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Abstract

We use the tight correlation between the geometry of the Peterson variety and
the combinatorics the symmetric group to prove that homology of the Peterson
variety injects into the homology of the flag variety. Our proof counts the points
of intersection between certain Schubert varieties in the full flag variety and the
Peterson variety, and shows that these intersections are proper and transverse.
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1 Introduction

The Peterson variety is a subvariety of the flag variety that has been the focus of much
current research. In the early nineties Peterson announced that the quantum cohomology
ring of any partial flag variety can be explicitly constructed as the coordinate ring of a
certain subspace of the Peterson variety [13]. This spurred Kostant and Reitsch to study
its geometry in connection to quantum cohomology [10, 15]. Using the geometry of the
Peterson variety, Reitsch also proved certain determinantal identities resembling classical
results regarding Vandermonde determinants [14]. Brion and Carrell identified the S1-
equivariant cohomology of the Peterson variety with the coordinate ring of a particular
affine curve [3]. In 2006, Tymoczko showed that a particular Schubert cell decomposition
of the full flag variety, when intersected with the Peterson variety, paves the Peterson
variety by affine cells [16, 17]. More recently, Harada and Tymoczko used a modified
GKM-theory to provide the first explicit computation of the S1-equivariant cohomology
of the Peterson varieties with generators and relations [7, Theorem 6.12, Corollary 6.17].

The following is a classic open problem in the Schubert calculus of the flag variety:
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Problem 1. Given any “reasonably nice” subvariety Y ⊂ Flags(Cn), express the homol-
ogy class of Y as an integral linear combination of Schubert classes.

We consider the case where Y is the Peterson variety. By analyzing the cellular
structure of the Peterson variety and the group action of a one-dimensional torus on this
variety, we reduce the computations in the intersection theory of the flag variety to a
systematic combinatorial analysis of the elements of the symmetric group. In the process,
we give a partial solution to Problem 1.

A precise statement of this result requires some further explanation and will appear
as Theorem 17, but we provide a preview here:

Theorem 2. If we write every Peterson Schubert homology class as a linear combination
of Schubert classes

i∗([Pet ∩XwJ
]) =

∑
u

au[Xu]

then each Peterson Schubert class i∗([Pet∩XwJ
]) will have a certain coefficient av(J) = 1,

and the rest of the Peterson Schubert classes i∗([Pet ∩XwJ′
]) will have av(J) = 0.

It turns out that this result suffices to prove the main result of this paper.

Theorem 3. The push-forward i∗ : H∗(Pet;Z)→ H∗(Flags(Cn);Z) induced by the natu-
ral inclusion map i : Pet ↪→ Flags(Cn) is injective.

Theorem 3 ensures that the Peterson variety is in fact one of the “reasonably nice”
varieties described in Problem 1, and the push-forward i∗ being an injection is commonly
necessary to obtain combinatorial constructions in equivariant cohomology, see e.g. [5].
Moreover, Theorem 3 gives geometric meaning to the combinatorial “Peterson Schubert
classes” that Harada and Tymoczko described in their main results [7, Theorem 6.12,
Corollary 6.17]; the combinatorial Peterson Schubert classes they described correspond
to the fundamental classes of the Peterson Schubert varieties we describe in Section 3
and use in our intersection theory arguments. Most importantly, many of the intersection
theory arguments laid out in Lie type A in this paper, can be generalized to all Lie types.
Indeed, in a forthcoming paper, the author and Tymoczko use many of the techniques
introduced in this paper to prove that the push-forward i∗ is an injection for the Peterson
variety in any Lie type [9].

1.1 Structure of this paper

In Section 2 we set our conventions and recall some facts concerning the full flag variety.
In Section 3 we examine the interplay between the geometry of the Peterson variety and
the combinatorics of the symmetric group. In Section 4 we prove a series of lemmas
leading up to the statement and proof of the main result. In Section 5 we conclude with
an illustrative example and a list of open questions.
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2 Flag varieties

In this section we set our conventions concerning the full flag variety and its Schubert
subvarieties, and we recall the fundamental facts concerning said varieties. General ref-
erences for this material can be found in [1] or [6]. Let V be an n-dimensional complex
vector space. By a flag V• in V we mean a nested sequence of subspaces

V• = V1 ⊂ V2 ⊂ · · · ⊂ Vn

such that dim CVi = i for all 1 6 i 6 n. The set of all flags V• in the vector space V forms
a smooth complex projective variety known as the full flag variety, denoted Flags(Cn).

Fixing a basis e1, e2, . . . , en of V . Let E• denote the standard flag spanned by the
coordinate subspaces:

E• = 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , en〉.

Given any permutation w ∈ Sn let w(E•) denote the permutation flag :

w(E•) = 〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ 〈ew(1), . . . , ew(n)〉.

The group G = GLn(V ) acts transitively on the set of all flags by left multiplication,
and the Borel subgroup B of upper triangular matrices is the stabilizer of this action.
Hence the full flag variety Flags(Cn) may be identified with the quotient group G/B.

2.1 Schubert cells and Schubert varieties

The Bruhat decomposition theorem states that the group G may be partitioned into
double cosets:

G =
∐
w∈Sn

BwB.

By restricting this decomposition to the quotient spaceG/B, the full flag variety Flags(Cn)
may also be partitioned into cosets:

Flags(Cn) = G/B =
∐
w∈Sn

BwB/B.

These cosets BwB/B are isomorphic to affine cells, and the decomposition has the struc-
ture of a CW-complex. These cells are commonly refered to as Schubert cells. We denote
the cell corresponding to a permutation w in Sn by Cw.

The closure of a Schubert cell is a subvariety of the full flag variety known as a Schubert
variety, denoted Xw. The homology classes of the Schubert varieties [Xw] form an additive
Z-module basis for the homology of the full flag variety H∗(Flags(Cn)).

The opposite Schubert cell Cw is the coset B−wB/B of the permutation matrix w
where B− is Borel subgroup of lower triangular matrices. Similary, the opposite Schubert
variety is defined to be the closure of the opposite Schubert cell Xw = Cw.
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2.2 Schubert classes

The flag variety is a smooth projective variety, so it satisfies Poincaré duality. This means
that there is a vector space isomorphism

ρ : H2k(Flags(Cn);Z)→ Hn−2k(Flags(Cn);Z)

for each k. Hence for each Schubert variety Xw there is a corresponding cohomology class
ρ([Xw]), which we call a Schubert class.

The homology of a topological space does not usually have a ring structure. However
the Poincaré duality map ρ allows one to identify each graded piece of the cohomology
ring H2n−2k(Flags(Cn);Z) with the homology group H2k(Flags(Cn);Z).

Under this map the cup product in cohomology corresponds with the intersection of
homology classes of subvarieties. In terms of Schubert classes, this means

ρ[Xw] ∪ ρ[Xu] = ρ[Xw ∩Xu].

Thus the Schubert classes form an additive Z-basis that generates the cohomology ring
of the flag variety. For a more comprehensive introduction to the intersection theory of
Schubert varieties, consult Chapter 10 and Appendix B of Fulton’s Young Tableau [6].

2.3 Bruhat Order and Intersections of Schubert classes

Let si = (i, i + 1) be a generator of the symmetric group Sn. It is well known that
every permutation can be written as a product of these generators. A product of simple
transpositions is called a reduced word when the product contains the minimal number of
generators of any such representative of the permutation.

The length `(w) of a permutation w is the minimal number of simple transpositions in
a reduced word decomposition of w. The Bruhat order on the permutation group specifies
that a permutation u is less than a permutation w precisely when some (and hence every)
reduced word of u is a subword of some reduced word for w.

Geometry and combinatorics are intimately related in Schubert calculus. If the variety
Xu meets the variety Xv, then `(v) 6 `(u). Equality holds if and only if u equals v. The
varieties Xu and Xu meet transversally at the point u. More concisely:

[Xu] ∪ [Xv] = δvu.

3 The Peterson variety

Let N be a nilpotent linear operator on V satisfying Nk 6= 0 for each 1 6 k 6 n− 2 and
Nn−1 = 0. Up to a change of basis for V we may take N to be the nilpotent matrix with
1’s along the super-diagonal.

Definition 4. The Peterson variety Pet is the subvariety of the full flag variety defined
by

Pet = {V• ∈ Flags(Cn) | N · Vi ⊂ Vi+1 for all 1 6 i < n}.
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It has been extensively studied by Dale Peterson, who announced that the quantum
cohomology ring of any partial flag variety G/P can be identified with the coordinate ring
of the intersection of the opposite Schubert cell CwP with the Peterson variety. In other
words, the geometry of the Peterson variety completely encodes the quantum cohomology
of every partial flag variety. This result was published in type An−1 by [14].

Tymoczko showed that the intersections of the Schubert cells with the Peterson variety
form a paving by affines of the Peterson variety [16]. This implies that the fundamental
classes of the closures of these cells form a Z-module basis for the homology of the Pe-
terson variety [4, Examples 1.9.1 and 19.1.11(b)]. For this reason we make the following
definition.

Definition 5. We define a Peterson Schubert cell to be the intersection of a Schubert
cell Cw with the Peterson variety, and a Peterson Schubert variety to be the intersection
of a Schubert variety with the Peterson variety. We will denote these spaces C ′w and X ′w
respectively.

3.1 Geometry of the Peterson variety

A fundamental tool when studying flag varieties is to analyze their group actions. Let T
denote the diagonal matrices in GLn(V ), and let T act on Flags(Cn) by left multiplication.
Schubert cells, and hence Schubert varieties, are invariant under this action. Moreover,
the T -fixed point set of the flag variety Flags(Cn)T is the set of permutation flags, and
the T -fixed point set of the flag variety restricts to the T -fixed point set of each Schubert
subvariety

XT
w = Xw ∩ Flags(Cn)T .

Sadly, the action of T on the flag variety does not preserve the Peterson variety.
However Harada and Tymoczko observed that there is a subtorus S ⊂ T which acts on
the Peterson variety and maintains many of the desirable properties of the T -action on
Schubert varieties.

Proposition 6. [7, Facts 2.1-2.3] Let S be the subtorus of T consisting of diagonal
matrices of the form S = {(s1, s2, . . . , sn) | s ∈ C∗} ⊂ T . Then following statements hold:

1. The torus S preserves the Peterson variety.

2. The S-fixed point set of the flag variety equals that of T

Flags(Cn)S = Flags(Cn)T .

3. The S-fixed point set of the flag variety restricts to that of the Peterson variety

PetS = Pet ∩ Flags(Cn)S.

The Schubert cells are S-invariant since they are T -invariant, and it follows that the
Peterson Schubert cells are also S-invariant. This fact leads us to the following lemma.
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Lemma 7. The Schubert cell Cw intersects the Peterson variety if and only if the per-
mutation flag w(E•) lies in the Peterson variety.

The proof follows from the fact that Cw and Pet are S-invariant, and thus the inter-
section is a closed S-invariant subvariety of Cw. Hence the fixed point must be contained
in this intersection. This lemma suggests that the cellular structure of the Peterson va-
riety can be understood by studying the combinatorics of its fixed points. In the next
subsection, we will give a nice characterization of the permutations correspond to cells in
the Peterson variety.

3.2 Combinatorics of Peterson variety

Let J ⊂ Sn denote the subgroup of the symmetric group Sn generated by a set of simple
transpositions {si1 , si2 , . . . , si|J|}, and let wJ denote the longest word in J .

To identify which S-fixed points intersect the Peterson one simply checks which per-
mutation flags w(E•) satisfy N〈ew(i)〉 ⊂ 〈ew(i+1)〉 for all 1 6 i < n. This leads to the
following description of the S-fixed points.

Lemma 8. [7] An S-fixed point w(E•) is contained in the Peterson variety if and only if
w satisfies w−1(i) 6 w−1(i+ 1) + 1 for all 1 6 i < n.

It follows immediately that we have the following standard, yet nonetheless remarkable,
description of the S-fixed points.

Fact 9. The S-fixed points of the Peterson variety are precisely the permutation flags
wJ(E•) corresponding to the subgroups J of Sn.

In light of this result, we will henceforth denote the S-fixed points of the Peterson
variety by wJ(E•) to emphasize their dependence on subgroups of Sn.

Example 10. The fixed points of Pet ⊂ F`4(V ) correspond to the following permutations
written in one-line notation

4321, 3214, 2143, 1432, 2134, 1324, 1243, 1234.

The condition that NVi ⊂ Vi+1 implies that each Peterson Schubert cell is block-
diagonal and that the nonzero entries of these blocks must repeat along each anti-diagonal.
This leads to another remarkable relationship between the combinatorics of the S-fixed
point set PetS and the geometry of the Peterson variety.

Lemma 11. For each fixed point wJ(E•) in PetS, the dimension of the cell C ′wJ
is equal

to the number of simple transpositions generating J .

Proof. This lemma is a corollary to Theorem 4.3 of Tymoczko’s 2006 article Paving Hes-
senbergs by Affines [17, Theorem 4.3]. Tymoczko showed that the dimension of C ′wJ

is
equal to the number of positive simple roots that are mapped to negative simple roots
by wJ . Each of these positive simple roots corresponds to a simple transposition si gen-
erating J . Thus, the dimension of C ′wJ

is the number of simple transpositions generating
J .
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The following example illustrates the structure of the cells described in Lemma 11.

Example 12. The Peterson Schubert cells C ′wJ
and C ′wJ′

corresponding to the subgroups
J and J ′ generated by {s2, s3, s4} and {s1, s2, s4} are depicted below:

C ′wJ
=




1 0 0 0 0
0 a b c 1
0 b c 1 0
0 c 1 0 0
0 1 0 0 0


 C ′wJ′

=




a b 1 0 0
b 1 0 0 0
1 0 0 0 0
0 0 0 c 1
0 0 0 1 0




4 The main result

Since the Peterson variety is a closed subvariety of the full flag variety, the topological
inclusion map i : Pet ↪→ Flags(Cn) induces a covariant map on homology

i∗ : H∗(Pet,Z)→ H∗(Flags(Cn),Z). (4.1)

Let [X ′wJ
] denote the homology class of a Peterson Schubert variety in H∗(Pet). The

push-forward i∗([X
′
wJ

]) is a homology class in H∗(Flags(Cn)). Since the classes of Schubert
varieties [Xw] form a basis of H∗(Flags(Cn)) as a Z-module, we may express the push-
forward of each Peterson Schubert homology class as an integral linear combination of
the homology classes of the Schubert varieties, i.e.,

i∗([X
′
wJ

]) =
∑
u∈Sn

au[Xu] (4.2)

where au are integers. Before proving Theorems 17 and 18 we will need the following
three lemmas.

Let J be a subgroup of Sn generated by a set of simple transpositions {si1 , si2 , . . . si|J|}.
Define the permutations v(J) and u(J) to be

v(J) = si1si2 · · · si|J| and u(J) = si|J|si|J|−1
· · · si1 . (4.3)

Henceforth, we state results in terms of [Xv(J)], but the same statements hold for [Xu(J)]
as well.

Lemma 13. Let [X ′wJ
] be a Peterson Schubert class in Hk(Pet). The Schubert variety

Xv(J) possesses the following properties:

1. The dimension of the flag variety is related to the dimensions of Xv(J) and X ′wJ
by

dim Xv(J) + dim X ′wJ
= dim Flags(Cn).

2. The varieties Xv(J) and X ′wJ
intersect in the point wJ(E•),

Xv(J) ∩X ′wJ
= wJ(E•).
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Proof. It is a well-known fact that

dim Xv(J) = dim Flags(Cn)− `(v(J)).

Lemma 11 says that dim (X ′wJ
) = `(v(J)). This proves (1).

Since X ′wJ
and Xv(J) are closed S-invariant subvarieties of the flag variety, their in-

tersection is too. Any closed S-invariant subspace of dimension at least one contains at
least two fixed points. However, we will show that there is only one fixed point in this
intersection, and thus this must be the only point in the intersection.

The S-fixed points in XwJ
∩ Xv(J) are those w(E•) with v(J) 6 w 6 wJ in Bruhat

order [1, Section 2.7]. Of these fixed points wJ(E•) is the only one that corresponds to a
subgroup, and this proves (2).

Lemma 13 proves that the varieties X ′wJ
and Xv(J) intersect properly at the point

wJ(E•). The following result shows that the intersection X ′wJ
∩Xv(J ′) for any two distinct

subgroups J, J ′ 6 Sn with the same number of generators.

Lemma 14. Let J and J ′ be two distinct subgroups of Sn with the same number of number
of simple transpositions as generators. Then the intersection X ′wJ

∩Xv(J ′) is empty.

Proof. The proof is similar to that of Lemma 13. The intersection X ′wJ
∩Xv(J ′) is a closed

S-invariant subvariety. There are no permutations w with v(J ′) 6 w 6 wJ in the Bruhat
order because v(J ′) contains a simple transposition that is not in wJ . Hence XwJ

∩Xv(J ′)

do not share any common S-fixed points. Thus the intersection is empty.

Lemma 15. The variety Xv(J) intersects X ′wJ
transversally at the point wJ(E•).

Proof. The Peterson Schubert cell C ′wJ
is a dense open neighborhood of wJ(E•) in X ′wJ

.
Every flag in this cell corresponds to a matrix that is block-diagonal with nonzero entries
repeating along the anti-diagonals of each block. The neighborhood Nw of w(E•) in Xv is
described in Section 3.2 of Woo and Yong’s Governing Singularities of Schubert varieties
article [18, Section 3.2]. Following their construction, we see that an arbitrary flag in the
neighborhood NwJ of wJ(E•) in Xv(J) corresponds to a matrix with with zeros across the
top row of each diagonal block of wJ , nonzero free entries below the top row of each block,
and nonzero free entries below each diagonal block.

Since an arbitrary matrix in C ′wJ
is zero outside of the diagonal blocks, and a matrix

in NwJ has zeros across the top row of each diagonal block, the only point of intersection
of these two neighborhoods occurs when all of the free entries are zero in the matrix
representatives of NwJ and C ′wJ

.
The only matrix in this intersection is the one corresponding to wJ(E•). We can

conclude that both neighborhoods are linear spaces which are isomorphic to their tangent
spaces, and these cells intersect properly in the single fixed point. Thus the corresponding
tangent spaces intersect TwJ (E•)(X

vJ ) ∩ TwJ (E•)(XwJ
) = wJ(E•) in only one point. Since

dim TwJ (E•)(X
vJ ) + dim TwJ (E•)(X

′
wJ

) = dim TwJ (E•)(Flags(Cn))

we have that TwJ (E•)(X
vJ )⊕ TwJ (E•)(X

′
wJ

) = TwJ (E•)(Flags(Cn)). Thus the intersection is
transverse.
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Example 16. Let J = {s1, s3, s4} ⊂ S5. The neighborhoods of wJ(E•) in X ′wJ
and Xv(J)

appear below:

C ′wJ
=




a 1 0 0 0
1 0 0 0 0
0 0 b c 1
0 0 c 1 0
0 0 1 0 0


 NwJ




0 1 0 0 0
1 0 0 0 0
x y 0 0 1
z w u 1 0
v t 1 0 0


 .

By examining these cells one can verify Lemmas 13 and 15. Indeed these cells are clearly
linear spaces. The dimensions of these two cells add up to the dimension of the flag
variety. The only point of intersection between C ′wJ

and NwJ is where all of the free
entries are zero. This is precisely the fixed point wJ(E•).

Looking back at Example 12, one may note that the neighborhood NwJ of wJ(E•) in
Xv(J) does not intersect either of the cells in that example. This is in accordance with
Lemma 14.

We are now prepared to state our main results.

Theorem 17. If we write the push-forwards of the Peterson Schubert classes in terms of
Schubert classes

i∗([X
′
wJ

]) =
∑
u∈Sn

au[Xu],

then for every Peterson Schubert class [X ′wJ
] the coefficient of av(J) is 1, and for every

other Peterson Schubert class [X ′wJ′
] the coefficient of av(J) = 0.

Proof. Let X ′wJ
be a Peterson Schubert variety. The expression for i∗([X

′
wJ

]) in terms of
Schubert classes is

i∗([X
′
wJ

]) =
∑
u∈Sn

au[Xu]

where the sum runs over all u ∈ Sn such that `(u) is equal to the number of simple
transpositions generating the subgroup J 6 Sn. Lemmas 13 and 15 prove that X ′wJ

and

Xv(J) intersect properly and transversely in a single point. This implies that [X ′wJ
] ∪

[Xv(J)] = 1, and thus the coefficient av(J) is 1 in the expansion of i∗([X
′
wJ

]).

Lemma 14 proves [X ′wJ′
] ∪ [Xv(J)] = 0 for J ′ 6= J . This implies that the coefficient

av(J) = 0 in the expansion of all other generators i∗([X
′
wJ′

]) =
∑

u∈Sn
au[Xu].

Theorem 18. The push-forward i∗ : H∗(Pet;Z) → H∗(Flags(Cn);Z) induced by the
natural inclusion map i : Pet ↪→ Flags(Cn) is injective.

Proof. The Peterson Schubert classes {[X ′wJ
]} form a basis for H∗(Pet;Z). Theorem 17

says that the push-forward of each Peterson Schubert class i∗([X
′
wJ

]) has av(J) = 1 in
its expansion in terms of the Schubert classes, while every other Peterson Schubert class
i∗([X

′
wJ′

]) has av(J) = 0. Thus the Peterson Schubert classes {i∗([X ′wJ
])} form a linearly

independent set when written in terms of Schubert classes in H∗(Flags(Cn);Z). Thus the
push-forward i∗ : H∗(Pet,Z)→ H∗(Flags(Cn),Z) is an injection.
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5 An example and open questions

We conclude with a table giving the Peterson Schubert classes for the Peterson variety
in Flags(C4). The eight Peterson Schubert subvarieties in Pet4 correspond to the eight
subgroups of S4 that are generated by the elements of the power set of {s1, s2, s3}. Table 1
shows these Peterson Schubert classes partially expanded in the basis of Schubert classes.
The techniques introduced in this paper successfully determine the expansion of each
Peterson Schubert class of dimension less than four. We have written

[X ′s3s2s3s1s2s3 ] = [Xs1s2s3 ] + [Xs3s2s1 ] + · · ·

because for Peterson Schubert classes of dimension at least four there may be Schubert
classes appearing in the expansion that are neither [Xv(J)] nor [Xu(J)].

Dimension 3 Dimension 2 Dimension 1 Dimension 0

[X ′s3s2s3s1s2s3 ] = [Xs1s2s3 ] + [Xs3s2s1 ] + · · · [X ′s1s2s1 ] = [Xs1s2 ] + [Xs2s1 ] [X ′s1 ] = [Xs1 ] [X ′e] = [Xe]

[X ′s3s2s3 ] = [Xs2s3 ] + [Xs3s2 ] [X ′s2 ] = [Xs2 ]

[X ′s1s3 ] = [Xs1s3 ] [X ′s3 ] = [Xs3 ]

Table 1: Partial expansions of Peterson Schubert classes in terms of Schubert classes

We note that every simple transposition in J appears exactly once in v(J) and u(J).
Such permutations are known as Coxeter elements in the group J ⊂ Sn. The following
are three open questions concerning Coxeter elements in Sn.

Q1 Can one find a pattern avoidance criterion classifying which Coxeter elements w(J),
other than v(J) and u(J), correspond to opposite Schubert varieties Xw(J) in the
flag variety Flags(Cn) that are smooth at the point wJ(E•)? Kumar’s Criterion
[11, Theorem 5.5] can be used to check which Coxeter elements w(J) correspond to
opposite Schubert varieties Xw(J) in Flags(Cn) that are smooth at wJ(E•) in any
Lie type, but since we are restricting our attention to Coxeter elements in Type A,
it seems plausible that one may find a classification of such Coxeter elements using
the combinatorial notion of pattern avoidance similar to the celebrated Lakshmibai-
Sandhya theorem [12].

Q2 If the variety Xw(J) is smooth, is the intersection X ′wJ
∩Xw(J) proper and transverse?

Q3 For Coxeter elements w(J) other than v(J) and u(J), what are the coefficients aw(J)

in the expansion of [X ′wJ
] =

∑
au

[Xu]?
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Question 1 is motivated by the fact that the variety Xs2s1s4s3 = X31524 is singular at
w0(E•), as can be verified using Kumar’s Criterion [11, Theorem 5.5 ]. So we know that
not every Coxeter element in Sn is smooth. Answering Question 2 will be one step toward
answering Question 3, since any variety Xw(J) satisfying the hypotheses of Question 2 will
have aw(J) = 1.
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