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Abstract

The purpose of this paper is to investigate several context-free grammars sug-
gested by the Lotka-Volterra system. Some combinatorial arrays, involving the
Stirling numbers of the second kind and Eulerian numbers, are generated by these
context-free grammars. In particular, we present grammatical characterization of
some statistics on cyclically ordered partitions.

Keywords: Lotka-Volterra system; Context-free grammars; Cyclically ordered par-
titions; Eulerian numbers

1 Introduction

Throughout this paper a context-free grammar is in the sense of Chen [4]: for an alphabet
A, let Q[[A]] be the rational commutative ring of formal power series in monomials formed
from letters in A. A context-free grammar over A is a function G : A→ Q[[A]] that replace
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Foundation for Science and Technology Pillar Program of Northeastern University at Qinhuangdao
(XNK201303) and the Natural Science Foundation of Hebei Province (A2013501070).
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a letter in A by a formal function over A. The formal derivative D is a linear operator
defined with respect to a context-free grammar G. More precisely, the derivative D = DG:
Q[[A]]→ Q[[A]] is defined as follows: for x ∈ A, we have D(x) = G(x); for a monomial u
in Q[[A]], D(u) is defined so that D is a derivation, and for a general element q ∈ Q[[A]],
D(q) is defined by linearity.

Let [n] = {1, 2, . . . , n}. The Stirling number of the second kind
{
n
k

}
is the number of

ways to partition [n] into k blocks. Let Sn be the symmetric group of all permutations
of [n]. A descent of a permutation π ∈ Sn is a position i such that π(i) > π(i + 1).
Denote by des (π) the number of descents of π. The Eulerian number

〈
n
k

〉
is the number

of permutations in Sn with k − 1 descents, where 1 6 k 6 n (see [15, A008292]). Let us
now recall two classical results.

Proposition 1 ([4, Eq. 4.8]). For A = {x, y} and G = {x→ xy, y → y}, we have

Dn(x) = x
n∑
k=1

{
n

k

}
yk for n > 1.

Proposition 2 ([6, Section 2.1]). For A = {x, y} and G = {x→ xy, y → xy}, we have

Dn(x) =
n∑
k=1

〈
n

k

〉
xkyn−k+1 for n > 1.

One of the most commonly used models of two species predator-prey interaction is the
classical Lotka-Volterra system:

dx

dt
= x(a− by),

dy

dt
= y(−c+ dx), (1)

where y(t) and x(t) represent, respectively, the predator population and the prey popula-
tion as functions of time, and a, b, c, d are positive constants. The differential system (1) is
ubiquitous and arises often in mathematical ecology, dynamical system theory and other
branches of mathematics (see [2, 3]).

Motivated by (1), we shall consider context-free grammars of the form:

A = {x, y}, G = {x→ x+ p(x, y), y → y + q(x, y)}, (2)

where p(x, y) and q(x, y) are polynomials in x and y. For convenience, we shall call

G′ = {x→ p(x, y), y → q(x, y)}

the ancestor of G.
This paper is a continuation of [4, 6, 12]. Throughout this paper, arrays are indexed by

n, i and j. Call (an,i,j) a combinatorial array if the numbers an,i,j are nonnegative integers.
For any function H(x, p, q), we denote by Hy the partial derivative of H with respect to
y, where y ∈ {x, p, q}. In the next section, we present grammatical characterization of
some statistics on cyclically ordered partitions.
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2 Some permutation statistics on cyclically ordered partitions

Recall that a partition π of [n], written π ` [n], is a collection of disjoint and nonempty
subsets B1, B2, . . . , Bk of [n] such that

⋃k
i=1Bi = [n], where each Bi (1 6 i 6 k) is

called a block of π. A cyclically ordered partition of [n] is a partition of [n] whose blocks
are endowed with a cyclic order. We always use a canonical representation for cyclically
ordered partitions, where the block containing 1 comes first and the integers in each block
are in increasing order. For example, (123), (12)(3), (13)(2), (1)(23), (1)(2)(3), (1)(3)(2)
are all cyclically ordered partitions of [3]. The opener of a block is its least element. For
example, the list of openers of (13)(2) and (1)(3)(2) are respectively given by 12 and 132.
In this section, we shall study some statistics on the list of openers.

2.1 Descent statistic

Consider the grammar

G = {x→ x+ xy, y → y + xy}. (3)

The combinatorial context for the ancestor G′ of G has been given in Proposition 2.
From (3), we have

D(x) = x+ xy,

D2(x) = x+ 3xy + xy2 + x2y,

D3(x) = x+ 7xy + 6xy2 + xy3 + 6x2y + 4x2y2 + x3y.

For n > 0, we define Dn(x) =
∑

i>1,j>0 an,i,jx
iyj. Since

Dn+1(x) = D

(∑
i,j

an,i,jx
iyj

)
=
∑
i,j

(i+ j)an,i,jx
iyj +

∑
i,j

ian,i,jx
iyj+1 +

∑
i,j

jan,i,jx
i+1yj,

we get
an+1,i,j = (i+ j)an,i,j + ian,i,j−1 + jan,i−1,j (4)

for i, j > 1, with the initial conditions a0,i,j to be 1 if (i, j) = (1, 0), and to be 0 otherwise.
Clearly, an,1,0 = 1 and an,i,0 = 0 for i > 2.

Example 3. The following table contains the values of a4,i,j.

a4,i,j j = 0 j = 1 j = 2 j = 3 j = 4
i = 1 1 15 25 10 1
i = 2 0 25 40 11 0
i = 3 0 10 11 0 0
i = 4 0 1 0 0 0
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Define

A = A(x, p, q) =
∑
n,i,j>0

an,i,j
xn

n!
piqj.

We now present the first main result of this paper.

Theorem 4. The generating function A is given by

A =
p(p− q)ex

p− qe(p−q)(ex−1)
.

Moreover, for all n, i, j > 1,

an,i,j =

{
n+ 1

i+ j

}〈
i+ j − 1

i

〉
. (5)

Proof. By rewriting (4) in terms of generating function A, we have

Ax = p(1 + q)Ap + q(1 + p)Aq. (6)

It is routine to check that the generating function

Ã(x, p, q) =
p(p− q)ex

p− qe(p−q)(ex−1)

satisfies (6). Also, this generating function gives Ã(0, p, q) = p, Ã(x, p, 0) = pex and

Ã(x, 0, q) = 0 with q 6= 0. Hence, A = Ã. Now let us prove that an,i,j =
{
n+1
i+j

}〈
i+j−1
i

〉
.

Note that

d

dx

∑
n,i,k>0

an,i,k+1−i
xn+1

(n+ 1)!
vi+1wk = v

d

dx

∑
k>0

( ∑
n>k+1

{
n+ 1

k + 1

}
xn+1

(n+ 1)!

k∑
i=0

〈
k

i

〉
vi

)
wk

= v
d

dx

∑
k>0

(
k∑
i=0

〈
k

i

〉
vi

)
(ex − 1)k+1

(k + 1)!
wk.

By using the fact that∑
k>0

(
k∑
i=0

〈
k

i

〉
pi

)
uk =

∫ u

0

p− 1

p− eu′(p−1)
du′ =

1

p
(u(p− 1)− ln(eu(p−1) − p) + ln(1− p)),

we obtain that

v
d

dx

∑
n,i,k>0

an,i,k+1−i
xn+1

(n+ 1)!
viwk =

wv(v − 1)ex

v − e(ex−1)w(v−1)
,

which implies

A(x, vw,w) =
wv(v − 1)ex

v − e(ex−1)w(v−1)
,

as required.
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Let an =
∑

i>1,j>0 an,i,j. Clearly, an =
∑n

k=0 k!
{
n+1
k+1

}
.

Proposition 5.
{
n
k

}〈
k−1
i

〉
is the number of cyclically ordered partitions of [n] with k blocks

whose list of openers contains i− 1 descents.

Proof. To form such a cyclically ordered partition, start with a partition of [n] into k
blocks in canonical form, each block increasing and blocks arranged in order of increasing
first entries (there are

{
n
k

}
choices). The first opener is thus 1. Then leave the first block

in place and rearrange the k − 1 remaining blocks so that their openers, viewed as a list,
contain i− 1 descents (there are

〈
k−1
i

〉
choices).

We can now conclude the following corollary from the discussion above.

Corollary 6. For all n, i, j > 1, an,i,j is the number of cyclically ordered partitions of
[n+ 1] with i+ j blocks whose list of openers contains i− 1 descents.

2.2 Peak statistics

The idea of a peak (resp. valley) in a list of integers (wi)
n
i=1 is an entry that is greater

(resp. smaller) than its neighbors. The number of peaks in a permutation is an important
combinatorial statistic. See, e.g., [1, 5, 7, 10] and the references therein. However, the
question of whether the first and/or last entry may qualify as a peak (or valley) gives
rise to several different definitions. In this paper, we consider only left peaks and right
valleys. A left peak index is an index i ∈ [n − 1] such that wi−1 < wi > wi+1, where we
take w0 = 0, and the entry wi is a left peak. Similarly, a right valley is an entry wi with
i ∈ [2, n] such that wi−1 > wi < wi+1, where we take wn+1 = ∞. Thus the last entry
may be a right valley but not a left peak. For example, the list 64713258 has 3 left peaks
and 3 right valleys. Clearly, left peaks and right valleys in a list are equinumerous: they
alternate with a peak first and a valley last. Peaks and valleys were considered in [7].
The left peak statistic first appeared in [1, Definition 3.1].

Let P (n, k) be the number of permutations in Sn with k left peaks. Let Pn(x) =∑
k>0 P (n, k)xk. It is well known [15, A008971] that

P (x, z) = 1 +
∑
n>1

Pn(x)
zn

n!

=

√
1− x√

1− x cosh(z
√

1− x)− sinh(z
√

1− x)

Let D be the differential operator d
dθ

. Set x = sec θ and y = tan θ. Then

D(x) = xy,D(y) = x2.

Furthermore, if G′ = {x→ xy, y → x2}, then

Dn
G′(x) =

bn
2
c∑

k=0

P (n, k)x2k+1yn−2k for n > 1,
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which was given in [10, Section 2]. There is a large literature devoted to the repeated
differentiation of the secant and tangent functions (see [8, 9, 10, 11] for instance).

Consider the grammar

G = {x→ x+ xy, y → y + x2}. (7)

From (7), we have

D(x) = x+ xy,

D2(x) = x+ 3xy + xy2 + x3,

D3(x) = x+ 7xy + 6xy2 + xy3 + 6x3 + 5x3y.

Define
Dn(x) =

∑
i>1,j>0

bn,i,jx
iyj.

Since

Dn+1(x) = D

( ∑
i>1,j>0

bn,i,jx
iyj

)
=
∑
i,j

(i+ j)bn,i,jx
iyj +

∑
i,j

ibn,i,jx
iyj+1 +

∑
i,j

jbn,i,jx
i+2yj−1,

we get
bn+1,i,j = (i+ j)bn,i,j + ibn,i,j−1 + (j + 1)bn,i−2,j+1 (8)

for i > 1 and j > 0, with the initial conditions b0,i,j to be 1 if (i, j) = (1, 0), and to be 0
otherwise. Clearly, bn,1,0 = 1 for n > 1.

Example 7. The following table contains the values of b4,i,j.

b4,i,j j = 0 j = 1 j = 2 j = 3 j = 4
i = 1 1 15 25 10 1
i = 3 25 50 18 0 0
i = 5 5 0 0 0 0

Define

B = B(x, p, q) =
∑
n,i,j>0

bn,i,jp
iqj
xn

n!
.

We now present the second main result of this paper.

Theorem 8. The generating function B is given by

B(x, p, q) =
p
√
q2 − p2ex√

q2 − p2 cosh(
√
q2 − p2(ex − 1))− q sinh(

√
q2 − p2(ex − 1))

.

Moreover, for all n, i, j > 1,

bn,2i−1,j =

{
n+ 1

2i− 1 + j

}
P (2i− 2 + j, i− 1). (9)
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Proof. The recurrence (8) can be written as

Bx = p(1 + q)Bp + (p2 + q)Bq. (10)

It is routine to check that the generating function

B̃ = B̃(x, p, q) =
p
√
q2 − p2ex√

q2 − p2 cosh(
√
q2 − p2(ex − 1))− q sinh(

√
q2 − p2(ex − 1))

satisfies (10)). Also, this generating function gives B̃(0, p, q) = p and B̃(x, 0, q) = 0.

Hence, B = B̃.
It follows from (8) that bn,2i,j = 0 for all (i, j) 6= (0, 0). Now let us prove that

bn,2i−1,j =

{
n+ 1

2i− 1 + j

}
P (2i− 2 + j, i− 1).

Note that∑
n,i,j>0

bn,i,j+1−2ip
iqj
xn

n!
=

∑
n>0,i,j>1

bn,2i−1,j+1−2ip
iqj
xn

n!
= p

∑
n>0,j>1

{
n+ 1

j

}
Pj−1(p)q

j x
n

n!

= pex
∑
j>1

(ex − 1)j−1

(j − 1)!
Pj−1(p)q

j = pqexP (p, q(ex − 1)),

Hence, ∑
n,i,j>0

bn,i,jp
iqj
xn

n!
= pexP (p2/q2, q(ex − 1)) = B(x, p, q),

as required.

Let bn =
∑

i>1,j>0 bn,i,j. It follows from (9) that bn = an. In the following discussion,
we shall present a combinatorial interpretation for bn,i,j.

Lemma 9. Suppose that (wi)
k
i=1 is a list of distinct integers containing ` right valleys and

that w1 = 1. Then, among the k ways to insert a new entry m > max(wi) into the list
in a noninitial position, 2` + 1 of them will not change the number of right valleys and
k − (2`+ 1) will increase it by 1.

Proof. As observed above, peaks and valleys alternate, a peak occurring first, and a
valley occurring last. Thus there are ` peaks. If m is inserted immediately before or after
a peak or at the very end, the number of valleys is unchanged, otherwise it is increased
by 1.

Proposition 10. The number un,k,` of cyclically ordered partitions on [n] with k blocks
and ` right valleys in the list of openers satisfies the recurrence

un,k,` = kun−1,k,` + (2`+ 1)un−1,k−1,` + (k − 2`)un−1,k−1,`−1 (11)

for n > 2, ` > 0, 2`+ 1 6 k 6 n.
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Proof. Each cyclically ordered partition of size n is obtained by inserting n into one
of size n − 1, either as the last entry in an existing block or as a new singleton block.
Let Un,k,` denote the set of cyclically ordered partitions counted by un,k,`. To obtain an
element of Un,k,` we can insert n into any existing block of an element of Un−1,k,` (this
gives kun−1,k,` choices ), or insert n as a singleton block into an element of Un−1,k−1,` so
that the number of right valleys is unchanged (this gives (2` + 1)un−1,k−1,` choices ), or
insert n as a singleton block into an element of Un−1,k−1,`−1 so that the number of right
valleys is increased by 1 (this gives (k − 2`)un−1,k−1,`−1 choices ). The last two counts of
choices follow from Lemma 9.

Corollary 11. For all n, i, j > 1, bn,i,j is the number of cyclically ordered partitions of
[n + 1] with i + j blocks and i−1

2
right valleys (equivalently, i−1

2
left peaks) in the list of

openers.

Proof. Comparing recurrence relations (8) and (11), we see that bn,i,j = un+1,i+j,(i−1)/2.

Remark 12. A cyclically ordered partition of size n with k blocks and ` right valleys in
the list of openers is obtained by selecting a partition of [n] with k blocks in

{
n
k

}
ways,

and then arranging the blocks suitably, in P (k, `) ways. Hence un,k,` =
{
n
k

}
P (k, `) and we

get a combinatorial proof that bn,2i−1,j =
{

n+1
2i−1+j

}
P (2i− 2 + j, i− 1).

2.3 The longest alternating subsequences

Let π = π(1)π(2) · · · π(n) ∈ Sn. An alternating subsequence of π is a subsequence
π(i1) · · · π(ik) satisfying

π(i1) > π(i2) < π(i3) > · · · π(ik).

Let as (π) be the length (number of terms) of the longest alternating subsequence of π.
Denote by ak(n) the number of permutations π in Sn such that as (π) = k. The study
of the distribution of the length of the longest alternating subsequences of permutations
was recently initiated by Stanley [16].

Let Ln(x) =
∑n

k=0 ak(n)xk, and let

L(x, z) =
∑
n>0

Ln(x)
zn

n!
.

Stanley [16, Theorem 2.3] obtained the following closed-form formula:

L(x, z) = (1− x)
1 + ρ+ 2xeρz + (1− ρ)e2ρz

1 + ρ− x2 + (1− ρ− x2)e2ρz
,

where ρ =
√

1− x2.
Let π = π(1)π(2) · · · π(n) ∈ Sn. We say that π changes direction at position i if either

π(i− 1) < π(i) > π(i+ 1), or π(i− 1) > π(i) < π(i+ 1), where i ∈ {2, 3, . . . , n− 1}. We
say that π has k alternating runs if there are k− 1 indices i such that π changes direction
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at these positions. The up-down runs of a permutation π are the alternating runs of π
endowed with a 0 in the front. For example, the permutation π = 514632 has 3 alternating
runs and 4 up-down runs. One can easily verify that ak(n) also counts permutations in
Sn with k up-down runs. It follows from [13, Corollary 8] that

L(x, z) = −
√
x− 1

x+ 1

(√
x2 − 1 + x sin(z

√
x2 − 1)

1− x cos(z
√
x2 − 1)

)
. (12)

Set P0(x) = L0(x) = 1. There is a closely connection between the polynomials Pn(x) and
Ln(x) (see [13, Corollary 7]):

Ln+1(x) = x
n∑
k=0

(
n

k

)
Lk(x)Pn−k(x

2).

We now present a grammatical characterization of the numbers ak(n).

Proposition 13 ([13, Theorem 6]). For A = {w, x, y} and G′ = {w → wx, x→ xy, y →
x2}, we have

Dn
G′(w) = w

n∑
k=0

ak(n)xkyn−k.

Consider the grammar

G = {w → w + wx, x→ x+ xy, y → y + x2}, (13)

which is the descendant of G′ introduced in Proposition 13. From (13), we have

D(w) = w(1 + x),

D2(w) = w(1 + 3x+ xy + x2);

D3(w) = w(1 + 7x+ 6xy + xy2 + 6x2 + 3x2y + 2x3).

Define
Dn(w) = w

∑
i,j>0

tn,i,jx
iyj.

Since

Dn+1(w)

= D

(
w
∑
i,j>0

tn,i,jx
iyj

)
=
∑
i,j

(1 + i+ j)tn,i,jx
iyj +

∑
i,j

tn,i,jx
i+1yj +

∑
i,j

itn,i,jx
iyj+1 +

∑
i,j

jtn,i,jx
i+2yj−1,

we get
tn+1,i,j = (1 + i+ j)tn,i,j + tn,i−1,j + itn,i,j−1 + (j + 1)tn,i−2,j+1 (14)

for i, j > 0 , with the initial conditions t0,i,j to be 1 if (i, j) = (0, 0) or (i, j) = (1, 0), and
to be 0 otherwise. Clearly, tn,0,0 = 1 for n > 0.
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Example 14. The following table contains the values of t4,i,j.

t4,i,j j = 0 j = 1 j = 2 j = 3
i = 0 1 0 0 0
i = 1 15 25 10 1
i = 2 25 30 7 0
i = 3 20 11 0 0
i = 4 5 0 0 0

Define

T = T (x, p, q) =
∑
n,i,j>0

tn,i,jp
iqj
xn

n!
.

We now present the following.

Theorem 15. The generating function T is given by

T (x, p, q) = ex
√
p− q
p+ q

√
p2 − q2 + p sin((ex − 1)

√
p2 − q2)

p cos((ex − 1)
√
p2 − q2)− q

.

Moreover, for all n > 1, i > 1 and j > 0,

tn,i,j =

{
n+ 1

i+ j + 1

}
ai(i+ j). (15)

Proof. The recurrence (14) can be written as

Tx = T + p(1 + q)Tp + (p2 + q)Tq. (16)

It is routine to check that the generating function

T̃ = T̃ (x, p, q) = ex
√
p− q
p+ q

√
p2 − q2 + p sin((ex − 1)

√
p2 − q2)

p cos((ex − 1)
√
p2 − q2)− q

satisfies (16)). Also, this generating function gives T̃ (0, p, q) = 1 and T̃ (x, 0, q) = ex.

Hence, T = T̃ .
Now let us prove that tn,2i−1,j =

{
n+1
i+j+1

}
ai(i+ j). Note that∑

n,i,j>0

tn,i,j−ip
iqj
xn

n!
=
∑
n,i,j>0

tn,i,j−ip
iqj
xn

n!
=
∑
n,j>0

{
n+ 1

j + 1

}
Lj(p)q

j x
n

n!

= ex
∑
j>0

(ex − 1)j

(j)!
Lj(p)q

j = exL(p, q(ex − 1)),

Hence, ∑
n,i,j>0

tn,i,jp
iqj
xn

n!
= exL(p/q, q(ex − 1)) = T (x, p, q),

as required.
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Let tn =
∑

i>1,j>0 tn,i,j. It follows from (15) that tn =
∑n

k=0 k!
{
n+1
k+1

}
. Along the same

lines as the proof of Corollary 6, we get the following.

Corollary 16. For all n > 1, i > 1 and j > 0, tn,i,j is the number of cyclically ordered
partitions of [n + 1] having i + j + 1 blocks such that the list of openers has the longest
alternating subsequence of length i.

3 Concluding remarks

In this paper, we explore some context-free grammars suggested by (1). In fact, there
are many other extension of (1). For example, many authors investigated the following
generalized Lotka-Volterra system (see [14]):

dx

dt
= x(Cy + z),

dy

dt
= y(Az + x),

dz

dt
= z(Bx+ y).

Consider the grammar

G = {x→ x(y + z), y → y(z + x), z → z(x+ y)}.

Define
Dn(x) =

∑
i>1,j>0

gn,i,jx
iyjzn+1−i−j.

By induction, one can easily verify the following: for all n > 1, i > 1 and j > 0, we have

gn,i,0 =

〈
n

i

〉
, gn,i,n+1−i =

〈
n

i

〉
, gn,1,j =

〈
n+ 1

j + 1

〉
.
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