Intersections of shifted sets

Mauro Di Nasso*
Department of Mathematics
University of Pisa, Italy
dinasso@dm.unipi.it

Submitted: Nov 28, 2014; Accepted: May 4, 2015; Published: May 14, 2015
Mathematics Subject Classifications: 05B10, 11B05, 11B37

Abstract

We consider shifts of a set $A \subseteq \mathbb{N}$ by elements from another set $B \subseteq \mathbb{N}$, and prove intersection properties according to the relative asymptotic size of A and B. A consequence of our main theorem is the following: If $A=\left\{a_{n}\right\}$ is such that $a_{n}=o\left(n^{k / k-1}\right)$, then the k-recurrence set $R_{k}(A)=\{x| | A \cap(A+x) \mid \geqslant k\}$ contains the distance sets of some arbitrarily large finite sets.

Keywords: Asymptotic density, Delta-sets, k-Recurrence sets.

1 Introduction

It is a well-know fact that if a set of natural numbers A has positive upper asymptotic density, then its set of distances

$$
\Delta(A)=\left\{a^{\prime}-a \mid a^{\prime}, a \in A, a^{\prime}>a\right\}
$$

meets the set of distances $\Delta(X)$ of any infinite set X (see, e.g., [1]). In consequence, $\Delta(A)$ is syndetic, that is there exists k such that $\Delta(A) \cap I \neq \emptyset$ for every interval I of length k. It is a relevant theme of research in combinatorial number theory to investigate properties of distance sets according to their "asymptotic size" (see, e.g., [7, 8, 4, 2].)

The sets of distances are generalized by the k-recurrence sets, namely the sets of those numbers that are the common distance of at least k-many pairs:

$$
R_{k}(A)=\{x| | A \cap(A+x) \mid \geqslant k\} .
$$

Trivially, $R_{k+1}(A) \subseteq R_{k}(A)$; notice also that $R_{1}(A)=\Delta(A)$. We now further generalize this notion.

Let $[A]^{h}=\{Z \subseteq A| | Z \mid=h\}$ denote the family of all finite subsets of A of cardinality h, namely the h-tuples of A.
*Supported by PRIN-MIUR grant "Logic, models, and sets".

Definition 1. For $k, h \in \mathbb{N}$ with $h>1$, the (h, k)-recurrence set of A is the following set of h-tuples:

$$
R_{k}^{h}(A)=\left\{\left\{t_{1}<\ldots<t_{h}\right\} \in[\mathbb{N}]^{h}| |\left(A+t_{1}\right) \cap \ldots \cap\left(A+t_{h}\right) \mid \geqslant k\right\} .
$$

Also in this case, we trivially have the inclusions $R_{k+1}^{h}(A) \subseteq R_{k}^{h}(A)$. Notice that for $j<h$, any j-tuple included in some h-tuple of $R_{k}^{h}(A)$, belongs to $R_{k}^{j}(A)$. Notice also that a pair $\left\{t<t^{\prime}\right\} \in R_{k}^{2}(A)$ if and only if the distance $t^{\prime}-t \in R_{k}(A)$, because trivially $\left|(A+t) \cap\left(A+t^{\prime}\right)\right|=\left|A \cap\left(A+\left(t^{\prime}-t\right)\right)\right|$. More generally, one has the property:

Proposition 2. If $Z \in R_{k}^{h}(A)$ then its set of distances $\Delta(Z) \subseteq R_{k}(A)$.
Proof. Let $z<z^{\prime}$ be elements of Z. Then $\left\{z<z^{\prime}\right\} \subseteq Z \in R_{k}^{h}(A)$, and hence $\left\{z<z^{\prime}\right\} \in$ $R_{k}^{2}(A)$, which is equivalent to $z^{\prime}-z \in R_{k}(A)$.

We remark that the implication in the above proposition cannot be reversed when $h>2$. E.g., if $A=\{1,2,3,5,8\}$ and $F=\{1,2,4\}$ then $|A \cap(A+1)|=|A \cap(A+2)|=$ $|A \cap(A+3)|=2$, and so $\Delta(F)=\{1,2,3\} \subseteq R_{2}(A)$. However $F \notin R_{2}^{3}(A)$ because $(A+1) \cap(A+2) \cap(A+4)=\emptyset$.

For sets of natural numbers, we write $A=\left\{a_{n}\right\}$ to mean that elements a_{n} of A are arranged in increasing order. We adopt the usual "little-O" notation, and for functions $f: \mathbb{N} \rightarrow \mathbb{R}$, we write $a_{n}=o(f(n))$ to mean that $\lim _{n \rightarrow \infty} a_{n} / f(n)=0$.

Our main result is the following.

- Theorem 4. Let $A=\left\{a_{n}\right\}$ and $B=\left\{b_{n}\right\}$ be infinite sets of natural numbers, and let: ${ }^{1}$

$$
\liminf _{n, m \rightarrow \infty} \frac{a_{n}+b_{m}}{n \sqrt[k]{m}}=l
$$

If $l<\frac{1}{\sqrt[k]{h-1}}$ then $R_{k}^{h}(A) \cap[B]^{h} \neq \emptyset$; and if $l=0$ then $R_{k}^{h}(A) \cap[B]^{h}$ is infinite for all h.
(Notice that when $k=1$, for every infinite set A one has $R_{1}^{h}(A) \neq \emptyset$ for all h). As a consequence of the theorem above, the following intersection property is obtained.

- Theorem 9. Let $k \geqslant 2$. If the infinite set $A=\left\{a_{n}\right\}$ is such that $a_{n}=o\left(n^{k / k-1}\right)$ then $R_{k}(A)$ is a "finitely Delta-set", that is there exist arbitrarily large finite sets Z such that $\Delta(Z) \subseteq R_{k}(A)$.

[^0](When $k=1, R_{1}(A)=\Delta(A)$ is trivially a "finitely Delta-set".)
All proofs contained in this paper have been first obtained by working with the hyperintegers of nonstandard analysis. (Nonstandard integers seem to provide a convenient framework to investigate combinatorial properties of numbers which depend on density; see, e.g., $[5,6,3]$.) However, all arguments used in our original proof could be translated in terms of limits of subsequences in an (almost) straightforward manner, with the only inconvenience being a heavier notation. So, we eventually decided to keep to the usual language of elementary combinatorics.

2 The main theorem

The following finite combinatorial property will be instrumental for the proof of our main result.

Lemma 3. Let $A=\left\{a_{1}<\ldots<a_{n}\right\}$ and $B=\left\{b_{1}<\ldots<b_{m}\right\}$ be finite sets of natural numbers. For every $k \leqslant n$ there exists a subset $Z \subseteq B$ such that

1. $\left|\bigcap_{z \in Z}(A+z)\right| \geqslant k$.
2. $|Z| \geqslant L \cdot\left(\frac{n \sqrt[k]{m}}{a_{n}+b_{m}}\right)^{k}$ where $L=\prod_{i=1}^{k-1} \frac{1-\frac{i}{n}}{1-\frac{a}{a_{n}+b_{m}}}$.

Proof. For every $i \leqslant m$, let $A_{i}=A+b_{i}$ be the shift of A by b_{i}. Notice that $\left|A_{i}\right|=|A|=n$ and $A_{i} \subseteq I=\left[1, a_{n}+b_{m}\right]$ for all i. For $H \in[\mathbb{N}]^{k}$, denote by $f(H)=\left|\left\{i \mid H \subseteq\left[A_{i}\right]^{k}\right\}\right|$. Then:

$$
\sum_{H \in[I]^{k}} f(H)=\sum_{i=1}^{m}\left|\left[A_{i}\right]^{k}\right|=\sum_{i=1}^{m}\binom{n}{k}=m \cdot\binom{n}{k}
$$

Since $\left|[I]^{k}\right|=\binom{a_{n}+b_{m}}{k}$, by the pigeonhole principle there exists $H_{0} \in[I]^{k}$ such that

$$
\begin{aligned}
f\left(H_{0}\right) & \geqslant \frac{m \cdot\binom{n}{k}}{\binom{a_{n}+b_{m}}{k}}=m \cdot \frac{n(n-1)(n-2) \cdots(n-(k-1))}{\left(a_{n}+b_{m}\right)\left(a_{n}+b_{m}-1\right) \cdots\left(a_{n}+b_{m}-(k-1)\right)} \\
& =m \cdot L \cdot\left(\frac{n}{a_{n}+b_{m}}\right)^{k}=L \cdot\left(\frac{n \sqrt[k]{m}}{a_{n}+b_{m}}\right)^{k}
\end{aligned}
$$

where L is the number defined in the statement of this lemma. Now consider the set $\Gamma=\left\{i \in[1, m] \mid H_{0} \in\left[A_{i}\right]^{k}\right\}$. We have that

$$
|\Gamma|=f\left(H_{0}\right) \geqslant L \cdot\left(\frac{n \sqrt[k]{m}}{a_{n}+b_{m}}\right)^{k}
$$

Now, $H_{0}=\left\{h_{1}<\ldots<h_{k}\right\} \in \bigcap_{i \in \Gamma}\left[A_{i}\right]^{k} \Rightarrow\left|\bigcap_{i \in \Gamma} A_{i}\right| \geqslant k$, and the set $Z=\left\{b_{i} \mid i \in \Gamma\right\}$ satisfies the thesis.

We are finally ready to prove our main theorem.
Theorem 4. Let $A=\left\{a_{n}\right\}$ and $B=\left\{b_{n}\right\}$ be infinite sets of natural numbers, and let

$$
\liminf _{n, m \rightarrow \infty} \frac{a_{n}+b_{m}}{n \sqrt[k]{m}}=l
$$

If $l<\frac{1}{\sqrt[6]{h-1}}$ then $R_{k}^{h}(A) \cap[B]^{h} \neq \emptyset$; and if $l=0$ then $R_{k}^{h}(A) \cap[B]^{h}$ is infinite for all h.
Proof. Pick increasing functions $\sigma, \tau: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\lim _{n \rightarrow \infty} \frac{a_{\sigma(n)}+b_{\tau(n)}}{\sigma(n) \sqrt[k]{\tau(n)}}=l
$$

For every $n \geqslant k$, apply Lemma 3 to the finite sets $A_{n}=\left\{a_{1}<\ldots<a_{\sigma(n)}\right\}$ and $B_{n}=$ $\left\{b_{1}<\ldots<b_{\tau(n)}\right\}$, and get the existence of a subset $Z_{n} \subseteq B_{n}$ such that

1. $\left|\bigcap_{z \in Z_{n}}\left(A_{n}+z\right)\right| \geqslant k$.
2. $\left|Z_{n}\right| \geqslant L_{n} \cdot\left(\frac{\sigma(n) \sqrt[k]{\tau(n)}}{a_{\sigma(n)}+b_{\tau(n)}}\right)^{k}$ where $L_{n}=\prod_{i=1}^{k-1} \frac{1-\frac{i}{\sigma(n)}}{1-\frac{n}{a_{\sigma(n)}+b_{\tau(n)}}}$.

Since $\lim _{n \rightarrow \infty} L_{n}=1$, we have that

$$
\liminf _{n \geqslant k}\left|Z_{n}\right| \geqslant \lim _{n \rightarrow \infty} L_{n} \cdot\left(\frac{\sigma(n) \sqrt[k]{\tau(n)}}{a_{\sigma(n)}+b_{\tau(n)}}\right)^{k}=1 \cdot\left(\frac{1}{l}\right)^{k}>h-1
$$

Pick an index $t \geqslant k$ with $\left|Z_{t}\right|>h-1$, and pick $\left\{z_{1}<\ldots<z_{h}\right\} \subseteq Z_{t}$. Then:

$$
\left|\bigcap_{i=1}^{h}\left(A+z_{i}\right)\right| \geqslant\left|\bigcap_{i=1}^{h}\left(A_{t}+z_{i}\right)\right| \geqslant\left|\bigcap_{z \in Z_{t}}\left(A_{t}+z\right)\right| \geqslant k
$$

As $Z_{t} \subset B$, we conclude that $\left\{z_{1}<\ldots<z_{h}\right\} \in R_{k}^{h}(A) \cap[B]^{h}$.
Now let us turn to the case $l=0$. Given $s>1$, pick $j \leqslant s$ such that the set $T_{j}=\{\tau(n) \mid \tau(n) \equiv j \bmod s\}$ is infinite, let $\xi, \zeta: \mathbb{N} \rightarrow \mathbb{N}$ be the increasing functions such that $T_{j}=\{\tau(\xi(n))\}=\{s \cdot \zeta(n)+j\}$, and let $B=\left\{b_{n}^{\prime}\right\}$ be the set where $b_{n}^{\prime}=b_{s n+j}$. Then for every $h>1$:

$$
\begin{gathered}
\liminf _{n, m \rightarrow \infty} \frac{a_{n}+b_{m}^{\prime}}{n \cdot \sqrt[k]{m}} \leqslant \lim _{n \rightarrow \infty} \frac{a_{\sigma(\xi(n))}+b_{\zeta(n)}^{\prime}}{\sigma(\xi(n)) \cdot \sqrt[k]{\zeta(n)}}= \\
\lim _{n \rightarrow \infty} \frac{a_{\sigma(\xi(n))}+b_{\tau(\xi(n))}}{\sigma(\xi(n)) \cdot \sqrt[k]{\tau(\xi(n))}} \cdot \sqrt[k]{\frac{s \cdot \zeta(n)+j}{\zeta(n)}}=l \cdot \sqrt[k]{s}=0<\frac{1}{\sqrt[k]{h-1}}
\end{gathered}
$$

By what already proved above, we get the existence of an h-tuple

$$
Z=\left\{z_{1}<z_{2}<\ldots<z_{h}\right\} \subseteq B^{\prime}
$$

such that $\left|\bigcap_{i=1}^{h}\left(A+z_{i}\right)\right| \geqslant k$. It is clear from the definition of B^{\prime} that $\max Z \geqslant b_{h}^{\prime} \geqslant$ $s h+j>s$. Since s can be taken arbitrarily large, we conclude that $R_{k}^{h}(A) \cap[B]^{h}$ is infinite, as desired.

Corollary 5. Let $A=\left\{a_{n}\right\}$ and $B=\left\{b_{n}\right\}$ be infinite sets of natural numbers. If there exists a function $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$such that

$$
\limsup _{n \rightarrow \infty} \frac{a_{n}}{n \cdot f(n)}<\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{f\left(b_{n}\right)}{\sqrt[k]{n}}=0
$$

then $R_{k}^{h}(A) \cap[B]^{h}$ is infinite for all h.
Proof. It directly follows from Theorem 4, since

$$
\begin{aligned}
\liminf _{n, m \rightarrow \infty} \frac{a_{n}+b_{m}}{n \sqrt[k]{m}} & \leqslant \liminf _{m \rightarrow \infty} \frac{a_{b_{m}}+b_{m}}{b_{m} \cdot \sqrt[k]{m}}=\liminf _{m \rightarrow \infty} \frac{a_{b_{m}}}{b_{m} \cdot \sqrt[k]{m}} \\
& \leqslant \limsup _{m \rightarrow \infty} \frac{a_{b_{m}}}{b_{m} \cdot f\left(b_{m}\right)} \cdot \liminf _{m \rightarrow \infty} \frac{f\left(b_{m}\right)}{\sqrt[k]{m}}=0 .
\end{aligned}
$$

An an example, we now see a property that also applies to all zero density sets having at least the same "asymptotic size" as the prime numbers.

Corollary 6. Assume that the sets $A=\left\{a_{n}\right\}$ and $B=\left\{b_{n}\right\}$ satisfy the conditions $\sum_{n=1}^{\infty} \frac{1}{a_{n}}=\infty$ and $\log b_{n}=o\left(n^{\varepsilon}\right)$ for all $\varepsilon>0$. Then for every h and k, there exist infinitely many h-tuples $\left\{\beta_{1}<\ldots<\beta_{h}\right\} \subset B$ such that each distance $\beta_{j}-\beta_{i}$ equals the distance of k-many pairs of elements of A.

Proof. By the hypothesis $\sum_{n=1}^{\infty} \frac{1}{a_{n}}=\infty$ it follows that $a_{n}=o\left(n \log ^{2} n\right)$, and so the previous corollary applies with $f(n)=\log ^{2} n$. Clearly, every h-tuple $\left\{\beta_{1}<\ldots<\beta_{h}\right\} \in$ $R_{k}^{h}(A) \cap[B]^{h}$ satisfies the desired property.

3 Finitely Δ-sets

Recall that a set $A \subseteq \mathbb{N}$ is called a Delta-set (or Δ-set for short) if $\Delta(X) \subseteq A$ for some infinite X. A basic result is the following: "If A has positive upper asymptotic density, then $\Delta(A) \cap \Delta(X) \neq \emptyset$ for all infinite sets X." (See, e.g., [1].) Another relevant property is that Δ-sets are partition regular, i.e. the family \mathcal{F} of Δ-sets satisfies the following property:

- If a set $A=A_{1} \cup \ldots \cup A_{r}$ of \mathcal{F} is partitioned into finitely many pieces, then at least one of the pieces A_{i} belongs to \mathcal{F}.

To see this, let an infinite set of distances $\Delta(X)=C_{1} \cup \ldots \cup C_{r}$ be finitely partitioned, and consider the partition of the pairs $[X]^{2}=D_{1} \cup \ldots \cup D_{r}$ where $\left\{x<x^{\prime}\right\} \in D_{i} \Leftrightarrow$ $x^{\prime}-x \in C_{i}$. By the infinite Ramsey Theorem, there exists an infinite $Y \subseteq X$ and an index i such that $[Y]^{2} \subseteq D_{i}$, which means $\Delta(Y) \subseteq C_{i}$.

A convenient generalization of Δ-sets is the following.

Definition 7. A is a finitely Δ-set (or Δ_{f}-set for short) if it contains the distances of finite sets of arbitrarily large size, i.e., if for every k there exists $|X|=k$ such that $\Delta(X) \subseteq A$.

Trivially every Δ-set is a Δ_{f}-set, but not conversely. For example, take any sequence $\left\{a_{n}\right\}$ such that $a_{n+1}>a_{n} \cdot n$, let $A_{n}=\left\{a_{n} \cdot i \mid i=1, \ldots, n\right\}$, and consider the set $A=\bigcup_{n \in \mathbb{N}} A_{n}$. Notice that for every n, one has $\Delta\left(A_{n}\right) \subseteq A_{n}$, and hence A is a Δ_{f}-set. However A is not a Δ-set. Indeed, assume by contradiction that $\Delta(X) \subseteq A$ for some infinite $X=\left\{x_{1}<x_{2}<\ldots\right\}$; then $x_{2}-x_{1}=a_{k} \cdot i$ for some k and some $1 \leqslant i \leqslant k$. Pick a large enough m so that $x_{m}>x_{2}+a_{k} \cdot k$. Then $x_{m}-x_{1}, x_{m}-x_{2} \in \bigcup_{n>k} A_{n}$, and so $x_{2}-x_{1}=\left(x_{m}-x_{1}\right)-\left(x_{m}-x_{2}\right) \geqslant a_{k+1}>a_{k} \cdot k \geqslant x_{2}-x_{1}$, a contradiction. We remark that there exist "large" sets that are not Δ_{f}-sets. For instance, consider the set O of odd numbers; it is readily seen that $\Delta(Z) \nsubseteq O$ whenever $|Z| \geqslant 3$.

The following property suggests the notion of Δ_{f}-set as combinatorially suitable.
Proposition 8. The family of Δ_{f}-sets is partition regular.
Proof. Let A be a Δ_{f}-set, and let $A=C_{1} \cup \ldots \cup C_{r}$ be a finite partition. Given k, by the finite Ramsey theorem we can pick n large enough so that every r-partition of the pairs $[\{1, \ldots, n\}]^{2}$ admits a homogeneous set of size k. Now pick a set $X=\left\{x_{1}<\ldots<x_{n}\right\}$ with n-many elements such that $\Delta(X) \subseteq A$, and consider the partition $[\{1, \ldots, n\}]^{2}=$ $D_{1} \cup \ldots \cup D_{r}$ where $\{i<j\} \in D_{t} \Leftrightarrow x_{j}-x_{i} \in C_{t}$. Then there exists an index t_{k} and a set $H=\left\{h_{1}<\ldots<h_{k}\right\}$ of cardinality k such that $[H]^{2} \subseteq D_{t_{k}}$. This means that the set $Y=\left\{x_{h_{1}}<\ldots<x_{h_{k}}\right\}$ is such that $\Delta(Y) \subseteq C_{t_{k}}$. Since there are only finitely many pieces C_{1}, \ldots, C_{r}, there exists t such that $t_{k}=t$ for infinitely many k. In consequence, C_{t} is a Δ_{f}-set.

As a straight consequence of Theorem 4, we can give a simple sufficient condition on the "asymptotic size" of a set A that guarantees the corresponding k-recurrence sets be finitely Δ-sets.

Theorem 9. Let $k \geqslant 2$ and let the infinite set $A=\left\{a_{n}\right\}$ be such that $a_{n}=o\left(n^{k / k-1}\right)$. Then $R_{k}(A)$ is a Δ_{f}-set.

Proof. Let $B=\mathbb{N}$, so $b_{m}=m$. By taking $m=a_{n}$, we obtain that

$$
\liminf _{n, m \rightarrow \infty} \frac{a_{n}+m}{n \sqrt[k]{m}} \leqslant \lim _{n \rightarrow \infty} \frac{a_{n}+a_{n}}{n \sqrt[k]{a_{n}}}=\lim _{n \rightarrow \infty}\left(2^{\frac{k}{k-1}} \cdot \frac{a_{n}}{n^{\frac{k}{k-1}}}\right)^{\frac{k-1}{k}}=0
$$

Then Theorem 4 applies, and for every h we obtain the existence of a finite set Z of cardinality h such that $Z \in R_{k}^{h}(A) \cap[B]^{h}=R_{k}^{h}(A)$. But then, by Proposition $2, \Delta(Z) \subseteq$ $R_{k}(A)$.

References

[1] V. Bergelson. Ergodic Ramsey Theory - an update. In Ergodic Theory of \mathbb{Z}^{d}-actions, volume 228 of London Math. Soc. Lecture Notes Series, pages 1-61, 1996.
[2] V. Bergelson, P. Erdős, N. Hindman, and T. Lukzak. Dense Difference Sets and their Combinatorial Structure. In The Mathematics of Paul Erdős, I (R. Graham and J. Nešetřil, eds.), pages 165-175, Springer, 1997.
[3] M. Di Nasso, I. Goldbring, R. Jin, S. Leth, M. Lupini, and K. Mahlburg. Progress on a sumset conjecture by Erdős. Canad. J. Math., to appear.
[4] P. Erdős, A. Sárkozy and V.T. Sós. On additive properties of general sequences. Discrete Math. 136:75-99, 1994.
[5] R. Jin. Sumset phenomenon. Proc. Amer. Math. Soc. 130:855-861, 2002.
[6] R. Jin. Plünnecke's theorem for asymptotic densities. Trans. Amer. Math. Soc. 363:5059-5070, 2011.
[7] I.Z. Ruzsa. On difference sets. Studia Sci. Math. Hungar. 13:319-326, 1978.
[8] A. Sárközy. On difference sets of sequences of integers. Part I: Acta Math. Hung. 31:125-149, 1978. Part II: Ann. Univ. Sci. Budap., Sect. Math. 21:45-53, 1978. Part III: Acta Math. Hung. 31:355-386, 1978.

[^0]: ${ }^{1}$ By limit inferior of a double sequence $\left\langle c_{n m} \mid(n, m) \in \mathbb{N} \times \mathbb{N}\right\rangle$ we mean

 $$
 \liminf _{n, m \rightarrow \infty} c_{n m}=\lim _{k \rightarrow \infty}\left(\inf _{n, m \geqslant k} c_{n m}\right) .
 $$

