds for all x ∈ R.
If furthermore c = 1 and vT 6= 0, then T (n) is asymptotically normally distributed.

We give the proof of this theorem in Section 3.

Remark 2.1. The assumption that bj > 0 is essential for obtaining uniform convergence
of the distribution function and the speed of convergence in particular. To see this,
consider the transducer in Figure 2. It is easily seen that T (n) = (−1)n. For even N , the
distribution function of T (n)/

√
log2N is given by

P
( T (n)√

log2N
6 x

)
=


0 if x < −1/

√
log2N,

1/2 if − 1/
√

log2N 6 x < 1/
√

log2N,

1 if 1/
√

log2N 6 x,

which does not converge uniformly.
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1 0

0 | 1, 1 | −1

0 | 0, 1 | 0

Figure 2: Transducer for Remark 2.1.

2.3 Eigenvalues and Eigenvectors of the Transition Matrix

For the constants in Theorem 1 and the Fourier coefficients in Theorem 2, we need the
notion of a transition matrix of the transducer and properties of its eigenvalues and
eigenvectors.

We label the states of the transducer with contiguous positive integers starting with
1. We denote the indicator vector of the initial state by e1.

Definition 2.2. Let t ∈ R be in a neighborhood of 0.
The transition matrix Mε for ε ∈ {0, . . . , q − 1}d is the matrix whose (s1, s2)-th entry

is eitδ if there is a transition from state s1 to state s2 with input label ε and output label
δ, and 0 otherwise.

Let M be the sum of all these transition matrices.

Lemma 2.3. There are differentiable functions µj(t) in a neighborhood of t = 0 for j = 1,
. . . , c such that the dominant eigenvalues of M are µj(t) exp(2πil

p
) in this neighborhood of

t = 0 for some of the l ∈ P = {k ∈ Z | −p/2 < k 6 p/2}. For each of these dominant
eigenvalues, the algebraic and geometric multiplicities coincide. For t = 0, µj(0) = qd.

The proof of this lemma is given in Section 3.
Let l ∈ Z. Consider the (not necessarily orthogonal) projection onto the direct sum of

the left eigenspaces of M corresponding to the eigenvalues µj(t) exp(2πil
p

) for j = 1, . . . , c
such that the kernel is the direct sum of the remaining generalized left eigenspaces. Let
w>l (t) be the image of e>1 under this projection, where > denotes transposition. The
definition of w>l (t) only depends on l modulo p.

We write w>l for w>l (0) and w′>l for the derivative of w>l (t) at t = 0. Furthermore,
w>l is either the null vector or a left eigenvector of M corresponding to the eigenvalue
qd exp(2πil

p
).

Let Cj be a final component with corresponding indicator vector cj. Define the con-
stants

λj = w>0 cj.

In Section 3.1, we will show that λj > 0 and
∑c

j=1 λj = 1.
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With these definitions, the constants in Theorem 1 can be expressed as

aj = −iq−dµ′j(0),

eT =
c∑
j=1

λjaj,

bj =
µ′j(0)2 − qdµ′′j (0)

q2d
,

vT =
c∑
j=1

λjbj.

(5)

Finally, ξ > 0 is chosen such that all non-dominant eigenvalues ofM have modulus strictly
less than qd−ξ at t = 0.

These constants can be interpreted as follows: aj logqN and bj logqN are the main
terms of the mean and the variance, respectively, of the output sum of the final component
Cj. These expressions including the derivatives of the eigenvalues correspond to the
formulas for mean and variance given in [13, Theorem IX.9]. The constants eT and vT
are convex combinations of the corresponding constants of the final components Cj.

The positive weight λj in these convex combinations turns out to be the asymptotic
probability of reaching the final component Cj. This is connected to the following in-
terpretation of the left eigenvector w>0 : If the final period p is 1, the entries of w>0 will
be shown to be the asymptotic probabilities of reaching the corresponding states. This
corresponds to the left eigenvector used in a steady-state analysis. If p > 1, these proba-
bilities depend on the length of the input modulo p. Then, we will prove that w>0 gives
the average of these probabilities taken over all residues modulo p. These interpretations
are justified in Section 3.1.

2.4 Fourier Coefficients

This section contains the formulas for the Fourier coefficients of the periodic fluctuation
Ψ1(x). For this purpose, we need the following definitions.

Let χk = 2πik
p log q

for k ∈ Z and 1 be a vector whose entries are all one.
The s-th coordinate of the vector b(n) is the sum of the output of the transducer T

(including the final output) if starting in state s with input the q-ary joint expansion of n.
In particular, the first coordinate of b(n) is T (n), and b(0) is the vector of final outputs.
Furthermore, define the vector-valued function H(z) by the Dirichlet series

H(z) =
∑
n>0
n 6=0

b(n)‖n‖−z∞ , (6)

where the inequality in the summation index is considered coordinate-wise and ‖ · ‖∞ is
the maximum norm.
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Theorem 2. Let T be a subsequential, complete, deterministic transducer. Then the
Fourier coefficients of the p-periodic fluctuation Ψ1(x) are

c0 = − eT
d log q

− iw′>0 1 +
1

d
Resz=dw

>
0H(z),

ck =
1

d+ χk
Resz=d+χk w

>
kH(z)

(7)

for k 6= 0.
The Fourier series

∑
k∈Z ck exp(2πik

p
x) converges absolutely and uniformly.

The function w>kH(z) is meromorphic in <z > d− 1. It has a possible double pole at
z = d for k = 0 and possible simple poles at z = d+ χk for k 6= 0.

The proof of this theorem is in Section 4.
The infinite recursion given in Lemma 4.5 can be used to numerically evaluate the

Dirichlet series H(z) with arbitrary precision and to compute its residues at z = d + χl
(see Lemma 4.7 and [17]). For d = 1, the computation of the Fourier coefficients can
be done by the mathematical software system Sage [32] (using the code submitted at
http://trac.sagemath.org/17222).

Example 2.4. The (artificial) transducer in Figure 3 has two final components with periods
2 and 3, respectively. Thus the final period is 6 and the function Ψ1(x) is 6-periodic. The
constant eT of the expected value is 11

8
. In Figure 4, the partial Fourier series with 2550

Fourier coefficients3 is compared with the empirical values of the periodic fluctuation Ψ1,
i.e.,

1

N

∑
n<N

T (n)− 11

8
log2N (8)

with integers N and 4 6 log2N 6 16.
The computation of these 2550 Fourier coefficients took less than 6 minutes using a

standard dual-core PC.

1 | 1,
0 | 31

| 1
, 0
| 1

1 | 1, 0 | 2 1 | 1
0 | 1

0
|1

,1
|0

0
|2

,1
|2

Figure 3: Transducer of Example 2.4: All states are final with final output 0.

3We use 2550 Fourier coefficients in this plot because the period length of the next summand of the
Fourier series in Figure 4 is already less than the resolution of a standard printer.
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−2.50

−2.25

−2.00

4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4: Partial Fourier series compared with the empirical values of the function Ψ1 of
Example 2.4.

In Example 2.8 we compute the first 2550 Fourier coefficients of the abelian complexity
function of the paperfolding sequence.

As a corollary of Theorem 2, we obtain the following result which was already proved
by Delange [7].

Corollary 2.5. The Fourier coefficients of the periodic fluctuation

Ψ1(logqN) =
1

N

∑
n<N

sq(n)− q − 1

2
logqN

for the q-ary sum-of-digits function sq(n) are

c0 =
q − 1

2 log q
(log(2π)− 1)− q + 1

4
,

ck = − q − 1

χk(1 + χk) log q
ζ(χk)

(9)

for k 6= 0 and χk = 2πik
log q

where ζ denotes the Riemann ζ-function.

We prove this corollary in Section 4.

2.5 Non-differentiability

In this section, we prove that for certain transducers, the periodic fluctuation Ψ1(x) of
the expected value is nowhere differentiable.

Theorem 3. Let d = 1. Assume that eT 6∈ Z and that the transducer T has a reset
sequence and output alphabet Z. Then the function Ψ1(x) is non-differentiable for any
x ∈ R.

The proof can be found in Section 5. There, we follow the method presented by
Tenenbaum [33], see also Grabner and Thuswaldner [18].
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In [33, 18], the reset sequence consists only of 0’s. If working with digit expansions, it
is often possible to choose such a reset sequence. However, in the context of recursions,
this is not always possible, see Example 2.8. There the reset sequence is (00001).

For a general finally aperiodic, finally connected transducer, the existence of a reset
sequence cannot be guaranteed.

2.6 Recursions

In this section, we describe how to reduce a recursion to a transducer computing the given
sequence. All inequalities in this section are considered coordinate-wise.

Let q > 2, κ, κλ ∈ Z, rλ ∈ Zd, tλ ∈ R and 0 6 κλ < κ for 0 6 λ < qκ1. If d > 2,
then additionally let rλ > 0 for all λ.

Consider the sequence a(n), n ∈ Nd
0, defined by the recursion

a(qκn+ λ) = a(qκλn+ rλ) + tλ for 0 6 λ < qκ1 (10)

and for all integer vectors n such that the arguments on both sides are non-negative.
Furthermore, initial values a(n) for n ∈ I have to be given for a suitable finite set
I ⊂ Nd

0.
It must be ensured that the recursion (10) does not lead to conflicts and that the set

of I is appropriate. Additionally, we require that I is minimal (with respect to inclusion).
In that case, we say that the recursion is well-posed.

In Section 6, we construct a subsequential, complete, deterministic transducer T (also
when the recursion is not well-posed) reading the q-ary joint expansion of integer vectors
without leading zeros. We will define a distinguished subset of its states, called simple
states. Furthermore, disjoint classes F1, . . . , FK of integer vectors will be defined.

Theorem 4. The recursion (10) is well-posed if and only if

1. for each cycle consisting of simple states with transitions with zero input label, the
sum of its output transitions vanishes and

2. the set I consists of one representative of each Fj, 1 6 j 6 K.

In that case, the sum of the output of T is the sequence a, i.e., T (n) = a(n) for all n > 0.

The proof of this theorem is in Section 6. Combining this result with Theorem 1
yields an asymptotic analysis of the sequence a(n), as in Example 2.8. Moreover, this
asymptotic analysis can be performed algorithmically in Sage for d = 1 (using the code
submitted at http://trac.sagemath.org/17221). A combinatorial description of the
sets Fi involving an auxiliary transducer is given in Remark 6.1.

Remark 2.6. For d > 2, and rλ 6> 0, the sequence cannot be computed by a finite
transducer: For every j > 0, there are non-zero integer vectors n > 0, n′ > 0 with
n ≡ n′ (mod qj)—i.e., a finite deterministic transducer cannot distinguish between n
and n′—such that the recursion (10) can be applied for the argument qκn+λ but cannot
be applied for qκn′ + λ.
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This problem does not arise in the case of dimension d = 1: if the end of the input is not
yet reached (this is something the transducer knows), there is a guaranteed forthcoming
digit > 1 (instead of 6= 0 in the higher dimensional case). This information is enough to
decide whether the recursion can be used.
Remark 2.7. Suppose that the given sequence is defined for n > n0 for some constant
n0. Then the sequence b(n) = a(n+ n0) fulfills (10) with κλ, rλ and tλ replaced by κµ,
qκµs + rµ − n0 and tµ, respectively, where n0 + λ = qκs + µ for 0 6 µ < qκ1. Then
Theorem 4 can be applied.
Example 2.8. Consider the abelian complexity function ρ(n) of the paperfolding sequence.
The paperfolding sequence is obtained by repeatedly folding a strip of paper in half in
the same direction. Then we open the strip and encode a right turn by 1 and a left
turn by 0. The abelian complexity function ρ(n) gives the number of abelian equivalence
classes of subwords of length n of the paperfolding sequence. Two subwords of length n
are equivalent if they are permutations of each other. In [28], the authors prove that this
sequence satisfies the recursion

ρ(4n) = ρ(2n),

ρ(4n+ 2) = ρ(2n+ 1) + 1,

ρ(16n+ 1) = ρ(8n+ 1),

ρ(16n+ 3) = ρ(2n+ 1) + 2,

ρ(16n+ 5) = ρ(4n+ 1) + 2,

ρ(16n+ 7) = ρ(2n+ 1) + 2,

ρ(16n+ 9) = ρ(2n+ 1) + 2,

ρ(16n+ 11) = ρ(4n+ 3) + 2,

ρ(16n+ 13) = ρ(2n+ 1) + 2,

ρ(16n+ 15) = ρ(2n+ 2) + 1

with ρ(1) = 2 and ρ(0) = 0. The constructed transducer is shown in Figure 5.
For simplicity, we do not state the final output labels in this figure. The expected

value and the variance are

E(ρ(n)) =
8

13
log2N + Ψ1(log2N) +O(N−ξ logN),

V(ρ(n)) =
432

2197
log2N −Ψ2

1(log2N) + Ψ2(log2N) +O(N−ξ log2N)

with 0 < ξ < 0.5604267891, as the second largest eigenvalues of the transition ma-
trix are −0.7718445063 ± 1.1151425080 i. The sequence ρ(n) is asymptotically normally
distributed. The functions Ψ1(x) and Ψ2(x) are 1-periodic and continuous. The reset
sequence of the transducer is (00001) (reading from right to left). The function Ψ1(x)
is nowhere differentiable and its Fourier series converges absolutely and uniformly. The
first 24 Fourier coefficients of Ψ1(x) are listed in Table 1. In Figure 6, the trigonometric
polynomial formed with the first 2550 Fourier coefficients is compared with the empirical
values of the function Ψ1(x) (see (8)).
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Figure 5: Transducer computing the abelian complexity function ρ(n) of the paperfolding
sequence. For simplicity, the final output labels are omitted.

1.5

1.6

10 11 12

Figure 6: Partial Fourier series compared with the empirical values of Ψ1(x) of the abelian
complexity function of the paperfolding sequence.
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l cl l cl
0 1.5308151288 12 −0.0002297481 + 0.0009687657 i
1 −0.0162585750 + 0.0478637218 i 13 0.0006425378 + 0.0006516706 i
2 0.0054521982 + 0.0075023586 i 14 0.0000413217− 0.0003867709 i
3 −0.0028294724 + 0.0086495903 i 15 −0.0005632948− 0.0001843541 i
4 0.0036818110 + 0.0021908312 i 16 0.0009051717− 0.0000476354 i
5 −0.0028244495 + 0.0014519078 i 17 −0.0004621780− 0.0000594551 i
6 −0.0008962222 + 0.0030512180 i 18 −0.0000127264− 0.0003100798 i
7 0.0015033904 + 0.0013217107 i 19 0.0004112716 + 0.0001954204 i
8 −0.0006766166− 0.0015392566 i 20 −0.0000011706 + 0.0004183253 i
9 0.0016074870− 0.0000503663 i 21 −0.0001027596 + 0.0004091624 i
10 −0.0006908394 + 0.0018753575 i 22 −0.0004725451 + 0.0004237489 i
11 −0.0008974336 + 0.0007658455 i 23 −0.0000596181 + 0.0002323317 i

Table 1: First 24 Fourier coefficients of the abelian complexity function ρ(n) of the pa-
perfolding sequence.

3 Asymptotic Distribution — Proof of Theorem 1

This section contains some lemmas which will together imply Theorem 1. Our plan is
as follows: First, we give auxiliary lemmas about the eigenvalues and eigenvectors of the
transition matrix M in Section 3.1. Section 3.2 contains an asymptotic formula for the
characteristic function of the random variable T (n). We use this characteristic function
to give formulas for the expected value and the variance in Section 3.3, and prove the
continuity of the periodic fluctuations in Section 3.4. Finally, we prove the central limit
theorem in Section 3.5.

We use the notation (εL . . . ε0)q for the standard q-ary joint digit representation of an
integer vector with εL 6= 0. For a real number in the interval [0, q), we write (ε0 � ε1 . . .)q
for the q-ary digit representation choosing the representation ending on 0ω in the case of
ambiguity. Furthermore, we use Iverson’s notation [19]: [expression] is 1 if expression is
true and 0 otherwise. All O-constants depend only on q, d and the number of states.

3.1 Transition Matrix and its Eigenvectors

This section contains the proofs of some results on the eigenvalues, eigenvectors and
eigenprojections of the transition matrix M .

For the proof of Theorem 1, we use the following lemma which describes the eigenvalues
of a matrix in a similar way as the Perron–Frobenius theorem (cf. [14]).

Lemma 3.1. Let M be a matrix with complex entries whose underlying directed graph is
p-periodic and strongly connected. Then the set of non-zero eigenvalues of M can be par-
titioned into disjoint sets of cardinality p where each set is invariant under multiplication
by e2πi/p and all eigenvalues in one set have the same algebraic multiplicities.
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Proof. Since the underlying directed graph of M ∈ Cn×n is a strongly connected, p-
periodic graph, we can write M as

M =


0 A2 0 · · · 0
... . . . A3

. . . ...
... . . . . . . 0

0
. . . Ap

A1 0 · · · · · · 0


with block matrices Ai by reordering the vertices. Then M − xI is the product of the
matrices 

−xI 0 · · · · · · 0

0
. . . . . . ...

... . . . . . . . . . ...
0 · · · 0 −xI 0

A1
1
x

∏2
j=1Aj · · · 1

xp−2

∏p−1
j=1 Aj

1
xp−1

∏p
j=1 Aj − xI


and 

I − 1
x
A2 0 · · · 0

0
. . . . . . . . . ...

... . . . . . . . . . 0

... . . . I − 1
x
Ap

0 · · · · · · 0 I

 .

Let h(x) be the characteristic polynomial of
∏p

j=1 Aj ∈ Cm×m. Thus the characteristic
polynomial ofM is xn−m−(p−1)mh(xp). Therefore, the eigenvalues ofM are either 0 or any
p-th root of a non-zero eigenvalue of

∏p
j=1Aj.

With this lemma, we can prove Lemma 2.3 about the eigenvalues of the matrix M :

Proof of Lemma 2.3. First, consider the case t = 0. By construction, qd is an eigenvalue
with right eigenvector 1 of M . As ‖M‖∞ 6 qd, where ‖ · ‖∞ denotes the row sum norm,
qd is a dominant eigenvalue.

Consider the strongly connected components of the underlying graph of T . Each
final strongly connected component Cj induces a final transducer Tj which is strongly
connected, complete, deterministic and pj-periodic. Thus, the adjacency matrix at t =
0 of this final transducer has a dominant eigenvalue qd with right eigenvector 1. By
the Perron–Frobenius theorem (cf. [14, Theorem 8.8.1]), all dominant eigenvalues of this
final transducer are {qde2πil/p | l ∈ P with p | lpj}, each with algebraic and geometric
multiplicity one.

A non-final strongly connected component induces a transducer S with the adjacency
matrix S. This transducer is not complete. Let S+ be the complete transducer where
loops are added to states of S where necessary. The adjacency matrix of S+ is S+. Since
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S+ is complete, deterministic and strongly connected, ρ(S+) = qd. As S 6 S+ but
S 6= S+, Theorem 8.8.1 in [14] implies ρ(S) < ρ(S+) = qd.

Thus, the dominant eigenvalues are qde2πil/p with an l ∈ P such that there exists a
j ∈ {1, . . . , c} with p | lpj. We determine the geometric multiplicities of these dominant
eigenvalues of M in Lemma 3.2.

Now, fix a final strongly connected component Cj and some l ∈ P with p | lpj.
In a small neighborhood of t = 0, let µlj(t) be the eigenvalue of the submatrix of M
corresponding to the complete transducer Tj with µlj(0) = qde2πil/p. Because of Lemma 3.1
applied to the final component Cj separately, we have µlj(t) = e2πil/pµj(t) where µj(t) is
defined to be µ0j(t).

All other moduli of eigenvalues of M are less than minl,j |µlj(t)| because of the conti-
nuity of eigenvalues.

We prove the differentiability of the eigenvalues in Lemma 3.2.

Lemma 3.2. Let µj(t) exp(2πil
p

) be a dominant eigenvalue of the matrix M . There exists
a corresponding left eigenvector ofM with zero entries except in coordinates corresponding
to the final component Cj.

At t = 0, the algebraic and geometric multiplicities of qd exp(2πil
p

) coincide.
Furthermore the eigenvalues and the eigenprojection corresponding to the eigenvalues

µj exp(2πil
p

) are analytic at t = 0.

Proof. Let qd exp(2πil
p

) be a dominant eigenvalue of M . Its algebraic multiplicity at t = 0

is |{j : p | lpj}|. We construct exactly one left eigenvector in the neighborhood of t = 0
for each final component Cj with p | lpj: Let Tj be the induced transducer of the final
component Cj. Let ṽ>(t) be a left eigenvector of the adjacency matrix of Tj corresponding
to the eigenvalue µj(t) exp(2πil

p
). As the algebraic multiplicity is 1 in this final component,

the choice of ṽ>(t) is unique up to multiplication with a scalar function in t. Then, we
construct the left eigenvector v>(t) by padding ṽ>(t) with zeros.

These left eigenvectors are linearly independent because of the block structure induced
by the final components. Thus the geometric and the algebraic multiplicities of qd exp(2πil

p
)

coincide.
Furthermore, µj(t) exp(2πil

p
) is a simple eigenvalue of the adjacency matrix of Tj.

Therefore, [25, Chapter II] implies the differentiability of the eigenvalues and eigenpro-
jections.

From now on we use the convention that the eigenspace corresponding to µj(t) exp(2πil
p

)

is the null space if µj(t) exp(2πil
p

) is not an eigenvalue. Then its eigenprojection is the
constant null function.

Definition 3.3. Let w>lj(t) be the eigenprojection of e>1 onto the left eigenspace corre-
sponding to the possible eigenvalue µj(t) exp(2πil

p
). The vector w>lj(t) is thus a null vector

or a left eigenvector of M corresponding to the eigenvalue µj(t) exp(2πil
p

).
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Define

w>(t) = e>1 −
∑
l∈P

c∑
j=1

w>lj(t).

As an abbreviation, we write w>lj , w>, w′>lj and w′> for these projections and their
derivatives at t = 0.

Remark 3.4. If there are only dominant eigenvalues, then w>(t) = 0. This will imply that
there is no error term in the asymptotic expansion of the expected value and the variance.
This occurs in the case of the sum of digits of the standard q-ary digit representation and
other completely q-additive functions because the transducer has only one state.

Lemma 3.5. In a fixed neighborhood of t = 0, let ξ > 0 be as defined in (5), i.e., all
non-dominant eigenvalues have modulus less than qd−ξ. Then∥∥∥ dk

dtk
w>(t)Mm

∥∥∥ = O(c
(1)
k q(d−ξ)(m−k)mk)

for m, k > 0 and a constant c(1)
k .

Proof. Let P be the matrix such that x> 7→ x>P is the sum of the eigenprojections onto
the left eigenspaces corresponding to µj exp(2πil

p
) for j = 1, . . . , c and l ∈ P . Then

w> = e>1 (I − P ) and
w>Mm = e>1 ((I − P )M)m.

As the spectral radius of (I − P )M is less than qd−ξ, we obtain the stated estimates.

With w>l defined in Section 2.3, we have

w>l (t) =
c∑
j=1

w>lj(t). (11)

Note that left and right eigenvectors corresponding to different eigenvalues annihilate
each other. Because of the block structure of the eigenvectors in Lemma 3.2 and because
1 is a right eigenvector to qd, we have

[l = 0]λj = w>lj1 (12)

where λj is defined in Section 2.3. Furthermore, w>1 = 0 and
c∑
j=1

λj =
∑
l∈P

c∑
j=1

w>lj1 +w>1 = e>1 1 = 1.

Denote by δ the vector whose s-th component is the sum of the outputs of all tran-
sitions leaving the state s. By the definition of the transition matrix M(t), δ can be
expressed as

iδ =
d

dt
M(t)1

∣∣∣∣
t=0

. (13)
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We now establish a relation between δ, the left eigenvector w>l and its derivative at t = 0.
By definition of the left eigenvectors w>lj(t) and (11),

w>l (t)M1 =
c∑
j=1

µj(t) exp
(2πil

p

)
w>lj(t)1.

Differentiation, (12), (5) and (11) yield

w>l δ = [l = 0]eT q
d − qd

(
e

2πil
p − 1

)
iw′>l 1. (14)

To establish the interpretation of w>0 given at the end of Section 2.3, we consider

ŵ>k := lim
m→∞

e>1 M
mp+kq−d(mp+k),

the stationary distribution on the state space of all states of the transducer under the
assumption that the input length is congruent to k modulo p. Using (11) and Lemma 3.5
yields

ŵ>k = lim
m→∞

(∑
l∈P

w>l +w>
)
Mmp+kq−d(mp+k)

= lim
m→∞

∑
l∈P

exp
(2πilk

p

)
w>l +O(q−ξ(mp+k))

=
∑
l∈P

exp
(2πilk

p

)
w>l .

Summation leads to 1
p

∑p−1
k=0 ŵ

>
k = w>0 . Thus, λj is the hitting probability of the final

component Cj when starting in the initial state. As every state is accessible from the
initial state, λj is positive.

Finally, for l = 0, (14) reads q−dw>0 δ = eT , which can be interpreted as the steady
state analysis of the expectation: the probability distribution w>0 is multiplied with the
expected output q−dδ.

3.2 Characteristic function

To obtain a central limit law in Section 3.5, we compute an asymptotic formula for the
characteristic function in this section.

The next lemma can be proved by induction on L. It is a generalization of Lemma 3
in [21].

Lemma 3.6. Let Aε, ε = 0, . . . , q − 1 be matrices in Cn×n, Hε : N0 → Cn×n be known
functions with H0(0) = 0. Let G : N0 → Cn×n be a function which satisfies the recurrence
relation

G(qN + ε) = AεG(N) +Hε(N)
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for N > 0, ε ∈ {0, . . . , q − 1} and G(0) = 0. Then

G ((εL . . . ε0)q) =
L∑
l=0

( l−1∏
i=0

Aεi

)
Hεl ((εL . . . εl+1)q) .

The solution of this recursion finally leads to an asymptotic formula for the charac-
teristic function.

We choose the branch −π+ π
p
< arg z 6 π+ π

p
of the complex logarithm. After setting

t = 0, we use only the logarithm of complex numbers for which our branch coincides the
principal branch −π < arg z 6 π.

Lemma 3.7. The characteristic function of the random variable T (n) is

E(exp(itT (n))) =

1

Nd

∑
l∈P

c∑
j=1

µj(t)
logq N exp

(2πil logqN

p

)
Ψlj(logqN, t) +R(N, t)

with functions Ψlj(x, t) (defined in (24)), which are arbitrarily often differentiable in t and
1-periodic in x, and an error term R(N, t). This error term R(N, t) is arbitrarily often
differentiable, too, and satisfies dk

dtk
R(N, t) = O(c

(2)
k N−ξ logkN), for k > 0, a constant c(2)

k

and the constant ξ > 0 defined in Section 2.3, in a neighborhood of t = 0. At t = 0, we
have R(N, 0) = 0.

Proof. For a transducer T , consider the characteristic function

F (N) = E(exp(itT (n))) =
1

Nd

∑
n∈ΩN

eitT (n) (15)

of the discrete random variable T (n).
Then the summands in (15) can be expressed as a matrix product

eitT (n) = e>1

L∏
l=0

Mεlu

where (εL . . . ε0)q is the standard q-ary joint digit representation of n with εL 6= 0 and
the vector u has entries eitb(s) where b(s) is the final output of the state s. Again, the
vector e1 is the indicator vector of the initial state.

Let

g(n) =
L∏
l=0

Mεl

and
G(N) =

∑
n∈ΩN

g(n),
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hence
F (N) =

1

Nd
e>1 G(N)u. (16)

The function g(n) satisfies the recursion

g(qn+ ε) = Mεg(n) (17)

for ε ∈ {0, 1, . . . , q − 1}d, n > 0 with qn+ ε 6= 0.
We define further functions

GC(N) =
∑

06ni<N
i 6∈C

∑
ni=N
i∈C

g(n) (18)

where the coordinates n1, . . . , nd of n with indices in the set C ⊆ {1, . . . , d} are fixed to
N . This yields G(N) = G∅(N). Furthermore, we define the matrices

M ε
C,D =

q−1∑
βi=0
i 6∈C∪D

ε−1∑
βi=0
i∈D

∑
βi=ε
i∈C

Mβ (19)

for disjoint sets C, D ⊆ {1, . . . , d} and ε ∈ {0, 1, . . . , q− 1}. In this definition, we restrict
the i-th coordinate βi of β to be ε or less than ε if i ∈ C or i ∈ D, respectively. Otherwise,
the i-th coordinate can be arbitrary. Then, M = M ε

∅,∅ holds independently of ε.
Then, (17) yields the following recursions for GC(N), ε = 0, . . . , q − 1, N > 0 and

C 6= {1, . . . , d}:

GC(qN + ε) =

q−1∑
βi=0
i 6∈C

∑
βi=ε
i∈C

∑
06qmi+βi<qN+ε

i 6∈C

∑
qmi+βi=qN+ε

i∈C

g(qm+ β)

= [C = ∅ ∧ qN + ε 6= 0](I −M0)

+

q−1∑
βi=0
i 6∈C

∑
βi=ε
i∈C

Mβ

∑
06mi<N+

ε−βi
q

i 6∈C

∑
mi=N
i∈C

g(m)

= [C = ∅ ∧ qN + ε 6= 0](I −M0) +
∑
D⊆Cc

M ε
C,DGC∪D(N).

(20)

This recursion for GC only depends on GC′ for C ′ ) C. As

G{1,...,d}(N) = g(N1),

we can recursively determine GC using Lemma 3.6. In particular, for G(N), this yields
the recursion formula

G(qN + ε) = MG(N) +Hε(N) (21)
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for N > 0, ε ∈ {0, . . . q − 1} where Hε are known functions with

Hε(N) = [qN + ε 6= 0](I −M0) +
∑

∅6=D⊆{1,...,d}

M ε
∅,DGD(N). (22)

Thus by Lemma 3.6, we get

G((εL . . . ε0)q) =
L∑

m=0

MmHεm ((εL . . . εm+1)q) . (23)

By construction, ‖Mε‖∞ = 1 for every ε ∈ {0, . . . , q − 1}d. We conclude that
‖M ε

C,D‖∞ 6 qd−|C|−|D|ε|D|. By the definition of GC(N), the growth rates of the functions
GC(N) and Hε(N) are ‖GC(N)‖∞ = O(Nd−|C|) and ‖Hε(N)‖∞ = O(Nd−1), respectively.
For k > 0, the k-th derivative of Hε(N) at t = 0 can be bounded by O(c

(3)
k Nd−1 logkN)

for a constant c(3)
k .

We define

R(N, t) =
1

Nd

L∑
m=0

w>MmHεm((εL . . . εm+1)q)u,

which constitutes an explicit expression for the error term contributed by the non-domi-
nant eigenvalues. By Lemma 3.5, its derivatives satisfy

dk

dtk
R(N, t) = O(c

(2)
k N−ξ logkN)

for k > 0. Because u(0) = 1 and left and right eigenvectors corresponding to different
eigenvalues annihilate each other, we have R(N, 0) = 0.

By (16), (23) and e>1 =
∑

l∈P
∑c

j=1w
>
lj +w>,

F (N) =
1

Nd

∑
l∈P

c∑
j=1

µLj exp
(2πilL

p

)
·

L∑
m=0

µm−Lj exp
(2πil(m− L)

p

)
w>ljHεm((εL . . . εm+1)q)u

+R(N, t)

=
1

Nd

∑
l∈P

c∑
j=1

µ
logq N

j exp
(2πil logqN

p

)
Ψlj(logqN, t) +R(N, t)

with

Ψlj(x, t) = µj(t)
−{x} exp

(
− 2πil{x}

p

)
·
∞∑
m=0

µj(t)
−m exp

(
− 2πilm

p

)
w>ljHxm((x0 . . . xm−1)q)u (24)
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and q{x} = (x0 �x1 . . .)q, choosing the representation ending on 0ω in the case of ambiguity.
The functions Ψlj(x, t) are periodic in x with period 1 and well defined for all x ∈ R

since they are dominated by geometric series. Furthermore, they are arbitrarily often
differentiable in t.

3.3 Moments

In this section we give the moments of the output sum T (n).

Lemma 3.8. The expected value and the variance of T (n) are as stated in Theorem 1
with constants given in (5) and periodic functions given in Lemma 3.9 and (28).

Proof. The derivative of E(exp(itT (n))) with respect to t at t = 0 gives the expected
value of the sum of the output of the transducer

E(T (n)) =
1

Nd

∑
n∈ΩN

T (n) = Ψ0(logqN) logqN + Ψ1(logqN) +O(N−ξ logN)

with p-periodic functions

Ψ0(x) =
∑
l∈P

c∑
j=1

aje
2πilx
p Ψlj(x, 0),

Ψ1(x) = −i
∑
l∈P

c∑
j=1

e
2πilx
p Ψ′lj(x, 0)

(25)

and constants aj defined in (5). Here, Ψ′lj denotes the derivative with respect to t.
We now compute Ψ0(x) for some x with q{x} = (x0 � x1 . . .)q. To compute Hε(N), we

use (21) and the definition of G(N) to obtain

Hε(N)1 = ((qN + ε)d − (qN)d)1 (26)

for t = 0, because 1 is a right eigenvector of Mε for every ε. Together with (24), this
results in

Ψlj(x, 0) = q−d{x} exp
(
− 2πil{x}

p

)
w>lj1D

(
qde

2πil
p

)
with

D(z) =
∞∑
m=0

z−m((x0 . . . xm)dq − (x0 . . . xm−10)dq).

By (12), we have Ψlj(x, 0) = 0 for l 6= 0.
To compute D(qd), observe that

D(qd) =
∞∑
m=0

(
(x0 � x1 . . . xm)dq − (x0 � x1 . . . xm−1)dq

)
= lim

m→∞
(x0 � x1 . . . xm)dq = qd{x}
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because D(qd) is a telescoping sum.
We conclude that

Ψlj(x, 0) = λj[l = 0] (27)

and therefore

Ψ0(x) =
c∑
j=1

ajλj = eT

by (5). This completes the proof of the expectation as given in (3).
Using Lemma 3.7 and (27), the second derivative of E(exp(itT (n))) gives

1

Nd

∑
n∈ΩN

T (n)2 = log2
q N

c∑
j=1

a2
jλj + vT logqN

− 2i logqN
∑
l∈P

c∑
j=1

aj exp
(2πil logqN

p

)
Ψ′lj(logqN, 0)

+ Ψ2(logqN) +O(N−ξ log2N)

with vT given in (5) and

Ψ2(x) = −
∑
l∈P

c∑
j=1

e
2πilx
p Ψ′′lj(x, 0). (28)

Here, Ψ′′lj denotes the second derivative with respect to t. Thus, by (3), the variance is

V(T (n)) =
1

Nd

∑
n∈ΩN

T (n)2 −
( 1

Nd

∑
n∈ΩN

T (n)
)2

=
( c∑
j=1

a2
jλj − e2

T

)
log2

q N

+
(
vT − 2i

∑
l∈P

c∑
j=1

aj exp
(2πil logqN

p

)
Ψ′lj(logqN, 0)

− 2eTΨ1(logqN)
)

logqN

+ Ψ2(logqN)−Ψ2
1(logqN) +O(N−ξ log2N).

(29)

By Jensen’s inequality, the coefficient of log2
q N is zero if and only if all aj are equal.

If all aj are equal, then the coefficient of logqN in (29) simplifies by (25), too, and we
obtain (4).

For the computation of the Fourier coefficients and the proof of the Hölder condition,
we need an explicit expression for Ψ1.
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In analogy to the definition of GC in (18), define

BC(N) =
∑

06ni<N
i 6∈C

∑
ni=N
i∈C

b(n) (30)

for C ⊆ {1, . . . , d}.

Lemma 3.9. For q{x} = (x0 � x1 . . .)q, the fluctuation Ψ1(x) can be expressed as

Ψ1(x) = −eT {x} − q−d{x}
∑
l∈P

∞∑
m=0

q−dme
2πil
p

(bxc−m)fl((x0 . . . xm)q) (31)

with
fl(r) = [l = 0]eT

(
blogq rc(rd − (qbrq−1c)d) + (qbrq−1c)d

)
+ iw′>l 1

(
rd − exp

(2πil

p

)
(qbrq−1c)d

)
−w>l B∅(r) + qd exp

(2πil

p

)
w>l B∅(brq−1c).

(32)

The estimate fl(r) = O(rd−1 log r) holds.

Proof. From (25), (24), (5), (27) and (12) and the absolute convergence of Ψlj, we obtain
(31) with

fl(r) = [l = 0]eT blogq rc(rd − (qbrq−1c)d) + i
d

dt
w>l (t)Hr mod q(brq−1c)u(t)

∣∣∣∣
t=0

.

From the combinatorial interpretation of b(n) and g(n)u(t), we obtain

ib(n) =
d

dt
g(n)u(t)

∣∣∣∣
t=0

, (33)

in analogy to (13). As the range of summation of GC and BC coincides, we immediately
get

iBC(N) =
d

dt
GC(N)u(t)

∣∣∣∣
t=0

. (34)

By (26) and by differentiating Hε(N)u(t) using (21), (34) and (13),

fl(r) = [l = 0]eT blogq rc(rd − (qbrq−1c)d) + iw′>l 1
(
rd − (qbrq−1c)d

)
−w>l

(
B∅(r)−MB∅(brq−1c)− brq−1cdδ

)
.

The fact that w>l is a left eigenvector of M and (14) establish (32).
For the growth estimate of fl(r), we use the explicit definition of Hε in (22), (34) and

the trivial estimate ‖b(n)‖ = O(log ‖n‖).
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To formulate T (n) as a q-regular sequence, we first define output vectors. The s-th
entry of the vector δε is the output label of the transition from state s with input label
ε. By (17), (33), and

d

dt
Mε1

∣∣∣
t=0

= iδε, (35)

we have
b(qn+ ε) = Mεb(n) + δε. (36)

Remark 3.10. We can use the matrices

Vε =

Mε δε [ε = 0]I
0 1 0
0 0 [ε = 0]I


and v(n) = (b(n), 1, [n = 0](b(0) − M0b(0) − δ0))> in the definition of a q-regular
sequence (2) to realize that the output sum of a transducer is q-regular. If d > 1, then
this is a multidimensional q-regular sequence (cf. [1]).

3.4 Hölder Continuity

In this section, we prove the continuity of the fluctuations Ψ1 and Ψ2 as well as the Hölder
continuity of Ψ1. This will be used to establish the convergence of the Fourier series.

Lemma 3.11. The functions Ψ1(x) and, if all aj are equal, Ψ2(x) are continuous for
x ∈ R.

Proof. First note that continuity of Ψ1 for x ∈ R with x = logq y where y has no finite
q-ary expansion follows from the definitions (24) and (25). To prove it for x = logq y with
0 6 x < p where y has a finite q-ary expansion, observe that the two one-sided limits exist
due to the definition. Next, we prove that they are the same. Consider the two integer
sequences Nk = yqpk and Ñk = Nk − 1 for k large enough such that Nk is an integer. For
a real number z, we write {z}p = p{z/p} for the unique real number in the interval [0, p)
such that z − {z}p is an integer multiple of p.

This yields

lim
k→∞
{logqNk}p = lim

k→∞
{logq y + pk}p = {x}p = lim

z→x+
{z}p,

lim
k→∞
{logq Ñk}p = lim

k→∞
{logqNk + logq(1−N−1

k )}p
= lim

k→∞
{x+ logq(1−N−1

k )}p = lim
z→x−
{z}p.

If we insert the two sequences Nk and Ñk in∑
n∈ΩN

T (n) = eTN
d logqN +NdΨ1(logqN) +O(Nd−ξ logN)
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(cf. (3)) and take the difference, we get

O(Nd−1
k logNk) = Nd

kΨ1(logqNk)− Ñd
kΨ1(logq Ñk) +O(Nd−ξ

k logNk).

Because Ψ1(x) is bounded by a geometric series by definition, we have

Ψ1(logqNk)−Ψ1(logq Ñk) = O(N−ξk logNk)

and in particular
lim
k→∞

Ψ1({logqNk}p) = lim
k→∞

Ψ1({logq Ñk}p).

Therefore, Ψ1 is continuous in x.
The continuity of Ψ2(x) at x = logq(y) for y with infinite q-ary expansion again follows

from the definition of Ψ2. If all aj are equal, the continuity of the fluctuation −Ψ2
1 + Ψ2

of the variance (4) follows as above, where logNk has to be replaced by log2Nk in the
error terms. Thus Ψ2 is also continuous in this case.

Lemma 3.12. The function Ψ1 satisfies a Hölder condition of order α for all α ∈ (0, 1).

Proof. Let 0 < α < 1 be any constant. We want to prove that there exists a positive
constant C such that

|Ψ1(y)−Ψ1(x)| 6 C|y − x|α (37)

holds for all x, y ∈ R.
For x = y, the left-hand side of (37) is 0 and the inequality is obviously satisfied.

From now on, assume that x < y. By the periodicity of Ψ1, it is sufficient to prove (37)
for 0 6 x < p.

First, we prove (37) for the case 0 6 x < y and sufficiently small y − x < 1.
Fix such x and y and choose the integer k such that

q−k−1 6 |qy − qx| < q−k.

Note that the continuous differentiability of z 7→ qz on the compact interval [0, p+ 1]
implies that qy − qx = O(|y − x|) and therefore

q−k = O(|y − x|). (38)

We prove (37) in three steps.

Statement 3.13. Let a, b ∈ R with x 6 a < b 6 y and bac = bbc such that the first k+ 1
digits of the expansions

q{a} = (a0 � a1 . . .)q, q{b} = (b0 � b1 . . .)q

coincide, i.e., ai = bi for 0 6 i 6 k. Then

|Ψ1(b)−Ψ1(a)|= O(|y − x|α).
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Proof. Lemma 3.9 yields

|Ψ1(b)−Ψ1(a)| 6 |eT ||{b} − {a}|
+ q−d{b}

∑
l∈P

∑
m>0

q−dm|fl((b0 . . . bm)q)− fl((a0 . . . am)q)|

+ |q−d{b} − q−d{a}|
∑
l∈P

∑
m>0

q−dm|fl((a0 . . . am)q)|

6 |eT ||{b} − {a}|
+
∑
l∈P

∑
m>k

q−dm(|fl((b0 . . . bm)q)|+ |fl((a0 . . . am)q)|)

+ |q−d{b} − q−d{a}|
∑
l∈P

∑
m>0

q−dm|fl((a0 . . . am)q)|

because the summands for m 6 k cancel in the first sum as the first k+ 1 digits coincide.
By using the estimates

|{b} − {a}| 6 |{b} − {a}|α = |b− a|α,
|q−d{b} − q−d{a}| = O(|b− a|α),

|fl((b0 . . . bm)q)| = O(q(d−1)mm)

(see Lemma 3.9 for the last estimate), we obtain

|Ψ1(b)−Ψ1(a)| = O
(
|b− a|α +

∑
m>k

mq−m + |b− a|α
)

= O(|b− a|α + kq−k) = O(|b− a|α + q−αk)

= O(|b− a|α + |y − x|α) = O(|y − x|α).

Here, (38) has been used in the penultimate step.

We now use the continuity of Ψ1 and Statement 3.13 to remove the condition on
coinciding digits from Statement 3.13.

Statement 3.14. Let a, b ∈ R with x 6 a < b 6 y and bac = bbc. Then

|Ψ1(b)−Ψ1(a)|= O(|y − x|α).

Proof. We write the expansions of q{a} and q{b} as

q{a} = (a0 � a1 . . .)q, q{b} = (b0 � b1 . . .)q.

This yields

0 < q{b} − q{a} =
1

qbac
(qb − qa) 6 qb − qa 6 qy − qx < q−k.

Thus
0 6 (b0 . . . bk)q − (a0 . . . ak)q 6 1.
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If (b0 . . . bk)q = (a0 . . . ak)q, the result follows immediately from Statement 3.13. Other-
wise, we have

(b0 . . . bk)q = (a0 . . . ak)q + 1. (39)

For m > 0, define z and zm by bzc = bzmc = bac = bbc and
q{z} = (b0 � b1 . . . bk)q,

q{zm} = (a0 � a1 . . . ak(q − 1)m)q.

Then limm→∞ zm = z because of (39).
By construction of z and zm, we have a < zm < z 6 b for sufficiently large m.
By continuity of Ψ1,

|Ψ1(z)−Ψ1(zm)| 6 |y − x|α (40)

holds for sufficiently large m.
This yields

|Ψ1(b)−Ψ1(a)| 6 |Ψ1(b)−Ψ1(z)|+ |Ψ1(z)−Ψ1(zm)|
+ |Ψ1(zm)−Ψ1(a)|.

The third summand can be bounded by Statement 3.13 (for a and zm) and the second
by (40). The first summand is either 0 or can be bounded by Statement 3.13 (for z and
b).

To finally prove (37) for sufficiently small y − x < 1 , we only have to remove the
assumption bac = bbc from Statement 3.14. We use the idea of the proof of Statement 3.14
once more.

Assume that byc > bxc. By our assumption y < x+ 1, this amounts to byc = bxc+ 1.
For m > 0, define z and zm by z = byc, bzmc = bxc and q{zm} = ((q − 1) � (q − 1)m)q.
Then limm→∞ zm = z. By continuity of Ψ1, we have

|Ψ1(z)−Ψ1(zm)| 6 |y − x|α (41)

and x < zm < z 6 y for sufficiently large m.
Then, this yields

|Ψ1(y)−Ψ1(x)| 6 |Ψ1(y)−Ψ1(z)|+ |Ψ1(z)−Ψ1(zm)|
+ |Ψ1(zm)−Ψ1(x)|.

The third summand can be bounded by Statement 3.14 for x and zm and the second by
(41). The first vanishes or can be bounded by Statement 3.14 for z and y.

This yields
|Ψ1(y)−Ψ1(x)| = O(|y − x|α).

Therefore, (37) is satisfied with a suitable positive constant C for y − x < ε for some
ε > 0.

Assume y − x > ε. As Ψ1 is continuous and periodic, |Ψ1(y) − Ψ1(x)| is bounded.
Thus, (37) holds for a suitable positive constant C for |y − x| > ε.

Therefore, the function Ψ1 is Hölder continuous of order α < 1.
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3.5 Limiting distribution

Finally, we can prove the parts of Theorem 1 concerning the approximation of the distri-
bution function and the central limit theorem.

Proof. To prove that the distribution function can be approximated by a Gaussian mix-
ture, we use the Berry-Esseen inequality (cf., for instance, [13, Theorems IX.5]) to esti-
mate the difference between distribution functions. The proof follows the proof of Hwang’s
Quasi-Power Theorem [24]. First, we describe the two corresponding characteristic func-
tions.

Let ĝN(t) be the characteristic function of a mixture of Gaussian or degenerate distri-
butions with weights λj, means aj

√
logqN and variances bj for j = 1, . . . , c, that is

ĝN(t) =
c∑
j=1

λj exp
(
iaj

√
logqNt−

bj
2
t2
)

with aj, bj and λj defined in (5).
By Lemma 3.7, the characteristic function f̂N(t) of T (n)/

√
logqN is

f̂N(t) =
c∑
j=1

exp
(
iaj

√
logqNt−

bj
2
t2 +O

( t3√
logN

))
·
∑
l∈P

e
2πil
p

logq NΨlj

(
logqN,

t√
logqN

)
+R

(
N,

t√
logN

)
for t log

− 1
2

q N in a fixed neighborhood of 0.
Because of (27) and R(N, 0) = 0 (see Lemma 3.7), we have

f̂N(t) =
c∑
j=1

exp
(
iaj

√
logqNt−

bj
2
t2
)

exp
(
O
( t3√

logN

))
·
(
λj +O

( t√
logN

))
+O

(
N−ξt

√
logN

)
.

Now we use the inequality |ew − 1| 6 |w|e|w|, valid for all complex numbers w, to
obtain∣∣∣1

t
(f̂N(t)− ĝN(t))

∣∣∣ =
c∑
j=1

O
(( t2 + 1√

logN

)
exp

(
− bj

2
t2 +O

( t3√
logN

)))
+O(N−ξ log−

1
2 N) (42)

for t log
− 1

2
q N in a small neighborhood of 0.

From now on, we assume that bj 6= 0. There is a small neighborhood of 0 for t log
− 1

2
q N

such that
O
(

exp
(
− bj

2
t2 +O

( t3√
logN

)))
= O

(
exp

(
− bj

4
t2
))
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holds.
This yields∣∣∣1

t
(f̂N(t)− ĝN(t))

∣∣∣ =
c∑
j=1

O
(

exp
(
− bj

4
t2
) t2 + 1√

logN

)
+O(N−ξ log

1
2 N).

Now, the Berry-Esseen inequality with T = c
√

logqN for a small constant c > 0 (cf.,
for instance, [13, Theorem IX.5]) implies that

sup
x∈R
|FN(x)−GN(x)| = O

( 1√
logN

)
where FN is the cumulative distribution function of T (n) and GN is the cumulative
distribution function of the mixture of Gaussian distributions.

If all aj are equal and bj > 0, GN is the distribution function of a mixture of normal (or
degenerate) distributions with mean eT

√
logqN and variances bj > 0. After subtracting

the mean, (42) converges to 0. Thus,

T (n)− E(T (n))√
logqN

converges in distribution. If all bj > 0, then the same estimates as above yield the speed
of convergence.

This completes the proof of Theorem 1.

4 Fourier Coefficients — Proof of Theorem 2

This section contains the proof of the theorem about the Fourier coefficients. First, we
investigate some Dirichlet series which we will use later. Then, we prove the formulas
given in Theorem 2. We use the Hölder condition for Ψ1 to prove that its Fourier series
converges.

Lemma 4.1. The Dirichlet series

L(z) =
∑
r>1

blogq rc(rd − (r − 1)d)r−z

is meromorphic in <z > d − 1 with poles in z = d + 2πil
log q

for l ∈ Z. The main part at
z = d is

d

(z − d)2 log q
− d

2(z − d)

and, for l 6= 0, the residue at z = d+ 2πil
log q

is d
2πil

.
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Proof. First, we use the binomial theorem to obtain

L(z) = dL1(z − d+ 1)−
d−2∑
j=0

(
d

j

)
(−1)d−jL1(z − j) (43)

with L1 =
∑

r>1blogq rcr−z. The Dirichlet series L1(z) is holomorphic for <z > 1. Thus,
the second summand in (43) is holomorphic for <z > d − 1. To obtain the expansion of
L(z) at z with <z = d, we investigate the Dirichlet series L1(z) at <z = 1.

Let k > 0 be an integer. We use Euler-Maclaurin summation with f(x) = kx−z to
obtain ∑

qk6r<qk+1

blogq rc
rz

=

∫ qk+1

qk
kx−z dx− k

2
(q−(k+1)z − q−kz)

− kz
∫ qk+1

qk
B1({x})x−z−1 dx

=
1

1− z (kq(k+1)(1−z) − kqk(1−z))

− 1

2
(kq−(k+1)z − kq−kz)

− z
∫ qk+1

qk
B1({x})x−z−1blogq(x)c dx

where B1(x) is the first Bernoulli polynomial. For <z > 1, summation over k > 0 yields

L1(z) =
1

1− z
∑
k>1

qk(1−z)((k − 1)− k)− 1

2

∑
k>1

q−zk((k − 1)− k)

− z
∫ ∞

1

B1({x})x−z−1blogq(x)c dx

=
1

z − 1

1

qz−1 − 1
+

1

2

1

qz − 1
− z

∫ ∞
1

B1({x})x−z−1blogq(x)c dx.

The second summand and the integral are clearly holomorphic for <z > 0. Thus, L1(z)
can be continued meromorphically to <z > 0 with poles coming from the first summand.

The expansion around z = 1 is
1

z − 1

1

qz−1 − 1
+O(1) =

1

(z − 1)2 log q
− 1

2(z − 1)
+O(1).

Thus, by (43), we obtain the main part and the residues of L(z) at z = d + 2πil
log q

for
l ∈ Z as stated in the lemma.

Lemma 4.2. The Dirichlet series

Z(z) =
∑
r>1

(rd − (r − 1)d)r−z

is meromorphic in C with simple poles in z = j, j ∈ {1, . . . , d} with residues
(
d
j−1

)
(−1)d−j.
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Proof. The binomial theorem yields

Z(z) =
d−1∑
j=0

(
d

j

)
(−1)d−j+1ζ(z − j),

where ζ is the Riemann ζ-function. The result follows from the unique pole of ζ(z) at
z = 1 with residue 1.

Denote by ζ(z, α) the Hurwitz ζ-function

ζ(z, α) =
∑
r>−α

(r + α)−z.

Furthermore ψ is the digamma function.

Lemma 4.3. For 0 6 α < 1 and and an integer 0 6 j 6 d− 1, the Dirichlet series

J(z, α, j) =
∑
r>1

rj(r + α)−z

is analytic for <z > j + 1. For j = d− 1, it is meromorphic for <z > d− 1 with a simple
pole at z = d with expansion

J(z, α, d− 1) =
1

z − d − ψ(α + [α = 0])− [α > 0 ∧ d = 1]α−1

+
d−2∑
k=0

(
d− 1

k

)
(−α)d−1−kζ(d− k, α) +O(z − d).

(44)

Proof. As rj(r + α)−z = O(rj−<z), J is analytic for <z > j + 1. Now, let j = d− 1.
The binomial theorem yields

J(z, α, d− 1) =
∑
r>1

(r + α− α)d−1(r + α)−z

=
d−1∑
k=0

(
d− 1

k

)
(−α)d−1−k

∑
r>1

(r + α)−(z−k)

=
d−1∑
k=0

(
d− 1

k

)
(−α)d−1−k(ζ(z − k, α)− [α > 0]α−z+k

)
= ζ(z − d+ 1, α) +

d−2∑
k=0

(
d− 1

k

)
(−α)d−1−kζ(z − k, α)

− [α > 0 ∧ d = 1]α−z.

Using the expansion (cf. [35, p. 271])

ζ(z, α) =
1

z − 1
− ψ(α + [α = 0]) +O(z − 1)

yields (44).
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Lemma 4.4. Let k ∈ Z. The Dirichlet series

B(z) = w>k

∞∑
r=1

(B∅(r + 1)− 2B∅(r) +B∅(r − 1)) r−z

is analytic for <z > d− 1.

Proof. By the definition (30), we have

B∅(r + 1)−B∅(r) =
∑

∅6=C⊆{1,...,d}

BC(r), (45)

which can be bounded by ‖BC(r)‖ = O(rd−1 log r). Thus,

B(z) = w>k
∑

∅6=C⊆{1,...,d}

∑
r>1

(BC(r)−BC(r − 1))r−z

which converges for <z > d− 1 by [2, Theorem 8.1].

The vector-valued functions HC(z) are defined by the Dirichlet series

HC(z) =
∑
r>1

BC(r)r−z. (46)

By (6) and (45), this yields

H(z) =
∑

∅6=C⊆{1,...,d}

HC(z) =
∑
r>1

(B∅(r + 1)−B∅(r))r−z. (47)

Next, we investigate the Dirichlet series HC . In particular, we determine its behavior
at z = d+χk and provide an infinite functional equation to compute its residues at these
points. This will finally give us the residues of H in (7). We use a similar method as
Grabner and Hwang in [17].

For this infinite recursion, define

δεC,D =

q−1∑
βi=0
i 6∈C∪D

ε−1∑
βi=0
i∈D

∑
βi=ε
i∈C

δβ, (48)

in analogy to the definition of M ε
C,D. As before, the s-th entry of δε is the output label

of the transition starting in s with input label ε. Then, δ = δε∅,∅ holds independently of
ε. Furthermore, δεC,D = d

dt
M ε

C,D1
∣∣
t=0

by (35).
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Lemma 4.5. Let C 6= ∅. For <z > d and C 6= ∅, the Dirichlet series HC(z) satisfies the
following infinite recursion

(
1− q−z

q−1∑
ε=0

M ε
C,∅

)
HC(z) =

q−1∑
ε=1

BC(ε)ε−z + q−z
∑

∅6=D⊆Cc

q−1∑
ε=0

M ε
C,DHC∪D(z)

+ q−z
∑
D⊆Cc

q−1∑
ε=0

δεC,DJ
(
z,
ε

q
, d− |D| − |C|

)
+
∑
D⊆Cc

∑
m>1

(−z
m

)
q−z−m

q−1∑
ε=0

M ε
C,Dε

mHC∪D(z +m).

(49)

It is analytic for <z > d − |C| + 1. For |C| = 1 and k 6= 0, w>kHC has a possible
simple pole in z = d+χk with residue the right-hand side of (49) evaluated at z = d+χk
and divided by log q. For |C| = 1, w>0HC has a possible double pole with main part

eT
log q

1

(z − d)2
+
(eT

2
+

hC
log q

) 1

z − d

where hC is given in (52).

Remark 4.6. The infinite recursion (49) can be used to numerically compute the values
of HC and its residues at z = d + χk with arbitrary precision. It numerically converges
fast if the first terms of the Dirichlet series HC are computed explicitly.

Proof. AsBC(r) = O(rd−|C| log r), the Dirichlet seriesHC is analytic for <z > d−|C|+1.
By multiplying (20) with u(t), differentiating with respect to t at t = 0 and using (34),

(19) and (48), we obtain the recursion

BC(qr + ε) =
∑
D⊆Cc

M ε
C,DBC∪D(r) + δεC,Dr

d−|D|−|C| (50)

for C 6= ∅, {1, . . . , d} and qr+ε > 0. By (17), this recursion is also valid for C = {1, . . . , d}
and qr + ε > 0.

By (50), we have

HC(z) =

q−1∑
ε=1

BC(ε)ε−z +

q−1∑
ε=0

∑
r>1

BC(qr + ε)(qr + ε)−z

=

q−1∑
ε=1

BC(ε)ε−z+
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∑
D⊆Cc

q−1∑
ε=0

∑
r>1

(M ε
C,DBC∪D(r) + δεC,Dr

d−|D|−|C|)q−zr−z
(

1 +
ε

qr

)−z
for C 6= ∅. Expanding (1 + ε/(qr))−z as a binomial series yields

HC(z) =

q−1∑
ε=1

BC(ε)ε−z

+
∑
D⊆Cc

q−1∑
ε=0

∑
r>1

∑
m>0

(−z
m

)
M ε

C,Dε
mq−z−mBC∪D(r)r−z−m

+ q−z
∑
D⊆Cc

q−1∑
ε=0

δεC,DJ
(
z,
ε

q
, d− |D| − |C|

)
=

q−1∑
ε=1

BC(ε)ε−z + q−z
∑
D⊆Cc

q−1∑
ε=0

M ε
C,DHC∪D(z)

+ q−z
∑
D⊆Cc

q−1∑
ε=0

δεC,DJ
(
z,
ε

q
, d− |D| − |C|

)
+
∑
D⊆Cc

∑
m>1

(−z
m

)
q−z−m

q−1∑
ε=0

M ε
C,Dε

mHC∪D(z +m)

for <z > d and C 6= ∅. Collecting HC(z) on the left-hand side results in (49).
To compute the residues ofw>kHC for |C| = 1 at z = d+χk, note that

∑q−1
ε=0 M

ε
C,∅ = M

holds independently of C.
We multiply (49) with the left eigenvector w>k which results in(

1− qd−z exp
(2πik

p

))
w>kHC(z) =

w>k

q−1∑
ε=1

BC(ε)ε−z

+ q−zw>k
∑

∅6=D⊆Cc

q−1∑
ε=0

M ε
C,DHC∪D(z)

+ q−zw>k
∑
D⊆Cc

q−1∑
ε=0

δεC,DJ
(
z,
ε

q
, d− |D| − 1

)
+w>k

∑
D⊆Cc

∑
m>1

(−z
m

)
q−z−m

q−1∑
ε=0

M ε
C,Dε

mHC∪D(z +m).

(51)

As |C ∪ D| > 2 or <z + m > d, all HC∪D used on right-hand side of (51) are well
defined for <z > d− 1. The Dirichlet series J have simple poles at z = d for |C| = 1 and
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D = ∅ (Lemma 4.3). Thus the right-hand side of (51) is meromorphic for <z > d − 1
with a simple pole at z = d.

The factor 1− qd−z exp(2πik
p

) has a zero exactly for z = d+χk, k ∈ Z. Thus for k 6= 0,
w>kHC has a possible simple pole at z = d+χk. Its residue is the right-hand side of (51)
evaluated at z = d+ χk divided by log q.

If k = 0, we have z = d. In this case the expansion of the right-hand side of (51) is

eT
z − d + hC +O(z − d)

with

hC = −eT log q − q−dw>0
q−1∑
ε=0

δεC,∅ψ
(ε
q

+ [ε = 0]
)

(52)

− [d = 1]w>0

q−1∑
ε=1

δεC,∅ε
−1

+ q−dw>0

q−1∑
ε=0

δεC,∅

d−2∑
k=0

(
d− 1

k

)(
− ε

q

)d−1−k
ζ
(
d− k, ε

q

)
+w>0

q−1∑
ε=1

BC(ε)ε−d + q−dw>0
∑

∅6=D⊆Cc

q−1∑
ε=0

M ε
C,DHC∪D(d)

+ q−dw>0
∑

∅6=D⊆Cc

q−1∑
ε=0

δεC,DJ
(
d,
ε

q
, d− |D| − 1

)

+w>0
∑
D⊆Cc

∑
m>1

(−d
m

)
q−d−m

q−1∑
ε=0

M ε
C,Dε

mHC∪D(d+m)

where we used the expansion of J in Lemma 4.3, δ =
∑q−1

ε=0 δ
ε
C,∅ and (14).

From the previous lemma and (47), the residues of the Dirichlet function H follow.
Only HC with |C| = 1 contribute as all other summands are holomorphic.

Lemma 4.7. The Dirichlet functionH is meromorphic in <z > d−1 with possible simple
poles at z = d+ χk, k 6= 0 and a possible double pole at z = d.

The residue at z = d+ χk, k 6= 0 is

1

log q

d∑
j=1

(
q−1∑
ε=1

B{j}(ε)ε
−d−χk

+ q−d−χk
∑

∅6=D⊆{j}c

q−1∑
ε=0

M ε
{j},DH{j}∪D(d+ χk)
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+ q−d−χk
∑

D⊆{j}c

q−1∑
ε=0

δε{j},DJ
(
d+ χk,

ε

q
, d− |D| − 1

)

+
∑

D⊆{j}c

∑
m>1

(−d− χk
m

)
q−d−m−χk

q−1∑
ε=0

M ε
{j},Dε

mH{j}∪D(d+m+ χk)

)
.

The main part at z = d is

eT d

log q

1

(z − d)2
+
(eT d

2
+

d∑
j=1

h{j}
log q

) 1

z − d

where h{j} is defined in (52).

Now we can prove the formulas for the Fourier coefficients.

Proof of Theorem 2. The periodic fluctuation Ψ1 of the expected value is a p-periodic
function. We use the explicit expression of Ψ1 given in Lemma 3.9.

Due to absolute convergence, the k-th Fourier coefficient of Ψ1(x) is

ck =
1

p

∫ p

0

Ψ1(x)e−
2πik
p
x dx

= −eT
p

∫ p

0

{x}e− 2πik
p
x dx−

∑
l∈P

∞∑
m=0

q−dme−
2πilm
p Il,m

with

Il,m =
1

p

∫ p

0

q−d{x} exp
(2πil

p
bxc − 2πik

p
x
)
fl((x0 . . . xm)q) dx

and q{x} = (x0 � x1 . . .)q. The value of the first integral is given by − eT
2

for k = 0, and
[k ≡ 0 mod p] eT

χk log q
otherwise. Thus, we focus on the second integral Il,m.

First, we partition the interval [0, p) into intervals [r, r+ 1) for r = 0, . . . , p− 1. After
simplifying the sum of p-th roots of unity, we obtain

Il,m = [k ≡ l mod p]

∫ 1

0

q−dxfl((x0 . . . xm)q)e
− 2πik

p
x dx.

After partitioning the interval [0, 1) into the intervals [logq r − m, logq(r + 1) − m)
for r = qm, . . . , qm+1 − 1, the function fl((x0 . . . xm)q) is constant on the interval of
integration. Therefore, we obtain

∑
l∈P

∞∑
m=0

q−mde−
2πilm
p Il,m =

1

(d+ χk) log q

∞∑
r=1

fk mod p (r)
(
r−d−χk − (r + 1)−d−χk

)
.
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Next, consider the function

A(z) =
∞∑
r=1

fk mod p (r)
(
r−z − (r + 1)−z

)
.

We know that fl(r) = O(rd−1 log r). Thus, A(z) is analytic for <z > d− 1.
By summation by parts, we can rearrange the series for <z > d and obtain a sum of

Dirichlet series

A(z) = [p | k]eT S1(z) + iw′>k 1S2(z)− S3(z) + qd exp
(2πik

p

)
S4(z) (53)

with coefficients s1(r), s2(r), s3(r) and s4(r) respectively. These coefficients are differences
of the four summands in fk mod p(r) and fk mod p(r − 1) in (32), respectively, e.g.,

s1(r) = blogq(r)c(rd − (qbr/qc)d) + (qbr/qc)d

− [r > 1]
(
blogq(r − 1)c((r − 1)d − (qb(r − 1)/qc)d)

− (qb(r − 1)/qc)d
)
.

After some simplifications using b r−1
q
c = b r

q
c − [q | r] and blogq(r − 1)c = blogq rc −

[r is a power of q] (for r > 2), we obtain

s1(r) = blogq rc(rd − (r − 1)d)

− [q | r]qdblogq rq
−1c((rq−1)d − (rq−1 − 1)d)

+ [r 6= 1 is a power of q]((r − 1)d − (r − q)d),

s2(r) = rd − (r − 1)d − [q | r]qd exp
(2πik

p

)
((rq−1)d − (rq−1 − 1)d),

s3(r) = w>k (B∅(r)−B∅(r − 1)),

s4(r) = [q | r]w>k (B∅(rq
−1)−B∅(rq−1 − 1)).

(54)

For <z > d, we can split up the summation into the different cases in (54). This yields

S1(z) = (1− qd−z)L(z) +
d−1∑
j=0

(
d

j

)
(−1)d−j

1− qd−j
qz−j − 1

,

S2(z) =
(

1− qd−z exp
(2πik

p

))
Z(z),

S3(z) = w>kH(z)−B(z),

S4(z) = q−zw>kH(z)− q−zB(z)

where we used (45), (47) and the Dirichlet series defined in Lemmas 4.1, 4.2 and 4.4.
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Thus, in (53), we obtain

A(z) = [p | k]eT

d−1∑
j=0

(
d

j

)
(−1)d−j

1− qd−j
qz−j − 1

+ iw′>k 1
(
1− qd−ze 2πik

p
)
Z(z)

−
(
1− qd−ze 2πik

p
)
w>kH(z)

+ [p | k]eT (1− qd−z)L(z)

+
(
1− qd−ze 2πik

p
)
B(z).

(55)

We want to evaluate A at z = d+ χk. The factors 1− qd−ze 2πik
p are zero if and only if

z = d+ χk. Thus, the following Dirichlet series contribute to (55):

• The Dirichlet series Z only contributes if k = 0 (Lemma 4.2).

• The Dirichlet series w>kH has poles at z = d + χk for k ∈ Z. The possible double
pole at z = d cancels with the one of L (Lemma 4.7).

• The residues of the Dirichlet series L contribute to the Fourier coefficients. The
possible double pole at z = d cancels with that of w>0H (Lemma 4.1).

• As the Dirichlet seriesB converges for <z > d−1 (Lemma 4.4), it does not contribute
to the Fourier coefficients.

As the second order poles of w>0H and L cancel, the right-hand side of (55) is well
defined for the limit z → d+χk. After computing the limit and simplifying the summation,
we obtain (7).

Then Lemma 3.12 and Bernstein’s theorem (cf. [36, p. 240]) imply the absolute and
uniform convergence of the Fourier series.

Now we use Theorem 2 to prove Corollary 2.5.

Proof of Corollary 2.5. The transducer in Figure 7 computes the q-ary sum-of-digits func-
tion sq(n) and we can use Theorem 2.

0 | 0, . . . , q − 1 | q − 1

Figure 7: Transducer for the q-ary sum-of-digits function.

We transform the Dirichlet series

D(z) =
∑
m>1

(sq(m)− sq(m− 1))m−z
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in two different ways. This series is absolutely convergent for <z > 1.
First, we can rearrange the summation of the Dirichlet series D(z) such that the

Dirichlet series H(z) =
∑

m>1 sq(m)m−z, defined in (46), appears. We have

|H(z)− 1| = O
(

2−<z +
∑
m>3

m−<z logm
)

= O
(

2−<z +

∫ ∞
2

x−<z log x dx
)

= O(2−<z)

(56)

for <z > 1. By partial summation, we obtain

D(z) = 1− 2−z +
∑
m>2

sq(m)(m−z − (m+ 1)−z)

= 1− 2−z +
∑
m>2

sq(m)m−z
(
1−

(
1 +m−1

)−z)
.

Expanding the binomial series yields

D(z) = 1− 2−z −
∑
m>2

sq(m)m−z
∑
l>1

(−z
l

)
m−l

= 1− 2−z −
∑
l>1

(−z
l

)
(H(z + l)− 1).

(57)

By (57), we have

D(z) = 1− 2−z + zH(z + 1)− z −
∑
l>2

(−z
l

)
(H(z + l)− 1)

which is equivalent to

H(z + 1) =
1

z
D(z) +

1

z
(2−z − 1) + 1−

∑
l>2

1

l

(−z − 1

l − 1

)
(H(z + l)− 1)

for <z > 1. The sum on the right-hand side is holomorphic at <z = 0 because of (56).
By meromorphic continuation, this equation also holds for <z = 0. This yields

Resz=1+χk H(z) = Resz=χk H(z + 1) = Resz=χk
1

z
D(z). (58)

On the other hand, we split up the summation in the definition of D(z) into the q
equivalence classes modulo q and we use the recursions4

sq(qm+ ε) = sq(m) + ε

4Actually, these recursions are (36).
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for 0 6 ε < q. This results in

sq(m)− sq(m− 1) = 1 + [q | m]
(
sq
(
q−1m

)
− sq

(
q−1m− 1

)
− q
)

for m > 1. Thus we obtain

D(z) =
∑
m>1

(
1 + [q | m]

(
sq
(
q−1m

)
− sq

(
q−1m− 1

)
− q
))
m−z

= ζ(z) + q−zD(z)− q1−zζ(z).

Thus, we obtain5

D(z) =
1− q1−z

1− q−z ζ(z). (59)

This formula yields

Resz=χk D(z) = −q − 1

log q
ζ(χk). (60)

For k = 0, we further use the expansion

ζ(z) = −1

2
− 1

2
log(2π)z +O(z2)

(cf. [8, 25.6.1 and 25.6.11]) and (59) to obtain

D(z) =
q − 1

2z log q
+

(q − 1) log (2π)

2 log q
− q + 1

4
+O(z). (61)

Thus, by (56) and (60), we obtain

Resz=1+χk H(z) =
1

χk
Resz=χk D(z) = − q − 1

χk log q
ζ(χk)

for k 6= 0. For k = 0, (61) and (58) yield

Resz=1 H(z) =
(q − 1) log (2π)

2 log q
− q + 1

4
.

Now, (7) with eT = q−1
2

and w′>0 = 0 yields (9).

5 Non-Differentiability — Proof of Theorem 3

In this section, we give the proof of the non-differentiability of Ψ1(x). We follow the
method presented by Tenenbaum [33], see also Grabner and Thuswaldner [18].

5Note that this well-known identity can also be derived from sq(m)− sq(m− 1) = 1− (q − 1)vq(m),
where vq(m) is the q-adic valuation of m.
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Proof of Theorem 3. Let r = (rm−1 . . . r0)q be the value of the reset sequence (rm−1 . . . r0)
leading to state ν.

Assume that Ψ1 is differentiable at x ∈ [0, 1). Let qx = (ε0 � ε1 . . .)q be the standard
q-ary digit expansion choosing the representation ending on 0ω in the case of ambiguity.
Further, let xk be such that qxk = (ε0 � ε1 . . . εk)q. Thus, we have limk→∞ xk = x. For
f ∈ {0, 1}, the function Lf : Z→ Z is defined as Lf (k) = ck + f with c a positive integer
such that c > 1

ξ
− 1. Define Nk = qxk+k+Lf (k) and h(k) = bqck+ c

c+1
xk−m−2c. Let yk and zk

be such that Nk + qck−m−1r = qyk+k+Lf (k) and Nk + qck−m−1r + h(k) = qzk+k+Lf (k).
From these definitions, we know that

h(k)

Nk

= Θ(q−k),

N1−ξ
k logNk = o(h(k))

for k →∞. Apart from xk, also, yk and zk converge to x and satisfy the following bounds:

zk − yk =
1

log q

h(k)

Nk

+O
(
h(k)2

N2
k

)
,

|yk − xk| = O(q−k),

x− xk = O(q−k).

Now, we compute
1

h(k)

∑
n∈Nk

T (n) (62)

in two different ways where Nk = {n ∈ Z | Nk + qck−m−1r 6 n < Nk + qck−m−1r + h(k)}.
First, observe that qck−1 | Nk and h(k) < qck−m−1. Thus, the digit representations

of the three summands in Nk + qck−m−1r + n are not overlapping at non-zero digits for
n < h(k). Since the digit expansion of r is a reset sequence, we have

T (Nk + qck−m−1r + n) = e>ν b(Nkq
−ck+1) + T (qck−m−1r + n)− b(ν)

where e>ν b(N) is the output of the transducer when starting in state ν with input N and
b(ν) is the final output at state ν.

Thus, we have

1

h(k)

∑
n∈Nk

T (n) =
1

h(k)

∑
06n<h(k)

T (Nk + qck−m−1r + n)

= e>ν b(Nkq
−ck+1)− b(ν) +

1

h(k)

∑
n<h(k)

T (qck−m−1r + n)

where only the first summand depends on Lf (k) and hence on f .
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Taking the difference in (3), there is a second way of computing the sum in (62). Using
the periodicity and continuity of Ψ1(x) yields∑

n∈Nk

T (n) = (Nk + qck−m−1r)eT (zk − yk) + h(k)eT (x+ k + Lf (k))

+ (Nk + qck−m−1r)(Ψ1(zk)−Ψ1(yk))

+ h(k)Ψ(x) + o(h(k)).

(63)

Next, we use our assumption that Ψ1 is differentiable at x to replace the difference by
the derivative

Ψ1(zk)−Ψ1(yk) = Ψ′1(x)(zk − yk) + o(|zk − x|) + o(|x− yk|).

Now, we insert this into (63), divide by h(k) and obtain

1

h(k)

∑
n∈Nk

T (n) =
eT

log q
+ eT (x+ k + Lf (k)) +

1

log q
Ψ′1(x) + Ψ1(x) + o(1).

Thus, we have the following equality

e>ν b(Nkq
−ck+1)− b(ν) +

1

h(k)

∑
n<h(k)

T (qck−m−1r + n)

=
eT

log q
+ eT (x+ k + Lf (k)) +

1

log q
Ψ′1(x) + Ψ1(x) + o(1)

twice, for f ∈ {0, 1}. Subtracting these two from each other yields

e>ν b(q
xk+k+2)− e>ν b(qxk+k+1) = eT + o(1).

Since the left-hand side is an integer, but the right-hand side is not for k large enough,
this contradicts our assumption that Ψ1 is differentiable at x.

6 Recursions — Proof of Theorem 4

In this section, we construct a transducer associated to the sequence defined by the
recursion in (10). All inequalities, maxima and minima in this section are considered
coordinate-wise.

Define the function A : Nd
0 → Nd

0 ∪ {∞} by

A(qκn+ λ) =

{
qκλn+ rλ if qκλn+ rλ > 0,

∞ else

for 0 6 λ < qκ1 and n > 0. So, if A(n) < ∞, then the recursion (10) can be used for
this argument because the argument on the right-hand side is non-negative, i.e., a(n) =
a(A(n)) + tn mod qκ .
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First, we construct a non-deterministic transducer T̃ . A priori, it has an infinite
number of states; later, we will prove that only finitely many of them are accessible. We
then simplify it to obtain a finite, deterministic, subsequential, complete transducer T .

The set of states of T̃ is

{(l, j)F | l ∈ Zd, j ∈ N0} ∪ {(l, j)N | l ∈ Zd, j ∈ N0}.
The initial state is (0, 0)F ; all states (l, j)F are final states with final output a(l) if l > 0
and final output 0 otherwise6. As an abbreviation, we will frequently speak about “a state
(l, j)” if we do not want to distinguish between (l, j)F and (l, j)N . We call l the carry
and j the level of the state (l, j). A state (l, j)F is called simple, if it is final, l > 0 and
j 6 κ.

There are two types of transitions in T̃ , recursion transitions and storing transitions.
Each state is either the origin of one recursion transition or of qd storing transitions.

There is a recursion transition leaving (l, j) if

• j > κ and

• A(qjn+ l) <∞ for all n > 0 with n 6= 0.

In that case, we write l = qκs+λ for a 0 6 λ < qκ1 and the transition leads to the state
(l′, j′)N with j′ = κλ + j − κ and l′ = qκλs + rλ. The input label is empty, the output
label is tλ. Thus

A(qjn+ l) = qj
′
n+ l′ (64)

for n > 0 with n 6= 0. Note that (64) holds for n = 0 if and only if l > 0 and l′ > 0.
Otherwise, there are storing transitions from (l, j) to (qjε + l, j + 1)F with input ε

and output 0 for all 0 6 ε < q1.
We now define the classes F1, . . . , FK announced in Section 2.6. For each accessible

cycle in T̃ with simple states and input 0, the carries of its states form one of these classes.
The other classes are the singletons of those carries l > 0 in the accessible part of T̃ with
A(l) =∞. These sets will turn out to be disjoint by Lemma 6.6 and the finiteness of K
will follow from the finiteness of the accessible part of T̃ (Lemma 6.4).
Remark 6.1. We also give a combinatorial description of those classes F1, . . . , FK which
do not come from cycles in T̃ : Let l > 0 be a carry of an accessible state of T̃ . Then
A(l) = ∞ if and only if there is a recursion transition from some (l, j) to some (l′, j′)
with l′ 6> 0.

Proof. Let (l, j0) be any accessible state with carry l. We use the longest path with
input 0 using storing transitions only to arrive in some state (l, j)—again, finiteness of
this process will follow from the finiteness of the accessible part and the fact that the
levels increase along storing transitions. As there is no storing transition leaving (l, j)
by construction, there is a recursion transition from (l, j) to some (l′, j′). By the remark
following (64), l′ = A(l) or l′ 6> 0.

6In fact, we will prove that a path with valid input will never end in a state (l, j)F with l 6> 0, but
the framework of subsequential transducers requires us to specify a final output even in that case. The
non-final states (l, j)N will disappear in the reduction to T anyway.

the electronic journal of combinatorics 22(2) (2015), #P2.19 45



As usual, if reaching a state which is the origin of a transition with empty input,
the process may stay in that state or may continue to the destination state writing the
output of the transition without reading an input. This is the reason why the transducer
is non-deterministic.

Note that in our case, transitions with empty input (i.e., recursion transitions) lead
to non-final states and transitions with non-empty input (i.e., storing transitions) lead to
final states. Combined with the fact that each state is either the origin of one recursion
transition or of qd storing transitions, processing an input is in fact deterministic: For
every admissible input—we do not allow leading zeros—, there exists exactly one path
leading from the initial state to a final state with the given input. This will enable us to
simplify the transducer T̃ to a deterministic transducer T later on.

We need the property that the carries of accessible states are not “too negative”:

Lemma 6.2. 1. If (l, j) is an accessible state, then

qjn+ l > 0 (65)

holds for all n > 0 with n 6= 0.

2. If d > 2 and (l, j) is an accessible state, then

l > 0.

3. Any accessible transition with input ε 6= 0 leads to a state (l, j) with l > 0.

4. If d = 1 and (l, j) is an accessible state, then

l > lmin = min
λ

{
0,
−1 + rλ

qκλ

1
qκλ
− 1

qκ

}
.

Proof. The first assertion is easily shown by induction and (64). The second assertion
follows by induction and from the assumption that rλ > 0 holds for all λ. To prove the
third assertion, we use (65) on the originating state of the transition.

The last assertion is shown by induction. It is clearly valid in the initial state. For
storing transitions, the value of l is non-decreasing. If there is a recursion transition from
some (l, j) to some (l′, j′)N , we have

l′ = qκλ
⌊
l

qκ

⌋
+ rλ > qκλ

(
l

qκ
− 1 +

rλ
qκλ

)
> qκλ

(
lmin

qκ
+ lmin

(
1

qκλ
− 1

qκ

))
= lmin.

As leading zeros are not allowed, the last transition in the computation path of any
valid input has input ε 6= 0 and thus leads to a state with a non-negative carry.

For our further investigations and finally the correctness proof, we need a suitable
invariant:
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Lemma 6.3. Consider a path from (l, j) to (l′, j′) with input label εm−1 . . . ε0, output label
δm′−1 . . . δ0 using L recursion transitions and n > 0. Thus m′ is the number of transitions
and m = m′ − L is the number of storing transitions.

If n 6= 0 or if the last transition is a storing transition with non-zero input εm−1, then

AL(qj(qmn+ (εm−1 . . . ε0)q) + l) = qj
′
n+ l′, (66)

and, if the recursion (10) is well-posed,

a(qj(qmn+ (εm−1 . . . ε0)q) + l) = a(qj
′
n+ l′) +

m′−1∑
k=0

δk. (67)

Proof. First consider the case that the path consists of a single transition. If it is a
storing transition, then L = 0, m = 1, and all assertions follow from the definition and
Lemma 6.2. On the other hand, if the transition is a recursion transition, we have L = 1,
m = 0, and all assertions again follow from the definition, Lemma 6.2 and (64).

By induction on the length of the path, we obtain (66) and (67).

We are now able to prove the finiteness of the accessible part.

Lemma 6.4. The transducer has a finite number of accessible states.

Proof. For a recursion transition from (l, j) to (l′, j′)N , we have j > j′. Thus, there are no
infinite paths consisting only of recursion transitions. In particular, there exist no cycles
of recursion transitions.

For d = 1, let J > κ be minimal such that qJ−κ > −
⌊
lmin

qκ

⌋
− minλ q

−κλrλ. Then
A(qj + l) <∞ holds for all accessible states (l, j) with j > J . This implies j 6 J for all
accessible states (l, j). For d > 2, we have j 6 κ =: J for all accessible states (l, j). Thus
there are at most J consecutive recursion transitions.

To prove that only finitely many states are accessible, we introduce the notion of
heights of states: The height of a state (l, j) is defined to be h = lq−j. If there exists a
storing transition from (l, j) of height h to (l′, j′)F of height h′, we have 1

q
h 6 h′ 6 1

q
h+1.

If there exists a recursion transition from (l, j) of height h to (l′, j′)N of height h′, we
have h+s−−1 6 h′ 6 h+s+ where s+ = maxλ{rλq−κλ , 0} and s− = minλ{rλq−κλ , 0}.

Assume that there is a path from (l, j) of height h to (l′, j′) of height h′ with L 6 J
recursion transitions and one storing transition (in this order). Then we have

1

q
h+

J

q
(s− − 1) 6 h′ <

1

q
h+

J

q
s+ + 1.

We can subdivide every path in the transducer starting with the initial state into a
sequence of such paths and a final path consisting of only recursion transitions. Let hm
be the sequence of heights of the states where the subpaths starts. Then, we have

1

q
hm +

J

q
(s− − 1) 6 hm+1 <

1

q
hm +

J

q
s+ + 1.
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Iteration leads to
J(s− − 1)

q − 1
6 hm 6

Js+ + q1

q − 1

for all m. Therefore, the height h of an accessible state is bounded. Since 0 6 j 6 J is
also bounded, the integer carry l = qjh of an accessible state (l, j) can only take finitely
many different values. The accessible part of the transducer is thus finite.

Lemma 6.5. Let P be an infinite path with input zero starting at some state of level j
such that all of its states have non-negative carries. Then, after at most j transitions, it
reaches a state (l0, κ). From that point on, it only passes through simple states, namely

(l0, κ), (l1, j1)N , (l1, j1 + 1)F , . . . , (l1, κ)F ,

(l2, j2)N , (l2, j2 + 1)F , . . . , (l2, κ)F ,

(l3, j3)N , (l3, j3 + 1)F , . . . , (l3, κ)F ,

. . .

where li = A(li−1) and ji = κli−1 mod qκ for i > 1.

Proof. Denote the first state of P by (l, j).
First, assume that j > κ. As storing transitions always increase the level and the levels

are bounded by Lemma 6.4, the path has to contain at least one recursion transition. Thus
the path starts with k > 0 storing transitions leading from (l, j) to (l, j + k), followed by
a recursion transition from (l, j + k) to (l′, j′). By assumption, we have l > 0 and l′ > 0.
Thus A(l) = l′ 6= ∞ by (64). Therefore, there is a recursion transition leaving (l, j),
i.e., there were no leading storing transitions. Recall that j′ < j holds for any recursion
transition. We repeat the argument at most j − κ times until we reach a simple state.

If we are in a simple state (l′, j′) with j′ < κ, the next κ − j′ steps will be storing
transitions, leading to (l′, κ). This means that after at most j steps, we reach a state
(l0, κ).

We now apply the argument of the second paragraph again. Thus a recursion transition
leads to (l1, j1) with l1 = A(l0) and j1 = κl0 mod qκ .

The remainder of the lemma follows by induction.

As an auxiliary structure for deciding the well-posedness of the recursion, we introduce
the recursion digraph R. It has set of vertices Nd

0 and arcs (n, A(n)) with label tn mod qκ

for all n ∈ Nd
0 with A(n) < ∞. Thus a(n) can be computed from the successor of n in

R using the recursion (10). By definition, each vertex of R has out-degree 1 or 0. Each
component of R is a functional digraph or a rooted tree (oriented towards the root).

If
‖n‖∞ > max

λ

‖λ‖∞ + ‖rλ‖∞
qκ − qκλ ,

we have
qκ‖n‖∞ − ‖λ‖∞ > qκλ‖n‖∞ + ‖rλ‖∞
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and therefore
‖qκn+ λ‖∞ > ‖qκλ + rλ‖∞

for all 0 6 λ < qκ1. Thus we have ‖n′‖∞ < ‖n‖∞ for all but finitely many arcs (n,n′)
of R.

Thus for every vertex of R, there is a unique path starting in this vertex and leading
to a vertex with out-degree 0 or a finite cycle.

From this description, it is clear that the recursion is well-posed if and only if

• the sum of the labels of each cycle in R is 0 and

• the set I consists of one element for every cycle in R as well as of the vertices with
out-degree 0 in R.

We now prove the essential connection between the recursive digraph and the trans-
ducer T̃ . This also implies that the classes F1, . . . , FK are disjoint.

Lemma 6.6. There exists a bijection between cycles in the recursive digraph R and ac-
cessible cycles in the transducer T̃ with input 0 and simple states. Corresponding cycles
under this bijection have the same output sum and sum of labels.

Proof. Let n0, . . . , nL = n0 be a cycle in the recursive digraph with nR > 0 for all
0 6 R < L.

Let k0 be the length of the path P0 in T̃ starting in the initial state and reading the
q-ary expansion of n0.

We determine the destinations of certain paths in the transducer associated with the
cycle in the recursive digraph.

Statement 6.7. Let k > k0 and P be the path from the initial state (0, 0) to (l, j) of length
k whose input label is the q-ary expansion of n0, padded with leading zeros. Assume that
the number of recursion transitions in this path is LQ+R for some Q > 0 and 0 6 R < L.
Then l = nR > 0.

Proof of Statement 6.7. Let k′ = k − (LQ + R) be the number of storing transitions of
P . By (66), we have

ALQ+R(qk
′
n+ n0) = qjn+ l (68)

for n > 0, n 6= 0.
Note that for M > κ and n ≡ n′ (mod qM) with A(n) < ∞ and A(n′) < ∞, the

definition of A implies A(n) ≡ A(n′) (mod qM−κ).
Together with the definitions of nR and the recursive digraph R as well as (68), this

implies

nR = ALQ+R(n0) ≡ ALQ+R(qk
′+M1 + n0)

= qj+M1 + l (mod qk
′+M−(LQ+R)κ)

for sufficiently large M . Coarsening yields

nR ≡ l (mod qM−(LQ+R)κ),

still valid for sufficiently largeM . As l is bounded by Lemma 6.4, this implies nR = l.
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Now, we conclude the proof of Lemma 6.6.
Let P be the infinite path in T̃ starting at the destination of P0 and reading zeros.

By Lemma 6.5 applied to P together with Statement 6.7 applied to P0 concatenated with
prefixes of P , P leads to a cycle in T̃ . Its states are simple and have carries n0, . . . , nL−1

and levels determined by n0, . . . , nL−1 as in Lemma 6.5.
This construction defines a map from the cycles of the recursive digraph R to the

accessible cycles with input 0 in the transducer with simple states. This map is injective
by construction. Under this map, the sum of the labels of the cycle in R equals the sum
of output labels of the cycle in T̃ by construction.

On the other hand, let

(n0, j0), (n0, j0 + 1), . . . , (n0, κ),

(n1, j1), (n1, j1 + 1), . . . , (n1, κ), . . .

(nL−1, jL−1), (nL−1, jL−1 + 1), . . . , (nL−1, κ),

(n0, j0)

be an accessible cycle of simple states in the transducer with input 0. Lemma 6.5 yields
A(nR) = nR+1 mod L > 0 for 0 6 R < L. Thus, this cycle in the transducer is the image
of the cycle n0, . . . , nL = n0 in the recursive digraph. Thus the map is surjective.

To use Theorem 1, we simplify T̃ to obtain the deterministic transducer T , that is
one without transitions with empty input. As a first step, we remove all non-accessible
states. By Lemma 6.4, this leaves us with finitely many states.

By Lemma 6.4 and the fact that recursion transitions decrease the level, the length of
paths consisting of recursion transitions only is bounded. As a recursion transition always
leads to a non-final state, processing an input never ends with a recursion transition.

Consider a recursion transition from (l, j) to (l′, j′)N with output t such that no
recursion transition originates in (l′, j′)N . For each transition originating in (l′, j′)N , say
to some (l′′, j′′)F with input ε and output t′, we insert a storing transition from (l, j)
to (l′′, j′′)F with input ε and output t + t′. Then, the recursion transition from (l, j) to
(l′, j′)N is removed. The number of recursion transitions decreased by one and the new
transducer generates the same output as the old transducer. We repeat this process until
there are no more recursion transitions. Then, all non-final states are inaccessible and are
removed.

Proof of Theorem 4. By Lemma 6.6 and the characterization of well-posedness via the
recursive digraph, the recursion (10) is well-posed if and only if I consists of exactly one
representative of each of the sets Fj, 1 6 j 6 K, and if T̃ has no cycle with simple states,
input 0 and non-vanishing output sum.

We now show that the cycles of simple states with input 0 in T are exactly the
reductions of the cycles of simple states with input 0 in T̃ . As a cycle with simple states
and input 0 in T̃ does not have consecutive recursion transitions (cf. Lemma 6.5), it is
reduced to a cycle with simple states in T . On the other hand, consider a cycle of T̃
with input 0 containing a non-simple state. If there is a state of level > κ, the state with

the electronic journal of combinatorics 22(2) (2015), #P2.19 50



largest level is final and is not removed. If all states have level 6 κ, then there are no
two consecutive recursion transitions, so no negative carry is completely removed from
the cycle in the reduction to T . Therefore, such a cycle is not reduced to a cycle with
simple states and input 0 in T .

Therefore, the assertion on well-posedness is proved.
To prove correctness of the transducer, we use (66) with (l, j) = (0, 0), the joint q-

ary expansion of n as input leading to some state (l′, j′)F with output δm′−1 . . . δ0. By
Lemma 6.2, we have l′ > 0 because the last transition is a storing transition with non-zero
input. Thus by (67), a(n) = a(l′) +

∑m′−1
k=0 δk. As the final output of (l′, j′)F is defined

to be a(l′), we obtain T (n) = a(l′) +
∑m′−1

k=0 δk = a(n), as requested.
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