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Abstract

We introduce an infinite class of polynomial sequences at(n; z) with integer pa-
rameter t > 1, which reduce to the well-known Stern (diatomic) sequence when
z = 1 and are (0, 1)-polynomials when t > 2. Using these polynomial sequences,
we derive two different characterizations of all hyperbinary expansions of an integer
n > 1. Furthermore, we study the polynomials at(n; z) as objects in their own right,
obtaining a generating function and some consequences. We also prove results on
the structure of these sequences, and determine expressions for the degrees of the
polynomials.

1 Introduction and Motivation

A hyperbinary expansion of an integer n > 1 is an expansion of n as a sum of powers
of 2, each power being used at most twice. For instance, the hyperbinary expansions of
n = 12 are 8 + 4, 8 + 2 + 2, 8 + 2 + 1 + 1, 4 + 4 + 2 + 2, 4 + 4 + 2 + 1 + 1.

Within the framework of a more general study of binary partition functions, Reznick
[13, Theorem 5.2] proved the following fundamental result.

Theorem 1.1 ([13]). The number of hyperbinary expansions of an integer n > 1 is given
by a(n+ 1), where {a(n)} is the Stern diatomic sequence.

Stern’s (diatomic) sequence is one of the most remarkable integer sequences in number
theory and combinatorics. Using the notation {a(n)}n>0, it can be defined by a(0) = 0,
a(1) = 1, and for n > 1 by

a(2n) = a(n), a(2n+ 1) = a(n) + a(n+ 1). (1.1)
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Numerous properties and references can be found, e.g., in [12, A002487], [2], or [13].
While Theorem 1.1 has been refined by results that count hyperbinary expansions

with certain properties (see [1], [10], [14]), one purpose of this paper is to prove results
that give the actual set of all hyperbinary expansions of n. We begin by defining a proper
hyperbinary expansion as one that has at least one repeated power of 2. Our first main
result, which characterizes the hyperbinary expansions, can then be stated as follows.

Theorem 1.2. Let n > 2 be an integer and denote by k1, . . . , kν those integers 1 6 k 6
bn
2
c for which

(
n−k
k

)
is odd. Then each hyperbinary expansion of n corresponds to exactly

one kj, j = 1, . . . , ν, as follows: The powers of 2 in the binary expansion of kj are exactly
the repeated powers of 2 in a hyperbinary expansion of n.

We illustrate this result with an example.

Example 1. Considering again n = 12, we find that
(
12−k
k

)
is odd for k = 1, 2, 5, and

6. Accordingly, the four proper hyperbinary expansions of n = 12 are characterized as
follows:

k1 = 1, so 12 = 1 + 1 + 2 + 8;
k2 = 2, so 12 = 2 + 2 + 8;
k3 = 1 + 4, so 12 = 1 + 1 + 2 + 4 + 4;
k4 = 2 + 4, so 12 = 2 + 2 + 4 + 4.

The proof of Theorem 1.2 involves properties of a class of polynomial analogues of the
Stern sequence, the introduction and study of which is the second main purpose of this
paper. We define these polynomials as follows:

Given an integer t > 1, we set at(0; z) = 0, at(1; z) = 1, and for n > 1 we let

at(2n; z) = at(n; zt), (1.2)

at(2n+ 1; z) = z at(n; zt) + at(n+ 1; zt). (1.3)

For t = 2 this definition reduces to that of the Stern polynomials defined in [6], and
polynomials closely related to a1(n; z) were studied in [1] and [14].

Comparing (1.2) and (1.3) with (1.1), we immediately see that for all integers t > 1
and n > 1 we have

at(n; 0) = 1, at(n; 1) = a(n), (1.4)

and by iterating (1.2) and considering (1.3) we see that

at(n; z) = 1 ⇔ n = 2m, m > 0. (1.5)

The polynomials at(n; z) for n 6 20 are listed in Table 1.
In Section 2 we derive further properties of the polynomials at(n; z), mainly concern-

ing their structure, and in Section 3 we use these results to establish a correspondence
between these polynomials and hyperbinary expansions. In Section 4 we obtain an ex-
plicit formula for at(n; z) and use it to prove Theorem 1.2 and a few additional results
related to Theorems 1.1 and 1.2. In Section 5 we obtain a generating function and prove
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some related identities, and in Section 6 we prove some further results on the structure
of the polynomials at(n; z). Finally, in Section 7 we obtain identities for the degrees of
these polynomials, and we conclude this paper with some further remarks about Stern
polynomials in Section 8.

n at(n; z) n at(n; z)

1 1 11 1 + z + zt+1 + zt
2

+ zt
2+1

2 1 12 1 + zt
2

3 1 + z 13 1 + z + zt + zt
2+1 + zt

2+t

4 1 14 1 + zt + zt
2+t

5 1 + z + zt 15 1 + z + zt+1 + zt
2+t+1

6 1 + zt 16 1

7 1 + z + zt+1 17 1 + z + zt + zt
2

+ zt
3

8 1 18 1 + zt + zt
2

+ zt
3

9 1 + z + zt + zt
2

19 1 + z + zt+1 + zt
2

+ zt
2+1 + zt

3
+ zt

3+1

10 1 + zt + zt
2

20 1 + zt
2

+ zt
3

Table 1: at(n; z), 1 6 n 6 20.

2 The structure of the polynomials at(n; z)

Before we can state and prove results connecting hyperbinary expansions with the poly-
nomials at(n; z), we need to derive some properties of these polynomials.

Proposition 2.1. For integers t > 2 and n > 0, the coefficients of at(n; z) are only 0
or 1.

Proof. This is easily obtained by induction on n. We note that at(1; z) = 1, and suppose
that the statement of the result is true up to index n− 1. If n is even, the induction step
is given by (1.2). If n is odd, we use (1.3) and note that for t > 2 the powers of z in the
two terms on the right of (1.3) lie in two different residue classes modulo t; hence there
is no overlap, and the coefficients remain 0 or 1.

When t = 1, this proof fails. In fact, the smallest counterexample is a1(5; z) = 2z+ 1;
see Table 1. The case t = 1 is of independent interest, as we will see in Section 3.

The next result complements Proposition 2.1 and further explains the structure of the
entries in Table 1.

Proposition 2.2. For any integer n > 1 we have

at(n; z) = 1 +
∑
p∈Pn

zp(t), (2.1)

where Pn is a (possibly empty) set of a(n)− 1 distinct polynomials in t with coefficients 0
or 1.
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Proof. We prove this by induction on n, using (1.2) and (1.3). For n = 1 we have
at(1; z) = 1, and so P1 = ∅. Now suppose that the statement holds up to a certain n > 1.

(i) By (1.2) and the induction hypothesis we have

at(2n; z) = at(n; zt) = 1 +
∑
p∈Pn

ztp(t).

Hence
P2n = {tp(t) | p ∈ Pn}, (2.2)

and therefore P2n also has the desired properties.
(ii) By (1.3) and the induction hypothesis we have

at(2n− 1; z) = zat(n− 1; zt) + at(n; zt) = z +
∑

p∈Pn−1

z1+tp(t) + 1 +
∑
p∈Pn

ztp(t),

and therefore

P2n−1 = {1} ∪ {1 + tp(t) | p ∈ Pn−1} ∪ {tp(t) | p ∈ Pn}. (2.3)

Since the elements in Pn−1 and in Pn are distinct, and those in the second and third sets
above have constant coeffcicients 1, respectively 0, we see that all the elements in P2n−1
are distinct. It is also clear that they have only coefficients 0 or 1. This completes the
proof by induction.

We remark that this proof, along with (1.5), shows that Pn is empty if and only if n
is a power of 2.

3 Hyperbinary expansions

The case t = 1 of the polynomials at(n; z) has recently been studied in connection with
hyperbinary expansions. Indeed, Theorem 1.1 was refined by Bates and Mansour [1] and
by Stanley and Wilf [14] who proved results that are equivalent to the following.

Theorem 3.1 ([1], [14]). Given an integer n > 1, write

a1(n+ 1; z) =
∑
j>0

cn,jz
j. (3.1)

Then for each j > 0, cn,j is the number of hyperbinary expansions of n that have exactly
j repeated powers of 2.

Example 2. Consider again n = 12, with its hyperbinary expansions

8 + 4, 8 + 2 + 2, 8 + 2 + 1 + 1, 4 + 4 + 2 + 2, 4 + 4 + 2 + 1 + 1.

Since binary expansions are unique, we always have cn,0 = 1, which is consistent with
what we have seen in Section 1. Further, we see that 8 + 2 + 2 and 8 + 2 + 1 + 1 have
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exactly one repeated power of 2, so c12,1 = 2. Finally, 4 + 4 + 2 + 2 and 4 + 4 + 2 + 1 + 1
have exactly two repeated power of 2, and thus c12,2 = 2. So altogether, the right-hand
side of (3.1) is 1 + 2z + 2z2, which indeed equals a1(13; z); see Table 1.

The following result is similar to Theorem 1.2 in that it provides a complete char-
acterization of all hyperbinary expansions of a positive integer n, thus vastly extends
Theorem 3.1.

Theorem 3.2. Given an integer n > 1, let Pn+1 be the set of exponents of z in at(n+1; z),
i.e.,

at(n+ 1; z) = 1 +
∑

p∈Pn+1

zp(t).

Then each proper hyperbinary expansion of n corresponds to exactly one polynomial in
Pn+1, as follows: If

p(t) = tα1 + · · ·+ tαr ∈ Pn+1, 0 6 α1 < · · · < αr, r > 1, (3.2)

then exactly the powers 2α1 , . . . , 2αr are repeated in the expansion.

In the following section we will see that Theorem 1.2 follows from Theorem 3.2.

Example 3. We continue with the case n = 12. Table 1 gives us

P13 = {1, t, 1 + t2, t+ t2}.

Accordingly, the four proper hyperbinary expansions are characterized by the following
repeated powers of 2:
• 20, so 12 = 1 + 1 + 2 + 8;
• 21, so 12 = 2 + 2 + 8;
• 20 and 22, so 12 = 1 + 1 + 2 + 4 + 4;
• 21 and 22, so 12 = 2 + 2 + 4 + 4.

Proof of Theorem 3.2. We first deal with the case n = 2m − 1,m > 0. Then by Theo-
rem 1.1 and (1.5) there is only one hyperbinary expansion (HBE) of n, namely the binary
expansion (this can also be seen directly). On the other hand, again by (1.5), Pn+1 is
empty and therefore Theorem 3.2 holds trivially in this case. For all other n, (1.5) implies
that Pn+1 is nonempty. (See also the remark a the end of Section 2).

We now proceed by induction on n, beginning with n = 2. In this case Pn+1 = {1} =
{t0}, which corresponds to the one proper HBE 1+1 of n = 2, and the induction beginning
is established.

Suppose now that the result is true up to some integer k > 1. We distinguish between
two cases.

(a) Let n = 2k + 1 be odd. By the first paragraph of the proof we may assume that
n+ 1 is not a power of 2, and thus k + 1 is also not a power of 2. Clearly each HBE of n
contains exactly one summand 20. By subtracting this part and dividing the remainder
by 2, we establish a bijection between the HBEs of k and those of 2k + 1.
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On the other hand, by induction hypothesis all the proper HBEs of k correspond to
the elements

tα1 + · · ·+ tαr ∈ Pk+1, 0 6 α1 < · · · < αr, r > 1.

Now by (2.2), each element p(t) ∈ Pk+1 corresponds to the element tp(t) = tα1+1 + · · ·+
tαr+1 ∈ P2k+2. But this was to be shown, since 2k+ 2 = n+ 1. Also note that the binary
expansion of k corresponds to that of 2k + 1.

(b) Let n = 2k be even. Then the HBEs of n fall into the following two classes:
(i) Those HBEs which contain no summand 20; this class contains the binary expansion

of n. Then by dividing by 2 we establish a bijection between these and the HBEs of k. By
induction hypothesis they are given by the binary expansion of k, along with the elements
of Pk+1.

(ii) Those HBEs which contain 20 with multiplicity 2. Then by subtracting these two
parts and dividing by 2, noting that (2k− 2)/2 = k− 1, we establish a bijection between
these and the HBEs of k−1. But by the induction hypothesis these latter HBEs are given
by the binary expansion of k − 1, along with the elements of Pk.

Now we use (2.3) with k + 1 in place of n, obtaining

P2k+1 = {1} ∪ {1 + tp(t) | p ∈ Pk} ∪ {tp(t) | p ∈ Pk+1}.

We now see that the bijections in (i) and (ii) above are captured in this relation, with
the exception of the binary expansion of n. But this is the statement of Theorem 3.2 for
n = 2k. The proof by induction is now complete.

4 An explicit expansion, and a proof of Theorem 1.2

In connection with a wider study of certain polynomial sequences, Carlitz [3, p. 17] proved,
in different notation, the following result.

Proposition 4.1 ([3]). For a fixed n > 0, the number of odd binomial coefficients
(
n−k
k

)
is given by the Stern number a(n+ 1).

This indicates that it will be of interest to consider binomial coefficients (mod 2). For
the remainder of this section we use the notation(

n

k

)∗
≡
(
n

k

)
(mod 2),

(
n

k

)∗
∈ {0, 1}. (4.1)

With this notation we can rewrite Proposition 4.1 as

a(n+ 1) =

bn
2
c∑

k=0

(
n− k
k

)∗
, (4.2)

which was earlier obtained in [8, p. 319]. A polynomial analogue of this identity was given
in Proposition 6.1 of [6] in terms of Chebyshev polynomials of the second kind, Un(x).

the electronic journal of combinatorics 22(2) (2015), #P2.24 6



A well-known explicit expansion of Un(x) (see, e.g., [3, Eqn. (2.16)]) then gives, in the
notation of (1.2) and (1.3),

a2(n+ 1; z) =

bn
2
c∑

k=0

(
n− k
k

)∗
zk. (4.3)

The main result of this section is an analogue of (4.3) for at(n + 1; z) with arbitrary
integer parameters t > 1. In order to state and prove this result, we require the following
function.

Definition 4.1. Let n > 0 be an integer, and let n =
∑

j>0 cj2
j, cj ∈ {0, 1}, be the binary

expansion of n. Then for integers t > 1 we define

dt(n) :=
∑
j>0

cjt
j. (4.4)

See Table 2 for various small values of dt(n). The sequences dt(n), n > 1, are in
fact known for the first few t > 1; see the last column in Table 2, where the reference
numbers to the On-Line Encyclopedia of Integer Sequences [12] are given. In particular,
d1(n) gives the binary weight or Hamming weight of n, and d4(n), n > 1, is known as the
Moser-deBrujn sequence.

t \ n 1 2 3 4 5 6 7 8 9 10 OEIS
d1(n) 1 1 2 1 2 2 3 1 2 2 A000120
d2(n) 1 2 3 4 5 6 7 8 9 10 N
d3(n) 1 3 4 9 10 12 13 27 28 30 A005836
d4(n) 1 4 5 16 17 20 21 64 65 68 A000695
d5(n) 1 5 6 25 26 30 31 125 126 130 A033042

Table 2: dt(n) for 1 6 t 6 5 and 1 6 n 6 10.

The following identities are immediate consequences of the definition (4.4): For all
n > 1 we have

dt(2n) = t dt(n), dt(2n+ 1) = t dt(n) + 1. (4.5)

We are now ready to prove the following result.

Theorem 4.1. For integers t > 1 and n > 0 we have

at(n+ 1; z) =

bn
2
c∑

k=0

(
n− k
k

)∗
zdt(k). (4.6)
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Before proving this result, we derive some basic properties of the coefficients in the
polynomials in (4.6). By a special case of a well-known congruence of Lucas (see, e.g.,
[9]) we have for nonnegative integers m,n and a, b ∈ {0, 1},(

2m+ a

2n+ b

)
≡
(
m

n

)(
a

b

)
(mod 2).

Hence we obtain (as also used by Carlitz [3, p. 18f.]),(
2m+ a

2n+ b

)∗
=

{
0 when a = 0 and b = 1,(
m
n

)∗
otherwise.

(4.7)

Proof of Theorem 4.1. We denote the right-hand side of (4.6) by at(n + 1; z) and show
that these sums satisfy the same recursions as at(n + 1; z), namely (1.2) and (1.3). The
initial conditions at(1; z) = at(2; z) = 1 are trivially true. We now distinguish between
two cases:

(i) Let n be odd, say n = 2m− 1, m > 2. Then, using (4.7),

at(n+ 1; z) = at(2m; z) =
∑
k>0

(
2m− 1− k

k

)∗
zdt(k)

=
∑
j>0

(
2m− 1− 2j

2j

)∗
zdt(2j)

=
∑
j>0

(
m− 1− j

j

)∗
ztdt(j) = at(m; zt),

where we have used (4.7) again, as well as (4.5).
(ii) Let n be even, say n = 2m, m > 1. We split the summation index into odd and

even k and then use (4.7) and (4.5):

at(n+ 1; z) = at(2m+ 1; z) =
∑
k>0

(
2m− k

k

)∗
zdt(k)

=
∑
j>0

(
2m− 2j − 1

2j + 1

)∗
zdt(2j+1) +

∑
j>0

(
2m− 2j

2j

)∗
zdt(2j)

=
∑
j>0

(
m− 1− j

j

)∗
z1+tdt(j) +

∑
j>0

(
m− j
j

)∗
ztdt(j)

= zat(m; zt) + at(m+ 1; zt).

The cases (i) and (ii), together with the initial conditions, complete the proof.

Proof of Theorem 1.2. Note that by Proposition 2.2 and Theorem 4.1, the elements of
Pn+1 are exactly those dt(k) for which 1 6 k 6 bn

2
c and

(
n−k
k

)∗
= 1, i.e.,

(
n−k
k

)
is odd.

Now, by the definition (4.4) of dt(k), there is a one-to-one correspondence between the
powers of t in dt(k) and the powers of 2 in the binary expansion of k. The result now
follows from Theorem 3.2.
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We now consider the question of how many different integers n have the same number
of hyperbinary expansions. The answer is easily obtained from the following fact about
the Stern sequence a(n), which goes back to Stern’s original paper [15, p. 202]; see also
[11, p. 60].

Proposition 4.2 ([15]). Given an integer m > 2, the number of integers j in the interval
2m−1 6 j 6 2m for which a(j) = m is ϕ(m), where ϕ denotes Euler’s totient function.
Furthermore, it is the same number in any subsequent interval between two consecutive
powers of 2.

These ϕ(m) numbers may be odd (e.g., a(2m−1 + 1) = a(2m − 1) = m, which is easy
to see by induction), or they may be even, in which case we divide by the appropriate
power of 2, keeping (1.1) in mind. With Theorem 1.1 we now get the following result.

Proposition 4.3. Given an integer m > 2, there are ϕ(m) even integers with exactly m
hyperbinary expansions.

Example 4. We saw in Example 1 that n = 12 has a(13) = 5 hyperbinary expansions,
including the binary expansion. In accordance with Stern’s Proposition 4.2,

a(17) = a(22) = a(26) = a(31) = 5,

and since by (1.1) we also have a(11) = a(13) = 5, we see that 2hr + 1 = 11, 13, 17 and
31 are the only odd integers with a(2hr + 1) = 5, r = 1, . . . , 4. Hence 2hr = 10, 12, 16
and 30 are the only even integers with exactly 5 hyperbinary expansions. All integers
with this property are then given by

n = 2s(2hr + 1)− 1, r = 1, . . . , 4; s = 1, 2, . . . .

This last identity holds also in general, with the range of r appropriately adjusted.

We conclude this section with a few more observations related to Theorem 1.2. First,
let m > 2 be given, and let 2hr + 1, r = 1, . . . , ϕ(m) be the odd integers for which
a(2hr + 1) = m.

Proposition 4.4. Let m > 2 and hr, 1 6 r 6 ϕ(m), be as above. If µr is the number
of odd k, 1 6 k 6 hr, for which

(
2hr−k
k

)
is odd, then {µr | 1 6 r 6 ϕ(m)} is a reduced

residue system modulo m.

Proof. We let h stand for an arbitrary hr, and we rewrite (4.2) by splitting the summation
index into k = 2j + 1 and k = 2j; this is followed by applying (4.7):

a(2h+ 1) =
∑
j>0

(
2h− 2− 2j + 1

2j + 1

)∗
+
∑
j>0

(
2h− 2j

2j

)∗
=
∑
j>0

(
h− 1− j

j

)∗
+
∑
j>0

(
h− j
j

)∗
= a(h) + a(h+ 1),
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where we have used (4.2) again. From this it is also clear that the number of odd k (resp.
even k) for which

(
2h−k
k

)
is odd is exactly a(h) (resp. a(h+ 1)).

To complete the proof, we note that a(h) and a(h + 1) must be relatively prime (as
already shown by Stern [15, p. 199]; see also [11, p. 60]), their sum is m, and they lie
between 1 and m − 1. But this means that both a(h) and a(h + 1) traverse a reduced
residue system modulo m as h takes on the values hr, 1 6 r 6 ϕ(m).

It is clear from the proof that Proposition 4.4 could also be stated in terms of even k.
To return to our running example n = 12: In Example 1 we saw that there are two odd

k for which
(
12−k
k

)
is odd, and indeed, a(6) = 2. For n = 10, 16 and 30 (see Example 4),

the corresponding numbers of odd k are a(5) = 3, a(8) = 1 and a(15) = 4, respectively.
Finally, since the odd integers k > 1 are exactly those which have the power 20 = 1 in

their binary expansions, Theorem 1.2 and the proof of Proposition 4.4 immediately gives
the following consequence.

Proposition 4.5. Among the hyperbinary expansions of the positive even integer n = 2h,
exactly a(h) have a repeated 1.

5 Generating function

A well-known property of the Stern sequence, first obtained by Carlitz [4], is the generating
function

x

∞∏
k=0

(
1 + x2

k

+ x2
k+1
)

=
∞∑
n=1

a(n)xn. (5.1)

In this section we are going to prove the general case.

Proposition 5.1. For integers t > 1, the Stern polynomials at(n; z) have the generating
function

x
∞∏
k=0

(
1 + x2

k

+ x2
k+1

zt
k
)

=
∞∑
n=1

at(n; z)xn. (5.2)

Special cases of (5.2) were given in [1] for t = 1 and in [6] for t = 2.

Proof of Proposition 5.1. For a fixed t > 1, we set

f(x, z) :=
∞∑
n=1

at(n; z)xn−1 =
∞∑
n=1

at(2n; z)x2n−1 +
∞∑
n=0

at(2n+ 1; z)x2n

=: fe(x, z) + fo(x, z).

Now by (1.2) we have

fe(x, z) = x

∞∑
n=1

at(n; zt)(x2)n−1 = xf(x2, zt). (5.3)
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Similarly, by (1.3) we have

fo(x, z) =
∞∑
n=0

(
zat(n; zt) + at(n+ 1; zt)

)
x2n (5.4)

= zx2
∞∑
n=1

at(n; zt)(x2)n−1 +
∞∑
n=0

at(n+ 1; z)(x2)n

= (zx2 + 1)f(x2, zt).

Adding (5.3) and (5.4), we obtain

f(x, z) = (1 + x+ x2z)f(x2, zt),

and upon iterating this functional equation we get

f(x, z) = (1 + x+ x2z)(1 + x2 + x4zt)f(x4, zt
2

) (5.5)

= . . .

=
N∏
k=0

(
1 + x2

k

+ x2
k+1

zt
k
)
· f(x2

N+1

, zt
N+1

).

We are done if we can show that for sufficiently small x and z we have

f(x2
N+1

, zt
N+1

)→ 1 as N →∞; (5.6)

then (5.5) becomes the desired identity (5.2) as N →∞.
To prove (5.6), we use the following estimate on the size of the polynomials at(n; z):

For |z| 6 1 we have
|at(n; z)| 6 a(n) 6 c · nµ < n, (5.7)

where the first inequality in (5.7) follows from (1.4), and the second inequality can be

found in [13, p. 472]; see also [6, Prop. 2.2]. Here c < 1 and µ = log2
1+
√
2

2
' 0.694242. If

we rewrite the definition of f(x, z) as

f(x, z) = 1 + x

(
∞∑
n=2

at(n; z)xn−2

)
, (5.8)

then we see that for any |z| 6 1 and |x| 6 1−ε for some ε > 0, the sum in parentheses on
the right of (5.8) remains bounded due to (5.7). But then, since x2

N+1 → 0 as N → ∞,
we immediately get (5.6). This completes the proof.

We finish this section with what can be considered a finite analogue of the generating
function. One of the properties of the Stern polynomials a2(n; z) derived in [6] is the
identity

N−1∏
k=0

(
2 + z2

k
)

=
2N+1∑

n=2N+1

a2(n; z), (5.9)

valid for all integers N > 1. Using a different method of proof, we can obtain the following
generalization.
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Proposition 5.2. For all integers t > 1 and N > 1 we have

N−1∏
k=0

(
2 + zt

k
)

=
2N+1∑

n=2N+1

at(n; z). (5.10)

Before proving this result, we note that in addition to obtaining (5.9) for t = 2, the
case t = 1 immediately gives

(2 + z)N =
2N+1∑

n=2N+1

a1(n; z), (5.11)

which can be viewed as an apparently new property of the q-hyperbinary sequence (with
q = z) studied in [1] and [14]. Another immediate consequence of (5.10), obtained by
setting z = 1 and using (1.4), is the well-known identity

2N+1∑
n=2N+1

a(n) = 3N

for the Stern sequence; see, e.g., [11].
The proof of Proposition 5.2 relies on the following property of the Stern polynomials

at(n; z).

Proposition 5.3. For all integers t > 1, N > 0 and 0 6 j 6 2N we have

at(2 · 2N + j; z) + at(3 · 2N + j; z) = at(2
N + j; z)

(
2 + zt

N
)
. (5.12)

To prove Proposition 5.2, we first sum both sides of (5.12) over all j, 1 6 j 6 2N ,
obtaining

2N+2∑
n=2N+1+1

at(n; z) =
(

2 + zt
N
) 2N+1∑
n=2N+1

at(n; z). (5.13)

The desired identity (5.10) now follows by induction: For the base case N = 1 we note
that at(3; z) + at(4; z) = 2 + z; see Table 1. Assuming now that (5.10) holds for some
N > 1, (5.13) shows that it also holds for N + 1, which concludes the proof.

Proof of Proposition 5.3. We prove this by induction on N . When N = 0, we have

at(2 + j; z) + at(3 + j; z) = at(1 + j; z)(2 + z)

for j = 0, 1, which is easy to verify with Table 1. Now suppose that (5.12) holds up to
some N − 1, and for all j with 0 6 j 6 2N−1. To prove (5.12) for N , we first assume that
j is even, say j = 2`. Then by (1.2) we have

at(2 · 2N−1 + `; zt) + at(3 · 2N−1 + `; zt) = at(2
N−1 + `; zt)

(
2 + (zt)t

N−1
)
,

but this is true by the induction hypothesis. When j is odd, we proceed analogously,
using (1.3) and the induction hypothesis. This completes the proof.
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6 Further results on the structure of at(n; z)

While Section 2 is concerned with the “large structure” of the polynomials at(n; z), in
this section we prove some results on the finer structure of the polynomials. We start
with the observation that, for t > 2, all at(2n + 1; z) begin with 1 + z and all at(2n; z)
contain no z term; see Table 1. Similarly, we observe a periodicity with period 4 which
can be stated as follows: For all integers t > 2 and k > 1 we have

at(4k; z) ≡ 1 (mod zt
2

),

at(4k + 1; z) ≡ 1 + z + zt (mod zt
2

),

at(4k + 2; z) ≡ 1 + zt (mod zt
2

),

at(4k + 3; z) ≡ 1 + z + z1+t (mod zt
2

).

In general, we have the following result.

Proposition 6.1. Let t > 2 and N > 0 be integers. Then for all n > 2N we have

at(n+ 2N ; z) ≡ at(n; z) (mod zt
N

). (6.1)

Proof. We prove this by induction on N . The base case N = 0 reduces to

at(n+ 1; z) ≡ at(n; z) (mod z) for all n > 1.

But this is obvious since all at(n; z) have constant coefficient 1 for n > 1.
Now suppose that (6.1) holds up to some N > 0 and for all n > 2N . We first replace

z by zt in (6.1) and apply (1.2) to both sides, to obtain

at(2n+ 2N+1; z) ≡ at(2n; z) (mod zt
N+1

), n > 2N . (6.2)

Using this and (1.3) with (1.2), we get

at(2n− 1 + 2N+1; z)− at(2n− 1; z) = z
(
at(2n− 2 + 2N+1; z)− at(2n− 2; z)

)
+ at(2n+ 2N+1; z)− at(2n; z)

= zf(z)zt
N+1

+ g(z)zt
N+1

,

for some polynomials f and g, and valid for n − 1 > 2N . But this, together with (6.2),
means that for all n > 2N+1 we have

at(n+ 2N+1; z) ≡ at(n; z) (mod zt
N+1

),

which completes the proof by induction.

The following result, which is similar in nature to Proposition 5.3, can be seen as sup-
plementing Proposition 6.1. Indeed, it exhibits the exact remainder when n is restricted to
2N 6 n 6 2N+1. Here we find it convenient to shift the parameters by setting j = n− 2N .
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Proposition 6.2. For all integers t > 1, N > 0 and 0 6 j 6 2N we have

at(2
N+1 + j; z) = at(2

N + j; z) + zt
N

at(j; z). (6.3)

Proof. We prove this again by induction on N . The base case N = 0 is

at(2 + j; z) = at(1 + j; z) + zat(j; z)

for j = 0, 1, which is obvious from Table 1. The induction step is now very similar to the
proof of Proposition 5.3.

Related to the previous results is a regularity in the growth in the terms of certain
subsequences of the polynomials at(n; z), as seen in the following

Example 5.

a3(7; z) = 1 + z + z4,

a3(11; z) = 1 + z + z4 + z9 + z10,

a3(19; z) = 1 + z + z4 + z9 + z10 + z27 + z28,

a3(35; z) = 1 + z + z4 + z9 + z10 + z27 + z28 + z81 + z82.

This progression is explained by the following easy extension of Proposition 6.2. It
can be obtained by replacing N by N +ν in (6.3) and summing over all ν, 0 6 ν 6 K−1.

Proposition 6.3. For all integers t > 1, N > 0, K > 1, and 0 6 j 6 2N we have

at(2
N+K + j; z) = at(2

N + j; z) + at(j; z)
K−1∑
ν=0

zt
N+ν

. (6.4)

This shows that the polynomials at(2
N+K +j; z) change in a very regular way for fixed

N and j, as K grows.
While Propositions 6.2 and 6.3 deal with indices n in at(n; z) that are a fixed integer

j above a power of 2, the following result deals with those that lie j units below a power
of 2.

Proposition 6.4. Let the integers t > 1 and j > 1 be given, and let N be the smallest
exponent for which 2N > j. Then for all K > 1 we have

at(2
N+K+1 − j; z) = at(2

N+K − j; z) (6.5)

+ zt
N+···+tN+K−1 (

at(2
N+1 − j; z)− at(2N − j; z)

)
.

Proof. In (5.12) and (6.3) we replace j by 2N − j, obtaining the term at(3 · 2N − j; z) in
both identities. If we eliminate this term, we get

at(2
N+2 − j; z)− at(2N+1 − j; z) = zt

N (
at(2

N+1 − j; z)− at(2N − j; z)
)
. (6.6)

This identity remains valid if we replace N by N + 1, . . . , N + K − 1. Then, iterating
(6.6), we obtain (6.5).

the electronic journal of combinatorics 22(2) (2015), #P2.24 14



Proposition 6.4 explains the next example, again with t = 3 and j = 3:

Example 6.

a3(1; z) = 1,

a3(5; z) = 1 + z + z3,

a3(13; z) = 1 + z + z3 + z10 + z12,

a3(29; z) = 1 + z + z3 + z10 + z12 + z37 + z39,

a3(61; z) = 1 + z + z3 + z10 + z12 + z37 + z39 + z118 + z120.

In closing this section we note that the sequences of polynomials in Examples 5 and 6,
as well as (6.4) and (6.5), suggest the existence of analytic functions (for |z| < 1) as
limiting cases, as K →∞.

7 The degrees of at(n; z)

The main goal of this section is to obtain explicit expressions for the degrees of the
polynomials at(n; z). To this end we need to derive certain supporting identities. We begin
with some preliminary results on the differences in the degrees of successive polynomials.

Proposition 7.1. Let t > 1 be a fixed integer. Then for any integer n > 1 we have

deg at(2n− 1; z) > deg at(2n; z). (7.1)

Furthermore, for any integer k > 1 and any odd integer n′ > 1 we have

deg at(2
kn′ + 1; z)− deg at(2

kn′; z) = tk−1. (7.2)

Proof. Slightly rewriting (1.3), we have

at(2n− 1; z) = at(n; zt) + zat(n− 1; zt). (7.3)

Since the coefficients of all these polynomials are nonnegative, there is no cancellation on
the right-hand side of (7.3). Therefore, comparing this with (1.2), we immediately obtain
(7.1).

Now, given an odd n′ > 1, we get with (1.2) and (1.3),

at(2
k+1n′ + 1; z) = zat(2

kn′; zt) + at(2
kn′ + 1; zt), (7.4)

at(2
k+1n′; z) = at(2

kn′; zt). (7.5)

We first let k = 0. Since n′ is odd, by (7.1) the degree of (7.4) in this case is the same
as the degree of the first term on the right-hand side of (7.4). Thus, by (7.5), we have
shown that deg at(2n

′ + 1; z)− deg at(2n
′; z) = 1, which is (7.2) for k = 1.
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This now serves as the base case of the general proof by induction on k. Thus, suppose
that (7.2) holds up to a certain k > 1. Since by the induction hypothesis we have

deg at(2
kn′ + 1; zt) > deg at(2

kn′; zt) + 1,

the identity (7.4) gives

deg at(2
k+1n′ + 1; z) = deg at(2

kn′ + 1; zt) = t deg at(2
kn′ + 1; z).

Hence, with (7.5) and the induction hypothesis we get

deg at(2
k+1n′ + 1; z)− deg at(2

k+1n′; z)

= t
(
deg at(2

kn′ + 1; z)− deg at(2
kn′; z)

)
= t · tk−1,

which is (7.2) with k + 1 in place of k. This completes the proof.

To obtain an explicit expression for the degrees of the polynomials at(n; z), we require
the function dt(n), which was defined in (4.4).

Proposition 7.2. Let e(n) be the highest power of 2 dividing n. Then for integers t > 1
and n > 1 we have

deg at(n; z) = dt

(
n− 2e(n)

2

)
, (7.6)

and in particular,
deg at(2n+ 1; z) = dt(n). (7.7)

Proof. We prove (7.6) by induction on n; (7.7) then follows immediately since e(2n+1) =
0. (7.6) clearly holds for n = 1, 2. Now, using (1.2), the induction hypothesis, and finally
the first identity in (4.5), we get

deg at(2n; z) = deg at(n; zt) = t deg at(n; z)

= tdt

(
n− 2e(n)

2

)
= dt

(
2
n− 2e(n)

2

)
= dt

(
2n− 2e(2n)

2

)
,

which proves the statement for even indices.
Next, by (1.3), the induction hypothesis, and both parts of (4.5) we have

deg at(2n+ 1; z) = max
{

deg at(n; zt) + 1, deg at(n+ 1; zt)
}

(7.8)

= max {t deg at(n; z) + 1, t deg at(n+ 1; z)} .

If n is even, then by (7.2) the maximum is attained by the second term on the right-hand
side of (7.8). Therefore, by (7.8), the induction hypothesis, and by the first part of (4.5)
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we have

deg at(2n+ 1; z) = t deg at(n+ 1; z) = tdt

(
n+ 1− 2e(n+1)

2

)
= dt

(
2n+ 1− (2e(n+1)+1 − 1)

2

)
.

Now e(n+ 1) = 0 since n is even, and so 2e(n+1)+1 − 1 = 1 = 2e(2n+1), which means

deg at(2n+ 1; z) = dt

(
2n+ 1− 2e(2n+1)

2

)
, (7.9)

as required. If n is odd, then by (7.1) the maximum on the right-hand side of (7.8) is
attained by the first term, so by induction hypothesis and the second part of (4.5) we
have

deg at(2n+ 1; z) = t deg at(n; z) + 1 = tdt

(
n− 2e(n)

2

)
+ 1

= dt

(
2n+ 1− (2e(n)+1 − 1)

2

)
.

Since n is odd, we have e(n) = 0, so that 2e(n)+1 − 1 = 1 = 2e(2n+1), and once again we
obtain (7.9), as required. The proof is now complete.

We note that in the case t = 2, Proposition 7.2 above reduces to Proposition 2.1 in
[6]. For fixed t 6= 2, Table 2 with (7.7) seems to indicate that the sequence of the degrees
are rather irregular. However, it is clear from Definition 2 that all degree polynomials in
t actually occur, and moreover they do so in their lexicographic order for at(2n + 1; z),
n > 1. For instance, up to n = 7 the degrees are 1, t, t+ 1, t2, t2 + 1, t2 + t, and t2 + t+ 1.

8 Further Remarks

Since this paper deals with Stern polynomials, it should be mentioned that a polynomial
extension of the Stern sequence, different from that in [6], was independently introduced
by S. Klavžar et al. [10]. Interestingly, their sequence of polynomials, which are not (0, 1)-
polynomials, is also related to hyperbinary expansions of n. In fact, the kth coefficient of
the (n+1)th Stern polynomial in the sense of [10] is the number of hyperbinary expansions
of n with exactly k digits 1.

The Stern polynomials introduced in [6], which are the special case t = 2 of the polyno-
mials at(n; z), have been investigated in greater detail in [5] and [7]. The result of Carlitz,
quoted in the present paper as Proposition 4.1, was also stated in [6] as Corollary 6.2;
however, it contains a misprint: a(n) should be replaced by a(n+ 1).

In closing we mention that in addition to Theorem 1.1, another remarkable property of
the Stern (diatomic) sequence {a(n)} is the fact that the quotients a(n)/a(n+ 1), n > 1,
give an enumeration without repetitions of all the positive rationals; see, e.g., [2].
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