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Abstract

We consider shifts of a set A ⊆ N by elements from another set B ⊆ N, and
prove intersection properties according to the relative asymptotic size of A and B.
A consequence of our main theorem is the following: If A = {an} is such that
an = o(nk/k−1), then the k-recurrence set Rk(A) = {x | |A∩ (A+ x)| > k} contains
the distance sets of some arbitrarily large finite sets.
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1 Introduction

It is a well-know fact that if a set of natural numbers A has positive upper asymptotic
density, then its set of distances

∆(A) = {a′ − a | a′, a ∈ A, a′ > a}

meets the set of distances ∆(X) of any infinite set X (see, e.g., [1]). In consequence,
∆(A) is syndetic, that is there exists k such that ∆(A) ∩ I 6= ∅ for every interval I of
length k. It is a relevant theme of research in combinatorial number theory to investigate
properties of distance sets according to their “asymptotic size” (see, e.g., [7, 8, 4, 2].)

The sets of distances are generalized by the k-recurrence sets, namely the sets of those
numbers that are the common distance of at least k-many pairs:

Rk(A) = {x | |A ∩ (A+ x)| > k} .

Trivially, Rk+1(A) ⊆ Rk(A); notice also that R1(A) = ∆(A). We now further generalize
this notion.

Let [A]h = {Z ⊆ A | |Z| = h} denote the family of all finite subsets of A of cardinality
h, namely the h-tuples of A.
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Definition 1. For k, h ∈ N with h > 1, the (h, k)-recurrence set of A is the following set
of h-tuples:

Rh
k(A) =

{
{t1 < . . . < th} ∈ [N]h

∣∣ |(A+ t1) ∩ . . . ∩ (A+ th)| > k
}
.

Also in this case, we trivially have the inclusions Rh
k+1(A) ⊆ Rh

k(A). Notice that for

j < h, any j-tuple included in some h-tuple of Rh
k(A), belongs to Rj

k(A). Notice also
that a pair {t < t′} ∈ R2

k(A) if and only if the distance t′ − t ∈ Rk(A), because trivially
|(A+ t) ∩ (A+ t′)| = |A ∩ (A+ (t′ − t))|. More generally, one has the property:

Proposition 2. If Z ∈ Rh
k(A) then its set of distances ∆(Z) ⊆ Rk(A).

Proof. Let z < z′ be elements of Z. Then {z < z′} ⊆ Z ∈ Rh
k(A), and hence {z < z′} ∈

R2
k(A), which is equivalent to z′ − z ∈ Rk(A).

We remark that the implication in the above proposition cannot be reversed when
h > 2. E.g., if A = {1, 2, 3, 5, 8} and F = {1, 2, 4} then |A ∩ (A + 1)| = |A ∩ (A + 2)| =
|A ∩ (A + 3)| = 2, and so ∆(F ) = {1, 2, 3} ⊆ R2(A). However F /∈ R3

2(A) because
(A+ 1) ∩ (A+ 2) ∩ (A+ 4) = ∅.

For sets of natural numbers, we write A = {an} to mean that elements an of A are
arranged in increasing order. We adopt the usual “little-O” notation, and for functions
f : N→ R, we write an = o(f(n)) to mean that limn→∞ an/f(n) = 0.

Our main result is the following.

• Theorem 4. Let A = {an} and B = {bn} be infinite sets of natural numbers, and
let:1

lim inf
n,m→∞

an + bm
n k
√
m

= l .

If l < 1
k√h−1

then Rh
k(A)∩ [B]h 6= ∅; and if l = 0 then Rh

k(A)∩ [B]h is infinite for all

h.

(Notice that when k = 1, for every infinite set A one has Rh
1(A) 6= ∅ for all h). As a

consequence of the theorem above, the following intersection property is obtained.

• Theorem 9. Let k > 2. If the infinite set A = {an} is such that an = o(nk/k−1)
then Rk(A) is a “finitely Delta-set”, that is there exist arbitrarily large finite sets Z
such that ∆(Z) ⊆ Rk(A).

1 By limit inferior of a double sequence 〈cnm | (n,m) ∈ N× N〉 we mean

lim inf
n,m→∞

cnm = lim
k→∞

(
inf

n,m>k
cnm

)
.
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(When k = 1, R1(A) = ∆(A) is trivially a “finitely Delta-set”.)

All proofs contained in this paper have been first obtained by working with the hy-
perintegers of nonstandard analysis. (Nonstandard integers seem to provide a convenient
framework to investigate combinatorial properties of numbers which depend on density;
see, e.g., [5, 6, 3].) However, all arguments used in our original proof could be translated
in terms of limits of subsequences in an (almost) straightforward manner, with the only
inconvenience being a heavier notation. So, we eventually decided to keep to the usual
language of elementary combinatorics.

2 The main theorem

The following finite combinatorial property will be instrumental for the proof of our main
result.

Lemma 3. Let A = {a1 < . . . < an} and B = {b1 < . . . < bm} be finite sets of natural
numbers. For every k 6 n there exists a subset Z ⊆ B such that

1. |
⋂
z∈Z (A+ z) | > k.

2. |Z| > L ·
(
n k
√
m

an+bm

)k
where L =

∏k−1
i=1

1− i
n

1− i
an+bm

.

Proof. For every i 6 m, let Ai = A+ bi be the shift of A by bi. Notice that |Ai| = |A| = n
and Ai ⊆ I = [1, an + bm] for all i. For H ∈ [N]k, denote by f(H) = |

{
i | H ⊆ [Ai]

k
}
|.

Then: ∑
H∈[I]k

f(H) =
m∑
i=1

|[Ai]k| =
m∑
i=1

(
n

k

)
= m ·

(
n

k

)
.

Since |[I]k| =
(
an+bm

k

)
, by the pigeonhole principle there exists H0 ∈ [I]k such that

f(H0) >
m ·
(
n
k

)(
an+bm

k

) = m · n(n− 1)(n− 2) · · · (n− (k − 1))

(an + bm)(an + bm − 1) · · · (an + bm − (k − 1))

= m · L ·
(

n

an + bm

)k
= L ·

(
n k
√
m

an + bm

)k
,

where L is the number defined in the statement of this lemma. Now consider the set
Γ = {i ∈ [1,m] | H0 ∈ [Ai]

k}. We have that

|Γ| = f(H0) > L ·
(

n k
√
m

an + bm

)k
.

Now, H0 = {h1 < . . . < hk} ∈
⋂
i∈Γ[Ai]

k ⇒ |
⋂
i∈ΓAi| > k, and the set Z = {bi | i ∈ Γ}

satisfies the thesis.
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We are finally ready to prove our main theorem.

Theorem 4. Let A = {an} and B = {bn} be infinite sets of natural numbers, and let

lim inf
n,m→∞

an + bm
n k
√
m

= l .

If l < 1
k√h−1

then Rh
k(A) ∩ [B]h 6= ∅; and if l = 0 then Rh

k(A) ∩ [B]h is infinite for all h.

Proof. Pick increasing functions σ, τ : N→ N such that

lim
n→∞

aσ(n) + bτ(n)

σ(n) k
√
τ(n)

= l .

For every n > k, apply Lemma 3 to the finite sets An = {a1 < . . . < aσ(n)} and Bn =
{b1 < . . . < bτ(n)}, and get the existence of a subset Zn ⊆ Bn such that

1.
∣∣⋂

z∈Zn (An + z)
∣∣ > k.

2. |Zn| > Ln ·
(
σ(n) k
√
τ(n)

aσ(n)+bτ(n)

)k
where Ln =

∏k−1
i=1

1− i
σ(n)

1− i
aσ(n)+bτ(n)

.

Since limn→∞ Ln = 1, we have that

lim inf
n>k

|Zn| > lim
n→∞

Ln ·

(
σ(n) k

√
τ(n)

aσ(n) + bτ(n)

)k
= 1 ·

(
1

l

)k
> h− 1.

Pick an index t > k with |Zt| > h− 1, and pick {z1 < . . . < zh} ⊆ Zt. Then:∣∣∣∣∣
h⋂
i=1

(A+ zi)

∣∣∣∣∣ >

∣∣∣∣∣
h⋂
i=1

(At + zi)

∣∣∣∣∣ >

∣∣∣∣∣ ⋂
z∈Zt

(At + z)

∣∣∣∣∣ > k.

As Zt ⊂ B, we conclude that {z1 < . . . < zh} ∈ Rh
k(A) ∩ [B]h.

Now let us turn to the case l = 0. Given s > 1, pick j 6 s such that the set
Tj = {τ(n) | τ(n) ≡ j mod s} is infinite, let ξ, ζ : N → N be the increasing functions
such that Tj = {τ(ξ(n))} = {s · ζ(n) + j}, and let B = {b′n} be the set where b′n = bsn+j.
Then for every h > 1:

lim inf
n,m→∞

an + b′m
n · k
√
m

6 lim
n→∞

aσ(ξ(n)) + b′ζ(n)

σ(ξ(n)) · k
√
ζ(n)

=

lim
n→∞

aσ(ξ(n)) + bτ(ξ(n))

σ(ξ(n)) · k
√
τ(ξ(n))

· k

√
s · ζ(n) + j

ζ(n)
= l · k

√
s = 0 <

1
k
√
h− 1

.

By what already proved above, we get the existence of an h-tuple

Z = {z1 < z2 < . . . < zh} ⊆ B′

such that |
⋂h
i=1(A + zi)| > k. It is clear from the definition of B′ that maxZ > b′h >

sh + j > s. Since s can be taken arbitrarily large, we conclude that Rh
k(A) ∩ [B]h is

infinite, as desired.
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Corollary 5. Let A = {an} and B = {bn} be infinite sets of natural numbers. If there
exists a function f : N→ R+ such that

lim sup
n→∞

an
n · f(n)

< ∞ and lim
n→∞

f(bn)
k
√
n

= 0 ,

then Rh
k(A) ∩ [B]h is infinite for all h.

Proof. It directly follows from Theorem 4, since

lim inf
n,m→∞

an + bm
n k
√
m

6 lim inf
m→∞

abm + bm
bm · k
√
m

= lim inf
m→∞

abm
bm · k
√
m

6 lim sup
m→∞

abm
bm · f(bm)

· lim inf
m→∞

f(bm)
k
√
m

= 0 .

An an example, we now see a property that also applies to all zero density sets having
at least the same “asymptotic size” as the prime numbers.

Corollary 6. Assume that the sets A = {an} and B = {bn} satisfy the conditions∑∞
n=1

1
an

= ∞ and log bn = o(nε) for all ε > 0. Then for every h and k, there exist
infinitely many h-tuples {β1 < . . . < βh} ⊂ B such that each distance βj − βi equals the
distance of k-many pairs of elements of A.

Proof. By the hypothesis
∑∞

n=1
1
an

= ∞ it follows that an = o(n log2 n), and so the

previous corollary applies with f(n) = log2 n. Clearly, every h-tuple {β1 < . . . < βh} ∈
Rh
k(A) ∩ [B]h satisfies the desired property.

3 Finitely ∆-sets

Recall that a set A ⊆ N is called a Delta-set (or ∆-set for short) if ∆(X) ⊆ A for some
infinite X. A basic result is the following: “If A has positive upper asymptotic density,
then ∆(A)∩∆(X) 6= ∅ for all infinite sets X.” (See, e.g., [1].) Another relevant property
is that ∆-sets are partition regular, i.e. the family F of ∆-sets satisfies the following
property:

• If a set A = A1 ∪ . . .∪Ar of F is partitioned into finitely many pieces, then at least
one of the pieces Ai belongs to F .

To see this, let an infinite set of distances ∆(X) = C1∪ . . .∪Cr be finitely partitioned,
and consider the partition of the pairs [X]2 = D1 ∪ . . . ∪ Dr where {x < x′} ∈ Di ⇔
x′ − x ∈ Ci. By the infinite Ramsey Theorem, there exists an infinite Y ⊆ X and an
index i such that [Y ]2 ⊆ Di, which means ∆(Y ) ⊆ Ci.

A convenient generalization of ∆-sets is the following.
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Definition 7. A is a finitely ∆-set (or ∆f -set for short) if it contains the distances of
finite sets of arbitrarily large size, i.e., if for every k there exists |X| = k such that
∆(X) ⊆ A.

Trivially every ∆-set is a ∆f -set, but not conversely. For example, take any sequence
{an} such that an+1 > an · n, let An = {an · i | i = 1, . . . , n}, and consider the set
A =

⋃
n∈NAn. Notice that for every n, one has ∆(An) ⊆ An, and hence A is a ∆f -set.

However A is not a ∆-set. Indeed, assume by contradiction that ∆(X) ⊆ A for some
infinite X = {x1 < x2 < . . .}; then x2 − x1 = ak · i for some k and some 1 6 i 6 k. Pick
a large enough m so that xm > x2 + ak · k. Then xm − x1, xm − x2 ∈

⋃
n>k An, and so

x2 − x1 = (xm − x1)− (xm − x2) > ak+1 > ak · k > x2 − x1, a contradiction. We remark
that there exist “large” sets that are not ∆f -sets. For instance, consider the set O of odd
numbers; it is readily seen that ∆(Z) 6⊆ O whenever |Z| > 3.

The following property suggests the notion of ∆f -set as combinatorially suitable.

Proposition 8. The family of ∆f -sets is partition regular.

Proof. Let A be a ∆f -set, and let A = C1 ∪ . . .∪Cr be a finite partition. Given k, by the
finite Ramsey theorem we can pick n large enough so that every r-partition of the pairs
[{1, . . . , n}]2 admits a homogeneous set of size k. Now pick a set X = {x1 < . . . < xn}
with n-many elements such that ∆(X) ⊆ A, and consider the partition [{1, . . . , n}]2 =
D1 ∪ . . . ∪Dr where {i < j} ∈ Dt ⇔ xj − xi ∈ Ct. Then there exists an index tk and a
set H = {h1 < . . . < hk} of cardinality k such that [H]2 ⊆ Dtk . This means that the set
Y = {xh1 < . . . < xhk} is such that ∆(Y ) ⊆ Ctk . Since there are only finitely many pieces
C1, . . . , Cr, there exists t such that tk = t for infinitely many k. In consequence, Ct is a
∆f -set.

As a straight consequence of Theorem 4, we can give a simple sufficient condition on
the “asymptotic size” of a set A that guarantees the corresponding k-recurrence sets be
finitely ∆-sets.

Theorem 9. Let k > 2 and let the infinite set A = {an} be such that an = o(nk/k−1).
Then Rk(A) is a ∆f -set.

Proof. Let B = N, so bm = m. By taking m = an, we obtain that

lim inf
n,m→∞

an +m

n k
√
m

6 lim
n→∞

an + an
n k
√
an

= lim
n→∞

(
2

k
k−1 · an

n
k
k−1

) k−1
k

= 0 .

Then Theorem 4 applies, and for every h we obtain the existence of a finite set Z of
cardinality h such that Z ∈ Rh

k(A) ∩ [B]h = Rh
k(A). But then, by Proposition 2, ∆(Z) ⊆

Rk(A).

the electronic journal of combinatorics 22(2) (2015), #P2.25 6



References

[1] V. Bergelson. Ergodic Ramsey Theory - an update. In Ergodic Theory of Zd-actions,
volume 228 of London Math. Soc. Lecture Notes Series, pages 1–61, 1996.
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