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Abstract

A circulant of order n is a Cayley graph for the cyclic group Zn, and as such, ad-
mits a transitive action of Zn on its vertices. This paper concerns 2-cell embeddings
of connected circulants on closed orientable surfaces. Embeddings on the sphere (the
planar case) were classified by Heuberger (2003), and by a theorem of Thomassen
(1991), there are only finitely many vertex-transitive graphs with minimum genus g,
for any given integer g > 3. Here we completely determine all connected circulants
with minimum genus 1 or 2; this corrects and extends an attempted classification
of all toroidal circulants by Costa, Strapasson, Alves and Carlos (2010).

1 Introduction

A circulant is a Cayley graph for a cyclic group. To be more precise, if n is any positive
integer and X is any subset of Zn \ {0} = {1, 2, . . . , n − 1}, then the circulant Cn(X) is
the undirected simple graph of order n with vertex-set Zn = {0, . . . , n− 1} and edge-set
{{i, i + a} : i ∈ Zn, a ∈ X}. Under addition mod n, the group Zn induces a regular
group of automorphisms of Cn(X); for example, the mapping i 7→ i+1 (mod n) gives
an automorphism that permutes the n vertices of Cn(X) in a cycle: (0, 1, 2, . . . , n − 1).
Hence in particular, every circulant Cn(X) is vertex-transitive, and therefore regular, of
valency k = |X ∪ (−X)| = |{x ∈ Zn : (x ∈ X) or (−x ∈ X)}.

Examples include the 2-valent simple cycle Cn (with X = {1}), and the (n−1)-valent
complete graph Kn (with X = Zn \ {0}). Note that the valency k can be even or odd,
but is odd if and only if n is even and X contains n

2
.

If X = {a1, a2, . . . , am}, then we also denote Cn(X) by Cn(a1, a2, . . . , am). By the
above observations, we may assume that 0 < a1 < a2 < · · · < am 6 n

2
.

It is well known (and easy to see) that the circulant Cn(a1, . . . , am) is connected if and
only if gcd(a1, . . . , am, n) = 1. More generally, the number of connected components of
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Cn(a1, . . . , am) is d = gcd(a1, . . . , am, n), with each of the vertices 0, 1, . . . , d − 1 lying in
different components, and with each component being isomorphic to Cn/d(a1/d, . . . , am/d).

Two circulant graphs Cn(X) = Cn(a1, . . . , am) and Cn(Y ) = Cn(ã1, . . . , ãm) of the
same order are said to satisfy Ádám’s relation if there exists an integer r coprime to n
such that Y ≡ rX mod n, that is, {ã1, ã2, . . . , ãm} = {ra1, ra2, . . . , ram} as subsets of Zn.
When this happens, Cn(X) is isomorphic to Cn(Y ), with multiplication by the unit r (mod
n) giving an isomorphism. Conversely, it can happen that two circulants are isomorphic
without Ádám’s relation being satisfied; for example, this occurs with C16(1, 2, 7) and
C16(2, 3, 5).

Various properties of circulants (and their adjacency matrices, which are circulant
matrices) are well known, for example with regard to chromatic number, connectivity,
domination properties, factorisations, metric dimension, self-complementarity, and sym-
metry.

Also a number of things are known about the embeddability of connected circulants on
surfaces. All of them are upper-embeddable, which means that they all have an embedding
on an orientable surface (of maximum possible genus), with just one or two faces.

This is trivial for valency 2 (simple cycles), and for valency greater than 3 it fol-
lows from a more general theorem of Škoviera and Nedela about upper-embeddability of
connected finite Cayley graphs; see [11, Proposition 7]. For valency 3, it follows from
Theorem 5 in [11]), since up to isomorphism the only 3-valent connected circulants of
girth 3 are C4(1, 2) ∼= K4 and the triangular prism graph C6(2, 3), both of which are
upper-embeddable.

The most common question about embeddability is the minimum genus of a graph:
the smallest genus of all the orientable surfaces on which the graph has a 2-cell embedding.
Circulant graphs that have minimum genus 0 (or equivalently, are planar) were completely
classified in 2003 by Heuberger [7]:

Proposition 1. Let Cn(X) = Cn(a1, a2, . . . , am) be a connected circulant with 0 < a1 <
a2 < · · · < am 6 n

2
. Then Cn(X) is planar if and only if one of the following holds:

• m = 1 and a1 is a unit in Zn, or

• m = 2 and n ≡ 2 mod 4 and a1 is even and a2 = n
2
, or

• m = 2 and n is even and either a2 = ±2a1 or a1 = ±2a2 in Zn.

Equivalently, every planar connected circulant graph is isomorphic to either the simple
n-cycle Cn(1), or the n-prism Cn(2, n

2
) where n ≡ 2 mod 4, or Cn(1, 2) where n is even.

In a major piece of work [14], Thomassen proved a conjecture of Babai, that for every
g > 3, there are only finitely many vertex-transitive graphs with minimum genus g.

Recently Strapasson, Costa and Alves [12] announced a classification of circulants
embeddable on the torus, but unfortunately they made some errors and omitted many
cases.

In this paper, we determine up to isomorphism all the connected circulants having
minimum genus 1 or 2. In doing this, we correct and extend the results of [12], by proving
the following:
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Theorem 2. A connected circulant has minimum genus 1 if and only if it is isomorphic
to one or more of

• Cn(a1, a2) for some a1 and a2 not satisfying the conditions of Proposition 1, or

• Cn(a1, a2, a3) where a3 ≡ ±(a1+a2) mod n, or

• Cn(1, 2, n
2
), where n ≡ 2 mod 4 and n > 6, or

• Cn(1, 2, n
2
−1), where n ≡ 0 mod 4 and n > 8, or

• C8(1, 2, 4) or C9(1, 2, 4).

Theorem 3. A connected circulant has minimum genus 2 if and only if it is isomorphic
to one of

• Cn(1, 2, n
2
), where n ≡ 0 mod 4 and n > 12, or

• Cn(1, 2, n
2
− 1), where n ≡ 2 mod 4 and n > 10, or

• Cn(2, 4, n
2
), where n ≡ 2 mod 4 and n > 10, or

• C12(1, 2, 4), C12(1, 3, 6), C12(1, 4, 6), C12(2, 3, 6), C12(3, 4, 6), C8(1, 2, 3, 4)
or C12(1, 4, 5, 6).

In Section 2 we give some further background, and in particular, we show that if a
connected circulant has minimum genus 1 or 2, then its valency must be 3, 4, 5, 6 or 7. In
Section 3 we exhibit embeddings of genus 1 and 2 for the circulants listed in Theorems 2
and 3, and then to establish those theorems, we consider circulants with valencies 7, 5
and 6 in Sections 4, 5 and 6, respectively. Some of the more challenging cases are left
to Section 7, where we give explanations of how they can be treated (using a range of
approaches), rather than giving full details.

2 Further background

A 2-cell embedding of a connected graph G on an orientable surface S is a representation
(or drawing) of G on S with the property that when the graph is removed from the surface,
it breaks it up into simply-connected regions (homeomorphic to disks), called faces.

This creates a map, and if we denote the number of faces, edges and vertices of the
map by F , E, and V respectively, then by the well known Euler-Poincaré formula we have

V − E + F = χ = 2− 2g,

where χ is the Euler characteristic of the surface S. If g = 0 (and χ = 2) then the map
is called planar or spherical, while if g = 1 (and χ = 0) then it is Euclidean or toroidal,
and if g > 1 (and χ < 0) then the map is hyperbolic.

A connected graph G can have several different embeddings, and the genus g of each
one is determined by the number of faces, since the numbers of vertices and edges are
fixed (for given G). The smallest and largest achievable values of g are called the mini-
mum genus (or simply the genus) of G and the maximum genus of G, respectively. The
minimum genus γ(G) occurs when the number of faces is maximised.
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Before continuing, we will adapt notation a little, and define V (G) and E(G) to be the
vertex-set and edge-set of G, and V (M), E(M) and F (M) to be the vertex-set, edge-set
and face-set of the map M resulting from an embedding of G. (Note that V (M) = V (G)
and E(M) = E(G) for all such M , but F (M) is variable.)

As explained in [2] and [6] for example, every embedding of a graph G on an orientable
surface is uniquely determined by the cyclic orientations of the edges at the vertices of G.
To make things easier, we will assume the graph G is simple.

Then for each vertex v the embedding defines a cyclic permutation ρv of the neighbours
of v, which indicates (by convention) the anti-clockwise ordering of the edges incident with
v when the map is viewed from the ‘outside’ of the surface. The set {ρv : v ∈ V (G)} is
then called a rotation system. Conversely, any such set of cyclic permutations gives rise to
a unique embedding, and so there is a one-to-one correspondence between the orientable
2-cell embeddings of a simple graph G and its rotation systems.

Moreover, the rotation system for an embedding can be used to calculate the number
of faces, using the well known (and obvious) face tracing algorithm: from any vertex u,
take an edge to one of its neighbours v, then ‘turn left’ at v (using the rotation ρv) and
continue to the next vertex, and so on. This process traces out a closed walk beginning
with the arc (u, v), and by finiteness must return at some stage to the vertex u along the
arc (ρ−1

u (v), u). Each such closed walk traces a face of the map, and all faces can be found
by successively choosing the initial arc (u, v) from among those not already used.

(Alternatively, one may ‘turn right’ at every vertex, instead of turning left, and in
that case the same faces will be found, but with each face traced in reverse order.)

Note that if the vertex v has valency k, then there are (k−1)! possibilities for the
rotation ρv, and hence if G has order n and is regular of valency k, then the number of
possible rotation systems is ((k−1)!)n. For small n (and k), these can be enumerated by
computer, but for large k that becomes infeasible. Accordingly, determining the minimum
genus of a given graph G is computationally challenging.

In fact, the question of deciding whether a given connected graph G has minimum
genus γ(G) 6 g (for given g) has received considerable attention. This is known as the
graph genus problem, and it is computationally challenging. In [5], Filotti, Miller and Reif
described an algorithm for finding an embedding of a given connected graph of order n
on an orientable surface of genus g, when such an embedding exists. This algorithm runs
in nO(g) steps. But then it was shown by Thomassen [13] that the graph genus problem
is NP-complete. More generally, finding the minimum genus is NP-hard.

Nevertheless, it is possible to determine the minimum genus of all graphs in particular
families; for example, Ringel and Youngs showed that the minimum genus of the com-
plete graph Kn is d (n−3)(n−4)

12
e, as a key to their proof of the Heawood Map Colouring

Problem [10]. Also Ringel [9] showed earlier that the minimum genus of the complete

bipartite graph Km,n is b (m−2)(n−2)+3
4

c, which is also equal to d (m−2)(n−2)
4

e. But even for
some small graphs, determining the minimum genus can be difficult; for example, it took
several pages to do this for the Cartesian product C3 × C3 × C3 (on 27 vertices); see [4]
(and [8]).

For circulants, the graph genus problem appears to be just as challenging as it does
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for connected graphs in general. As noted earlier, the connected circulants with minimum
genus 0 were completely determined by Heuberger [7], and an attempt to classify those
with minimum genus 1 was made by Strapasson, Costa and Alves [12]. In the latter paper,
it was shown that some of the circulants listed in Theorem 2 have toroidal embeddings
and therefore minimum genus 1, but the authors claimed (erroneously) that the cases
they gave in their Proposition 5 are the only such cases — and also they did not provide
a complete proof in the 3-valent cases.

When we attempted a classification of connected circulants with minimum genus 2, we
discovered that the graph C9(1, 2, 4) has minimum genus 1, but did not occur in the list
given in [12]. Then also we found another infinite family of other examples with minimum
genus 1, namely the circulants Cn(a1, 2a1,

n
2
− a1) where n ≡ 0 mod 4 and n > 12; this

gives the family in the fourth case of Theorem 2. It turns out there was a flaw in an
argument in the proof of Proposition 4 in [12], where it was assumed that the restriction
of a 6-valent toroidal embedding to a 4-valent subgraph had quadrangular faces.

Here we note that it is easy to prove that all connected circulants Cn(a1, . . . , am) with
m = 1 or 2 (and hence valency 2, 3 or 4) have minimum genus 0 or 1.

In the other direction, we have the following:

Lemma 4. All connected circulants with minimum genus 1 or 2 have valency at most 7.

Proof. Let G be any connected circulant, of order n and valency k, such that G has an
orientable embedding with genus g 6 2. Then by the Euler-Poincaré formula

n− nk/2 + F = V − E + F = 2− 2g > −2,

where F is the number of faces. Also because each face has 3 or more edges (and each
edge lies in at most 2 faces), we have 3F 6 2E = nk, and by the inequality above

2 > nk/2− n− F > nk/2− n− nk/3 = n(k − 6)/6.

Thus k(k − 6) < n(k − 6) 6 12, and it follows that k < 8. �

Hence for minimum genus 1 or 2 we need only consider the cases where the valency k
is 7 (and m = 4) or 5 or 6 (and m = 3), as we do in Sections 4 to 6. The sporadic cases
dealt with in Section 7 have minimum genus 2 or more, and for some those we give only a
short description of how that can be proved. Also in one case we make use of theorems of
Battle, Harary, Kodama and Youngs (see [1, Theorem 1 & corollaries]), which show that
if a graph G has a subgraph that is the union of two subgraphs H and K (with no vertex
in common), then the minimum genus of G is at least equal to the sum of the minimum
genera of H and K.

3 Some (minimal) embeddings

In this Section, we turn to minimum genus, and begin by proving that the circulants listed
in Theorems 2 and 3 have embeddings of genus 1 and 2 respectively. Note that some of
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this was done for the genus 1 case in [12], but certainly not all of it; in particular, the
6-valent family Cn(1, 2, n

2
−1) and the 5-valent graph C9(1, 2, 4) were missed in Proposition

5 of [12], and also the 5-valent cases of Cn(a1, a2, a1+a2) were not properly considered.

Proposition 5. The circulants listed in Theorem 2 all have toroidal embeddings, and
hence minimum genus 1.

Proof. We treat each case in turn, showing that it has an orientable embedding of genus 1,
and noting that none of the circulants listed in the statement of the theorem is isomorphic
to one of those in Heuberger’s classification of connected planar circulants.

• Cn(a1, a2) where a1 and a2 do not satisfy the conditions of Proposition 1:
As explained in [12], in the 4-valent case where 0 < a1 < a2 <

n
2
, a genus 1 embedding

of Cn(a1, a2) can be obtained from a quadrangular map on the torus with faces of size 4
bounded by closed walks of the form (i, i+a1, i+a1+a2, i+a2), or equivalently, by taking
the rotation (i+a1, i+a2, i−a1, i−a2) at each vertex i.
The 3-valent case where 0 < a1 < a2 = n

2
(which was not treated properly in [12]) can

be dealt with by the same argument: simply double each edge of the form {j, j + n
2
},

then embed the resulting multigraph on the torus taking a rotation of the form (i+a1, i+
n
2
, i−a1, i+ n

2
) at each vertex i, and delete one edge from each pair of edges of the form

{j, j + n
2
}. If n

2
and a1 are both odd, then one such toroidal embedding has rotation of

the form (i+a1, i−a1, i+ n
2
) at vertex i for all even i, and the inverse of this for all odd i,

and all faces have length 6. In other cases, the face lengths can vary, with average 6.

• Cn(a1, a2, a3) with a3 = ±(a1+a2):
If n

2
6∈ {a1, a2, a3}, then the valency is 6, and as explained in [12], we can take a toroidal

embedding of Cn(a1, a2) with n faces of size 4 bounded by closed walks of the form
(i, i+a1, i+a1+a2, i+a2), with rotation ρi at each vertex i being (i+a1, i+a2, i−a1, i−a2),
and then add the edges {i, i+a1+a2} as diagonals of those quadrangular faces, to give an
embedding of Cn(a1, a2, a1+a2) in the torus with 2n triangular faces. The rotation ρi at
each vertex i is then (i+a1, i+a1+a2, i+a2, i−a1, i−a1−a2, i−a2).
On the other hand, if n

2
∈ {a1, a2, a3} then the valency is 5, and by rearrangement and

negation if necessary we can assume that a1 + a2 = a3 = n
2
. This case is more tricky, and

was not treated properly in [12].
If n

2
is odd, we can add an edge from vertex i to vertex i + n

2
as a diagonal across the

quadrangular face of the toroidal embedding of Cn(a1, a2) bounded by (i, i+a1, i+
n
2
, i+a2)

whenever i is even; then the rotation at a vertex i is αi = (i+a1, i+
n
2
, i+a2, i−a1, i−a2)

if i is even, and βi = (i+a1, i+a2, i−a1, i+ n
2
, i−a2) if i is odd.

Similarly, if n
2

is even, we can add the diagonal whenever i ∈ {0, 1, . . . , n
2
− 1}, and then

we have the rotation αi for i ∈ {0, 1, . . . , n
2
−1} and rotation βi for i ∈ {n

2
, n
2
+1, . . . , n−1}.

In both of these two sub-cases, exactly half of the n quadrangular faces of the toroidal
embedding of Cn(a1, a2) are split into triangular faces, while the other half are unchanged,
so we have n triangular faces and n

2
quadrangular faces, giving a total of 3n

2
, as required.
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• Cn(1, 2, n
2
), where n ≡ 2 mod 4 and n > 10:

Here a toroidal embedding can be obtained by taking the rotation ρi at vertex i as
(i+1, i−1, i−2, i+n

2
, i+2) when i is even, and (i+1, i+2, i+n

2
, i−2, i−1) when i is odd. Then

just as in the 5-valent case above, we have n triangular faces and n
2

quadrangular faces.
The triangular faces are bounded by 3-cycles of the form (i, i+1, i−1) and (i, i+2, i+1)
for all even i, and the quadrangular faces by 4-cycles of the form (i, i−2, i+ n

2
−2, i+ n

2
)

for all even i. This is the same as the embedding described in a different way in [12].

• Cn(1, 2, n
2
−1), where n ≡ 0 mod 4 and n > 12:

In this case, we can take ρi = (i+1, i+2, i+n
2
+1, i+n

2
−1, i−2, i−1) when i is even, and its inverse

(i+1, i−1, i−2, i+n
2
−1, i+n

2
+1, i+2) when i is odd. Then we have 2n triangular faces, bounded

by 3-cycles of the form (i, i+1, i+2), (i, i−1, i+1), (i, i+2, i+1+n
2
) and (i, i+1−n

2
, i−1+n

2
),

for each even value of i. (Note that if we restrict this embedding to the 4-valent subgraph
Cn(1, 2), there are faces of length n

2
, bounded by the cycles (0, 2, 4, 6 . . . ,−4,−2) and

(−1,−3,−5, . . . , 5, 3, 1). In particular, these are not quadrangular, which helps explain
why this case was missed by Strapasson et al in [12],)

• C8(1, 2, 4):
Take ρ0 = (1, 2, 4, 6, 7), ρ1 = (2, 0, 5, 3, 7), ρ2 = (3, 4, 0, 1, 6), ρ3 = (4, 2, 5, 7, 1), and their
analogues ρ4 = (5, 6, 0, 2, 3), ρ5 = (6, 4, 1, 7, 3), ρ6 = (7, 0, 4, 5, 2), ρ7 = (0, 6, 1, 3, 5), ob-
tainable by adding the appropriate integer mod 8 to the points in the rotation, and get a
toroidal map with 8 triangular and 4 quadrangular faces (not the same as the one in [12]).

• C9(1, 2, 4):
Take ρ0 = (1, 2, 4, 8, 7, 5), ρ1 = (2, 0, 5, 6, 8, 3), ρ2 = (3, 7, 6, 4, 0, 1), and their analogues
ρ3 = (4, 5, 7, 2, 1, 8), ρ4 = (5, 3, 8, 0, 2, 6), ρ5 = (6, 1, 0, 7, 3, 4), and ρ6 = (7, 8, 1, 5, 4, 2),
ρ7 = (8, 6, 2, 3, 5, 0), ρ8 = (0, 4, 3, 1, 6, 7), and get a toroidal map with 18 triangular faces,
bounded by 3-cycles of the form (i, i+1, i+2), (i, i−1, i−2), (i, i+2, i+4), (i, i−2, i−4),
(i, i+4, i−1) and (i, i−4, i+1), for i ∈ {0, 3, 6}. �

Proposition 6. The circulants listed in Theorem 3 all have embeddings on orientable
surfaces of genus 2.

Proof. Again we treat the cases in turn, but this time with not so much detail, leaving
calculation of the faces to the reader.

• Cn(1, 2, n
2
), where n ≡ 0 mod 4 and n > 12:

Take ρi =


(i+1, i−1, i−2, i+ n

2
, i+2) for i ∈ {0, 2, . . . , n

2
−2} ∪ {n

2
+1, n

2
+3, . . . , n−3}

(i+1, i+2, i+ n
2
, i−2, i−1) for i ∈ {1, 3, . . . , n

2
−1} ∪ {n

2
+2, n

2
+4, . . . , n−2}

(i+1, i+2, i+ n
2
, i−1, i−2) for i = n

2

(i+1, i+2, i−1, i−2, i+ n
2
) for i = n−1.

These rotations give an embedding with 3n
2
−2 faces, of which n−2 are triangular, n

2
−2 are

quadrangular, and two have length 7. The Euler characteristic is n− 5n
2

+ (3n
2
−2) = −2.
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• Cn(1, 2, n
2
− 1), where n ≡ 2 mod 4 and n > 10:

Take ρi =



(i+1, i+2, i+ n
2

+1, i+ n
2
−1, i−2, i−1) for i ∈ {1, 3, . . . , n

2
−2}

(i+1, i−1, i−2, i+ n
2
−1, i+ n

2
+1, i+2) for i ∈ {2, 4, . . . , n

2
−1}

(i+1, i+2, i+ n
2

+1, i+ n
2
−1, i−2, i−1) for i ∈ {n

2
+1, n

2
+3, . . . , n−2}

(i+1, i−1, i−2, i+ n
2
−1, i+ n

2
+1, i+2) for i ∈ {n

2
+2, n

2
+4, . . . , n−1}

(i+1, i+ n
2
−1, i−2, i−1, i+ n

2
+1, i+2) for i = 0 and n

2
.

These rotations give an embedding with 2n−2 faces, of which 2n−4 are triangular and
two have length 6. The Euler characteristic is n− 3n+ (2n−2) = −2.

• Cn(2, 4, n
2
), where n ≡ 2 mod 4 and n > 10:

In this case we let n = 4k + 2 and consider two sub-cases: k even, and k odd.
If k is even, take

ρi =



(i+2, i+4, i+ n
2
, i−4, i−2) when i ∈ {1, 2, 5, 6, 9, 10, . . . , 2k−3, 2k−2}

or i ∈ {2k+1, 2k+4, 2k+5, 2k+8, 2k+9, . . . , n−6, n−5, n−2}
(i+2, i−2, i−4, i+ n

2
, i+4) when i ∈ {0, 3, 4, 7, 8, 11, 12, . . . , 2k−1, 2k}

or i ∈ {2k+3, 2k+6, 2k+7, 2k+10, 2k+11, . . . , n−4, n−3}
(i+2, i−4, i−2, i+ n

2
, i+4) when i = 2k+2

(i+2, i+ n
2
, i−4, i−2, i+4) when i = n−1.

If k is odd, take

ρi =



(i+2, i+4, i+ n
2
, i−4, i−2) when i ∈ {1, 2, 5, 6, 9, 10, . . . , 2k−5, 2k−4, 2k−1, 2k}

or i ∈ {2k+4, 2k+5, 2k+8, 2k+9, . . . , n−8, n−7, n−4, n−3}
(i+2, i−2, i−4, i+ n

2
, i+4) when i ∈ {3, 4, 7, 8, 11, 12, . . . , 2k−3, 2k−2}

or i ∈ {2k+1, 2k+2, 2k+6, 2k+7, 2k+10, 2k+11, . . . , n−6, n−5, n−2, n−1}
(i+2, i−4, i−2, i+ n

2
, i+4) when i = 2k+3

(i+2, i+ n
2
, i−4, i−2, i+4) when i = 0.

In both sub-cases, again the rotations give an embedding with 3n
2
−2 faces, of which n−2

are triangular, n
2
−2 are quadrangular, and two have length 7, and the Euler characteristic

is n− 5n
2

+ (3n
2
−2) = −2.

• C12(1, 2, 4)

Take ρi =

{
(i+1, i+2, i−4, i+4, i−2, i−1) for i even

(i+1, i−1, i−2, i+4, i−4, i+2) for i odd.

These rotations give an embedding with 22 faces, of which 16 are triangular and 6 are
quadrangular, giving Euler characteristic 12− 36 + 22 = −2.

• C12(1, 3, 6)
There seems to be no ‘nice’ genus 2 embedding of this graph, but the following is one that
was found with the help of Magma [3]:
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ρ0 = (1, 9, 6, 3, 11), ρ1 = (2, 7, 0, 10, 4), ρ2 = (3, 8, 1, 5, 11), ρ3 = (4, 9, 2, 0, 6),
ρ4 = (5, 1, 10, 7, 3), ρ5 = (6, 8, 11, 2, 4), ρ6 = (7, 5, 3, 0, 9), ρ7 = (8, 6, 4, 10, 1),
ρ8 = (9, 11, 5, 7, 2), ρ9 = (10, 8, 3, 6, 0), ρ10 = (11, 9, 7, 4, 1), ρ11 = (0, 2, 5, 8, 10).

These rotations give an embedding with 16 faces, of which 6 are triangular, 8 are quad-
rangular, and 2 have length 5, giving Euler characteristic 12− 30 + 16 = −2.

• C12(1, 4, 6)

Take ρi =

{
(i+1, i−4, i+4, i+6, i−1) for i even

(i+1, i−1, i+6, i+4, i−4) for i odd.

These rotations give an embedding with 16 faces, of which 4 are triangular and 12 are
quadrangular, giving Euler characteristic 12− 30 + 16 = −2.

• C12(2, 3, 6)
As with C12(1, 3, 6), there seems to be no ‘nice’ genus 2 embedding of this graph, but the
following one was found with the help of Magma [3]:

ρ0 = (2, 10, 3, 9, 6), ρ1 = (3, 10, 11, 7, 4), ρ2 = (4, 8, 11, 5, 0), ρ3 = (5, 9, 0, 1, 6),
ρ4 = (6, 1, 7, 10, 2), ρ5 = (7, 3, 8, 2, 11), ρ6 = (8, 3, 4, 0, 9), ρ7 = (9, 5, 10, 4, 1),
ρ8 = (10, 5, 6, 11, 2), ρ9 = (11, 6, 0, 3, 7), ρ10 = (0, 8, 4, 7, 1), ρ11 = (1, 5, 2, 8, 9).

These rotations give an embedding with 16 faces, of which 6 are triangular, 8 are quad-
rangular, and 2 have length 5, giving Euler characteristic 12− 30 + 16 = −2.

• C12(3, 4, 6)

Take ρi =

{
(i+3, i+6, i+4, i−4, i−3) for i even

(i+3, i−4, i+4, i−3, i+6) for i odd.

These rotations give an embedding with 16 faces, of which 10 are triangular and 6 have
length 5, giving Euler characteristic 12− 30 + 16 = −2.

• C8(1, 2, 3, 4)
This is the complete graph K8, which by the Ringel-Youngs theorem [10] has minimum

genus d (8−3)(8−4)
12

e = d20
12
e = 2. A genus 2 embedding (with 18 faces) can be found directly

by taking ρi =

{
(i+1, i−3, i+2, i−2, i+3, i+4, i−1) for i even

(i+1, i−3, i+3, i+4, i−1, i−2, i+2) for i odd.

• C12(1, 2, 4, 6)

Take ρi =

{
(i+1, i+2, i−4, i+4, i+6, i−2, i−1) for i even

(i+1, i−1, i−2, i+6, i+4, i−4, i+2) for i odd.

These give an embedding with 28 triangular faces, and characteristic 12− 42 + 28 = −2.

• C12(1, 4, 5, 6)

Take ρi =

{
(i+1, i−5, i−1, i+6, i+5, i+4, i−4) for i even

(i+1, i−4, i+4, i+5, i+6, i−1, i−5) for i odd.

Again these give an embedding with 28 triangular faces, and characteristic −2. �
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The rest of this paper is devoted to showing that the circulants treated above are the
only connected circulants of genus 1 or 2. Recall that every such circulant has valency at
most 7 (by Lemma 4), and that all connected circulants with valency k 6 4 have minimum
genus 0 or 1. Accordingly, we need only consider valencies 7, 5 and 6, which we do in the
next three sections.

4 Valency 7

In this section, we assume the valency is 7, so n must be even, and the circulant has the
form Cn(a1, a2, a3,

n
2
). Moreover, by the final sentence of the proof of Lemma 4, we have

n 6 12, and so n = 8, 10 or 12. We deal with these three cases separately.

Case 7a: n = 8
Here the only 7-valent circulant is C8(1, 2, 3, 4), which is isomorphic to K8, with min-

imum genus 2.

Case 7b: n = 10
Here there are two possible 7-valent circulants: C10(1, 2, 3, 5) and C10(1, 2, 4, 5). The

first of these is a supergraph of C10(1, 3, 5) ∼= K5,5, the genus of which is d (5−2)2

4
e = 3, and

so γ(C10(1, 2, 3, 5)) > 3. The second one is harder to deal with. We explain how it can
be shown that γ(C10(1, 2, 4, 5)) is greater than 2, in Section 7.

Case 7c: n = 12
In this case, there are seven non-isomorphic 7-valent circulants, namely C12(1, 2, 3, 6),

C12(1, 2, 4, 6), C12(1, 2, 5, 6), C12(1, 3, 4, 6), C12(1, 3, 5, 6), C12(1, 4, 5, 6) and C12(2, 3, 4, 6).
For each of these, we have 3F 6 2E = 84, so a genus 1 embedding is impossible,

and a genus 2 embedding requires F = 28 faces, all of which would have length 3, giving
what we may call a triangular embedding . Both C12(1, 2, 4, 6) and C12(1, 4, 5, 6) have such
embeddings; see earlier. In contrast, the circulant C12(1, 3, 5, 6) has genus at least 4, since

it contains C12(1, 3, 5) ∼= K6,6 as a subgraph, and γ(K6,6) = d (6−2)2

4
e = 4.

This leaves C12(1, 2, 3, 6), C12(1, 2, 5, 6), C12(1, 3, 4, 6) and C12(2, 3, 4, 6). Each of these
can be shown to have no triangular embedding, and so has minimum genus at least 3.

For example, take G = C12(1, 3, 4, 6). The only triples of vertices that form a 3-cycle
in G containing vertex 0 are {0, 1, 4}, {0, 1, 9}, {0, 3, 4}, {0, 3, 9}, {0, 3, 11}, {0, 4, 8},
{0, 6, 9}, {0, 8, 9} and {0, 8, 11}, and so the only possible rotations at vertex 0 for a
triangular embedding are (1, 4, 8, 11, 3, 6, 9) and its inverse (1, 9, 6, 3, 11, 8, 4). Then by
vertex transitivity, the only possible rotations at each vertex v are (v+1, v+4, v+8, v+
11, v+3, v+6, v+9) and its inverse (v+1, v+9, v+6, v+3, v+11, v+8, v+4), each taken
mod 12. But since the rotation at vertex 0 is (1, 4, 8, 11, 3, 6, 9) or (1, 9, 6, 3, 11, 8, 4) and
the faces are all triangular, the rotation at vertex 3 must be of the form (.., 0, 11, 6, ..) or
(.., 0, 6, 11, ..), and both of these are impossible. Hence G has no triangular embedding.

When G = C12(2, 3, 4, 6), there are no possible rotations at vertex 0, and when
G = C12(1, 2, 3, 6) or C12(1, 2, 5, 6), the existence of a triangular embedding can be ruled
out using similar arguments to those for the case of C12(1, 3, 4, 6) above. For C12(1, 2, 3, 6),
the only possible rotations at vertex 0 would be (1, 2, 3, 6, 9, 10, 11), (1, 2, 3, 6, 9, 11, 10),

the electronic journal of combinatorics 22(2) (2015), #P2.28 10



(1, 2, 11, 10, 9, 6, 3) and (1, 10, 9, 6, 3, 2, 11) and their inverses, but all give no possibil-
ity at vertex 3. Similarly, for C12(1, 2, 5, 6), the only rotations at vertex 0 could be
(1, 2, 7, 5, 10, 11, 6) and (1, 2, 7, 6, 5, 10, 11) and their inverses, but these give a contradic-
tion at vertices 1 and 5 respectively.

In summary, the only 7-valent connected circulants that have embeddings of genus 1
or 2 are C8(1, 2, 3, 4), C12(1, 2, 4, 6) and C12(1, 4, 5, 6), all of which have minimum genus
2.

5 Valency 5

In this section, we consider circulants of valency 5, which have the form Cn(a1, a2,
n
2
),

where n is even and n > 6. If such a connected circulant has an embedding of genus
1 or 2, then the Euler-Poincaré formula gives −2 6 V − E + F = n − 5n

2
+ F , so that

F > 3n
2
− 2 = 3n−4

2
.

If there are no triangular faces, then 5n = 2E > 4F > 6n − 8 and so n 6 8. But
if n 6 8 then up to isomorphism the only possibilities are C6(1, 2, 3), C8(1, 2, 4) and
C8(1, 3, 4), and each of these has a genus 1 embedding (by Proposition 5), so we may
suppose that at least one face is triangular, and that n > 8.

For there to be a triangular face, some relation of the form ai ± aj ± ak ≡ 0 mod n
must be satisfied. If i, j, k are distinct, then it is easy to see that a3 = n

2
= a1 + a2 in Zn,

in which case we have a genus 1 embedding, again by Proposition 5, so we may assume
that at least two of i, j, k coincide. Then since a3 = n

2
, one (or more) of the following

must occur: either 2a1 ≡ ±a2 mod n, or a1 ≡ ±2a2 mod n, or n
2

= a3 = 2a1 or 2a2,
or n = 3a1 or 3a2. Here we will temporarily drop the assumption that a1 < a2, and
then by interchanging a1 and a2 if necessary, we may suppose that 2a1 ≡ ±a2 mod n, or
n
2

= a3 = 2a2, or n = 3a1. We will consider these three cases in turn.

Case 5a: 2a1 ≡ ±a2 mod n
Note that connectedness implies that gcd(a1, 2a1,

n
2
, n) = 1. If n ≡ 0 mod 4 then n

2
is

even so a1 is odd, and gcd(a1, n) = 1. Thus a1 is invertible mod n, and we can multiply
X = {a1, a2, a3} = {a1,±2a1,

n
2
} by its inverse to get Cn(a1, a2, a3) ∼= Cn(1, 2, n

2
), which

has genus 1 for n = 8, and a genus 2 embedding for n > 12. Similarly, if n ≡ 2 mod
4, then gcd(a1,

n
2
) = 1, but in this case there are two possibilities: either a1 is odd, and

again Cn(a1, a2, a3) ∼= Cn(1, 2, n
2
), which has minimum genus 1, or a1 is even, in which

case gcd(a1, n) = 2 and then Cn(a1, a2, a3) ∼= Cn(2, 4, n
2
), which has a genus 2 embedding.

We now prove that Cn(1, 2, n
2
) has no genus 1 embedding when n ≡ 0 mod 4 and

n > 12, and that Cn(2, 4, n
2
) has no genus 1 embedding when n ≡ 2 mod 4 and n > 10.

For Cn(1, 2, n
2
) with n ≡ 0 mod 4 and n > 12, we assume the contrary. Then there

must be an embedding with 3n
2

faces. If F3 is the number of triangular faces, and F` is
the number of faces of length greater than 3, then counting edge-face incident pairs gives

5n = 2E > 3F3 + 4F` = 4F − F3 = 6n− F3,

so that F3 > n. Also by counting pairs (v,∆) where ∆ is a triangular face at the
vertex v, we find that the average number of triangular faces at each vertex is at least
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3. But for Cn(1, 2, n
2
) with n > 12, the only possible triangular faces at the vertex 0

are bounded by vertex-triples {0, 1, 2}, {0, 1,−1} and {0,−2,−1}, and so the only way
to have three or more triangular faces at vertex 0 is to take ρ0 = (1,−1,−2, n

2
, 2) or

its inverse, both of which give exactly three such faces. It follows that F3 = n, and so
F` = F − F3 = n

2
, and all non-triangular faces must have length 4, with two at each

vertex. In particular, there must be two faces of length 4 at vertex 0, and by considering
common neighbours of n

2
and ±2, it is easy to see that these faces must be bounded by

the 4-cycles (0, 2, n
2

+ 2, n
2
) and (0,−2, n

2
− 2, n

2
). By reflecting the surface if necessary,

we can assume ρ0 = (1,−1,−2, n
2
, 2). Then ρ1 must have the form (..,−1, 0, 2, ..), and so

ρ1 = (2, 3, n
2
+1,−1, 0), which is the analogue of ρ−1

0 obtained by adding 1 mod n to each
point of the rotation. By induction, we find that

ρi =

{
(i+1, i−1, i−2, i+ n

2
, i+2) for i even

(i+1, i+2, i+ n
2
, i−2, i−1) for i odd.

But also the choice of ρ0 and the boundaries of the two quadrangular faces at 0 imply
that the rotation ρn

2
has the form (.., n

2
+2, 0, n

2
−2), and it follows that n

2
must be odd.

Thus Cn(1, 2, n
2
) has no genus 1 embedding when n ≡ 0 mod 4 and n > 12.

For Cn(2, 4, n
2
) with n ≡ 2 mod 4 and n > 10, we observe that Cn(2, 4) is a subgraph,

and that this is the union of two copies of Cn
2
(1, 2), on disjoint vertex-sets {0, 2, . . . , n−2}

and {1, 3, . . . , n−1}. Then since n
2

is odd, we know that Cn
2
(1, 2) has minimum genus 1,

and it follows from the theorems of Battle at al [1] that the minimum genus of Cn(2, 4, n
2
)

is at least 2 (and hence is exactly 2).

Case 5b: n
2

= a3 = 2a2
Here a2 = n

4
, and by connectedness, 1 = gcd(a1, a2, a3, n) = gcd(a1,

n
4
, n
2
, n). We

consider three sub-cases, depending on whether gcd(a1, n) = 1, 2 or 4.
If gcd(a1, n) = 1, then we can multiply X = {a1, a2, a3} = {a1, n4 ,

n
2
} by the inverse

of a1 mod n and find that Cn(a1, a2, a3) ∼= Cn(1, n
4
, n
2
). Now let F3 be the number of

triangular faces, and let F` be the number of faces of length greater than 3. Then counting
edge-face incident pairs and using the inequality F > 3n−4

2
(shown at the beginning of

this section) gives 5n = 2E > 3F3 + 4F` = 4F − F3 > 2(3n−4)− F3, so that n 6 F3 + 8.
But the only possible triangular faces at a vertex i are bounded by vertex-triples of the
form {i, i+ n

4
, i+ n

2
}, {i, i− n

4
, i− n

2
} or {i, i+ n

4
, i− n

4
}, and so there can be at most two

at each vertex, and therefore n − 8 6 F3 6 2n
3

, which gives n 6 24. Thus n = 8, 12,
16, 20 or 24. We know that the graph C8(1, 2, 4) has genus 1, and also that C12(1, 3, 6)
has a genus 2 embedding. On the other hand, Cn(1, n

4
, n
2
) has no genus 1 embedding for

n > 12, since that would require 3n
2

faces, with at least n being triangular, so at least
three at each vertex. Also we will show in Section 7 that the minimum genus of each of
C16(1, 4, 8), C20(1, 5, 10) and C24(1, 6, 12) is greater than 2.

If gcd(a1, n) = 2, then a1/2 is coprime to n and we can multiply X = {a1, n4 ,
n
2
} by its

inverse mod n and find that Cn(a1, a2, a3) ∼= Cn(2, n
4
, n
2
). But now n

4
must be odd, so the

same argument about triangular faces as used in the previous paragraph gives n = 12 or
20, leaving only C12(2, 3, 6) and C20(2, 5, 10) to consider. The first of these has a genus 2
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embedding, but no genus 1 embedding since it can have at most two triangular faces at
each vertex, and the second has genus greater than 2, as we explain in Section 7.

Similarly, if gcd(a1, n) = 4, we can multiply X by the inverse of a1/4 mod n and
find that Cn(a1, a2, a3) ∼= Cn(4, n

4
, n
2
), with n

4
odd, and so Cn(a1, a2, a3} ∼= C12(4, 3, 6) ∼=

C12(3, 4, 6), or Cn(a1, a2, a3} ∼= C20(4, 5, 10). The graph C12(3, 4, 6) has a genus 2 embed-
ding but no genus 1 embedding, while the genus of C20(4, 5, 10) is greater than 2, as we
explain in Section 7.

Case 5c: n = 3a1
In this case, n ≡ 0 mod 6 (since the valency is odd), and X = {a1, a2, a3} = {n

3
, a2,

n
2
}.

Also we may assume that none of the earlier equations (in 5a or 5b) holds. Under that
assumption, the only possible triangular face at each vertex i is bounded by the vertex-
triple {i, i+a1, i−a1}, and so the argument used in case 5b about triangular faces gives
n− 8 6 F3 6 n

3
, which implies that n 6 12. Thus n = 6 or 12.

When n = 6 we have C6(1, 2, 3), which has genus 1. On the other hand, when n = 12
we have a1 = 4 and so a2 = 1 or 5 (but not 3 since that possibility was dealt with in 5b).
This leaves C12(4, 1, 6) and C12(4, 5, 6), both of which are isomorphic to C12(1, 4, 6). The
latter has a genus 2 embedding, but no genus 1 embedding, since a genus 1 embedding
would require 18 faces, with at least 12 being triangular, but the graph contains only four
simple 3-cycles (viz. those bounded by {0, 4, 8}, {1, 5, 9}, {2, 6, 10} and {3, 7, 11}).

6 Valency 6

In this section we consider connected circulants Cn(a1, a2, a3) with 0 < a1 < a2 < a3 <
n
2
.

By the Euler-Poincaré formula, the number of faces in an embedding of genus 1 or 2 must
be 2n or 2n−2, respectively. Also if we let F3 be the number of triangular faces and F`

the number of faces of length greater than 3, then counting edge-face incident pairs gives
6n = 2E > 3F3 + 4F` = 4F − F3 = 8n − F3 or 8n − 8 − F3, so that F3 > 2n or 2n − 8
respectively. Moreover, if the average number of triangular faces at a vertex is at most
3, then 2n − 8 6 F3 6 n, so n 6 8, and the only possibilities would be C7(1, 2, 3) and
C8(1, 2, 3), both of which have genus 1 (by Proposition 5). Hence we may suppose there
are at least four triangular faces at some vertex, and by vertex-transitivity, we might as
well assume that this happens at vertex 0.

As earlier, we observe that having a triangular face implies some relation of the form
ai±aj±ak ≡ 0 mod n. Moreover, if i, j, k are distinct, then by the proof of Proposition 5,
there exists a genus 1 embedding, covered by the second item of Theorem 2.

So we will assume that no such relation holds with i, j, k are distinct. Then there are
only 12 other possibilities, in three categories as follows:

(T1) a2 = 2a1, or (T2) a3 = 2a1, or (T3) a3 = 2a2;

(T4) 2a1 + a2 = n, or (T5) 2a1 + a3 = n, or (T6) a1 + 2a2 = n,

or (T7) 2a2 + a3 = n, or (T8) a1 + 2a3 = n, or (T9) a2 + 2a3 = n;

(T10) 3a1 = n, or (T11) 3a2 = n, or (T12) 3a3 = n.
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Each such relation gives rise to at most three triangular faces at a vertex, so to get
an embedding of genus 1 or 2 (not already covered by the second item of Theorem 2), we
need to assume that at least two of these relations hold.

Moreover, those relations must involve all three of a1, a2 and a3, for if they involve only
ai and aj, say, then only possible triangular faces at vertex 0 are bounded by triples made
up of 0 and two of ±ai and ±aj, and no more than three of these can be taken together in a
candidate for the rotation ρ0. Also some of the combinations of these relations (involving
all three of a1, a2 and a3) are inconsistent.

It is an easy exercise to show that there are just 20 combinations that are feasible,
namely the 14 pairs {Ti,Tj} for {i, j} = {1, 3}, {1, 7}, {1, 8}, {1, 9}, {1, 12}, {2, 6}, {2, 7},
{2, 9}, {2, 11}, {3, 8}, {5, 6}, {5, 11}, {7, 8} and {8, 11}, and the six triples {Ti,Tj,Tk}
for {i, j, k} = {1, 3, 8}, {1, 3, 9}, {1, 3, 12}, {1, 8, 11}, {2, 7, 8} and {2, 8, 11}. We deal with
these one-by-one below.

Case 6a: {T1,T3}, with a2 = 2a1 and a3 = 2a2
Here X = {a1, 2a1, 4a1}, so gcd(a1, n) = 1, and then Cn(a1, 2a1, 4a1) ∼= Cn(1, 2, 4).

For the latter graph, the only possibilities for a triangular face at vertex 0 are bounded
by the triples {0, 1, 2}, {0, 2, 4}, {0, 1,−1}, {0,−1,−2}, {0,−2,−4} and {0,−2, 2}.

For n > 12, there is no way to arrange these to give six triangular faces at vertex 0,
and so there cannot be six triangular faces at any vertex. Moreover, the only way to get
five triangular faces at vertex 0 is to take ρ0 as either (4, 2, 1,−1,−2,−4) or its inverse,
but in that case ρ2 must be of the form (.., 1, 0, 4, ..) or (.., 4, 0, 1, ..), so ρ2 cannot be
(6, 4, 3, 1, 0,−2) or its inverse. It follows that if there are five five triangular faces at a
vertex v, then there are at most four triangular faces at vertex v+2. Hence if r is the
number of vertices that lie in five triangular faces, and s is the number that do not, we
have r 6 s, and so r 6 n

2
. Now using the inequality F3 > 2n−8 (shown at the beginning

of this section) and counting pairs (v,∆) where ∆ is a triangular face at the vertex v, we
have 3(2n−8) 6 3F3 6 5r + 4s = 4(r+s) + r = 4n + r 6 4n + n

2
, and therefore n 6 16.

Hence we need only consider Cn(1, 2, 4) for 8 6 n 6 16.
The graphs C8(1, 2, 4) and C9(1, 2, 4) both have genus 1, and each of C10(1, 2, 4) and

C12(1, 2, 4) has a genus 2 embedding, by Proposition 6.
On the other hand, C10(1, 2, 4) has no genus 1 embedding, because that would require

20 faces, all triangular, and an examination of the possibilities for triangular faces at
vertex 0 shows that the rotation ρ0 would have to be (1, 2, 4, 6, 9, 8) or its inverse, or
(1, 2, 6, 4, 9, 8) or its inverse. The first of these (and its inverse) makes it impossible to
find a suitable ρ2, so we may suppose that ρ0 = (1, 2, 6, 4, 9, 8), but then ρ1 and ρ2 are
both analogues of ρ−1

0 , and so this quickly leads to a contradiction.
Similarly, a genus 1 embedding of C12(1, 2, 4) would require 24 triangular faces, with

six at each vertex. This forces ρ0 to be (1, 2, 4, 8, 10, 11) or its inverse, and analogously,
ρ2 must be (3, 4, 6, 10, 0, 1) or its inverse, but that is impossible since the ordering of
triangular faces at vertex 0 forces ρ2 to have the form (.., 4, 0, 1, ..) or (.., 1, 0, 4, ..).

Finally, for n ∈ {11, 13, 14, 15, 16} a genus 1 embedding would require 2n faces, all
triangular, but that is impossible since there can be only one triangular face containing
the edge {0, 4}, namely one that has 2 as its third vertex. In Section 7 we explain why
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none of these five graphs can have an embedding of genus 2.

Case 6b: {T1,T7}, with a2 = 2a1 and 2a2 + a3 = n
Here Cn(a1, a2, a3) = Cn(a1, 2a1, n − 4a1) ∼= Cn(a1, 2a1, 4a1), which was met in case

6a.

Case 6c: {T1,T8}, with a2 = 2a1 and a1 + 2a3 = n
In this case, we have a3 = n−a1

2
, and also 1 = gcd(a1, 2a1,

n−a1
2
, n) = gcd(a1,

n−a1
2
, n).

Let d = gcd(a1, n). Then 1 = gcd(a1,
n−a1

2
, n) = d or d

2
, so d = 1 or 2.

If d = 1 then a1 is a unit mod n, and since n − a1 = 2a3 is even, both a1 and n
are odd, and therefore we can multiply by twice the inverse b of a1 mod n and find that
Cn(a1, a2, a3) ∼= Cn(2, 4, b(n− a1)) ∼= Cn(2, 4,−1) ∼= Cn(1, 2, 4), as in case 6a.

On the other hand, if d = 2, then both a1 and n are even, but a3 = n−a1
2

is odd, and
so n+a1

2
= n−a1

2
+ a1 is odd, and therefore gcd(n, n+a1

2
) = gcd(n

2
, n+a1

2
) = gcd(n

2
, a1

2
) = 1.

Letting x be n+a1
2

, and y be its inverse mod n, we have 2x = n + a1 ≡ a1 mod n and
a3 = x− a1, so multiplying by y we have 2 ≡ ya1 mod n and ya3 ≡ 1− ya1 mod n, and
therefore Cn(a1, a2, a3) ∼= Cn(ya1, 2ya1, ya3) ∼= Cn(2, 4,−1) ∼= Cn(1, 2, 4), again as in 6a.

Case 6d: {T1,T9}, with a2 = 2a1 and a2 + 2a3 = n
Here n is even and a1 + a3 = n

2
, with a2 = 2a1 ≡ −2a3 mod n, and it follows that

gcd(a1, n) = 1 or gcd(a3, n) = 1. If gcd(a1, n) = 1, then a1 is odd, and we can multiply
by its inverse mod n and find that Cn(a1, a2, a3) ∼= Cn(1, 2, n

2
− 1). On the other hand,

if gcd(a3, n) = 1, then a3 is odd and we can multiply by its inverse mod n to show that
Cn(a1, a2, a3) ∼= Cn(a3, a2, a1) ∼= Cn(1,−2, n

2
− 1) ∼= Cn(1, 2, n

2
− 1).

If n ≡ 0 mod 4, this circulant has genus 1, by Proposition 5, and if n ≡ 2 mod 4, then
it has a genus 2 embedding, by Proposition 6. Also the graph C10(1, 2, 4) was shown to
have genus 2 in case 6a.

We now prove that Cn(1, 2, n
2
− 1) has no genus 1 embedding when n ≡ 2 mod 4 and

n > 10. To do this, we assume the contrary. Then Cn(1, 2, n
2
− 1) has an embedding

with 2n faces, all of which must be triangular. The only possibilities for a triangular face
at vertex 0 are bounded by the triples {0, 1, 2}, {0, 1,−1}, {0, 2, n

2
+1}, {0, n

2
−1, n

2
+1},

{0, n
2
−1,−2} and {0,−2,−1}, so the only possibilities for the rotation ρ0 are (1, 2, n

2
+

1, n
2
−1,−2,−1) and its inverse. By reflecting the surface if necessary, we can assume

that ρ0 = (1, 2, n
2

+1, n
2
−1,−2,−1). Then ρ1 must be of the form (.., 2, 0,−1, ..), and it

follows that ρ1 = (2, 0,−1, n
2
, n
2
+2, 3), which is the analogue of ρ−1

0 . Similarly, ρ2 must be
of the form (.., n

2
+1, 0, 1, ..), so ρ2 = (3, 4, n

2
+3, n

2
+1, 0, 1), which is the analogue of ρ0.

By induction, ρi is equal to the analogue of ρ0 when i is even, and of ρ−1
0 when i is odd

(as given for the genus 1 embedding of Cn(1, 2, n
2
− 1) when n ≡ 0 mod 4 in the proof of

Proposition 5). But then since n
2
− 1 is even, ρn

2
−1 should be (n

2
, n
2
+1, 0,−2, n

2
−3, n

2
−1),

which is not the case, since consideration of the faces containing the edge {0, n
2
−1} shows

that ρn
2
−1 must have the form (..,−2, 0, n

2
+1, ..).

Thus Cn(1, 2, n
2
− 1) has genus 2 when n ≡ 2 mod 4 and n > 10.

Case 6e: {T1,T12}, with a2 = 2a1 and 3a3 = n
In this case, at vertex 0 we can get at most three triangular faces from the relation

a2 = 2a1 and at most one from the relation 3a3 = n (namely a face bounded by the triple
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{0, a3,−a3} = {0, n
3
, 2n

3
}), so at most four triangular faces at any vertex. It follows that

2n − 8 6 F3 6 4n
3

, and therefore n 6 12. Then since n = 3a3 is divisible by 3, we have
only C9(1, 2, 3), which has genus 1, and C12(1, 2, 4), which was met in case 6a.

Case 6f: {T2,T6}, with a3 = 2a1 and a1 + 2a2 = n
This case is analogous to 6c, with the roles of a2 and a3 interchanged. Here we have

Cn(a1, a2, a3) ∼= Cn(a1,
n−a1

2
, 2a1) ∼= Cn(a1, 2a1,

n−a1
2

) ∼= Cn(1, 2, 4), which was met in 6a.

Case 6g: {T2,T7}, with a3 = 2a1 and 2a2 + a3 = n
This case is analogous to 6d, with the roles of a2 and a3 interchanged. Here we have

X = {a1, a2, a3} = {a1, n2−a1, 2a1}, so gcd(a1, n) = 1, and then multiplying by the inverse
of a1 mod n we find that Cn(a1, a2, a3) ∼= Cn(1, n

2
− 1, 2) ∼= Cn(1, 2, n

2
− 1), which was met

in case 6d.

Case 6h: {T2,T9}, with a3 = 2a1 and a2 + 2a3 = n
Here we have X = {a1, a2, a3} = {a1, n−4a1, 2a1}, and so gcd(a1, n) = 1. Multiplying

by the inverse of a1 mod n we find Cn(a1, a2, a3) ∼= Cn(1,−4, 2) ∼= Cn(1, 2, 4), met in 6a.

Case 6i: {T2,T11}, with a3 = 2a1 and 3a2 = n
This case is analogous to 6e, with the roles of a2 and a3 interchanged. In particular,

we have at most four triangular faces at a vertex, so n 6 12, giving n = 9 or 12. If n = 9
then we have C9(2, 3, 4) ∼= C9(1, 6, 2) ∼= C9(1, 2, 3), which has genus 1, while there is no
possibility when n = 12.

Case 6j: {T3,T8}, with a3 = 2a2 and a1 + 2a3 = n
This case is analogous to 6h, with the roles of a1 and a2 interchanged, and so gives

only the graph Cn(1, 2, 4), met in case 6a.

Case 6k: {T5,T6}, with 2a1 + a3 = n and a1 + 2a2 = n
Here Cn(a1, a2, a3) ∼= Cn(−2a2, a2, 4a2), and then since gcd(a2, n) = 1, we can multiply

by the inverse of a2 mod n and find Cn(a1, a2, a3) ∼= Cn(−2, 1, 4) ∼= Cn(1, 2, 4), met in 6a.

Case 6l: {T5,T11}, with 2a1 + a3 = n and 3a2 = n
This is similar to cases 6e and 6i. At vertex 0 we can get at most three triangular

faces from the relation 2a1 + a3 = n and at most one from the relation 3a2 = n, so at
most four triangular faces at any vertex. Again it follows that n = 9 or 12, but this time
there are no possibilities for either value of n.

Case 6m: {T7,T8}, with 2a2 + a3 = n and a1 + 2a3 = n
Here Cn(a1, a2, a3) ∼= Cn(4a2, a2,−2a2), and then since gcd(a2, n) = 1, we can multiply

by the inverse of a2 mod n and find Cn(a1, a2, a3) ∼= Cn(4, 1,−2) ∼= Cn(1, 2, 4), met in 6a.

Case 6n: {T8,T11}, with a1 + 2a3 = n and 3a2 = n
This case is analogous to 6l, with the roles of a1 and a3 interchanged. Again we have

n = 9 or 12, and this time there are two possibilities: C9(1, 3, 4), which has genus 1, and
C12(2, 4, 5) ∼= C12(5,−2,−4) ∼= C12(1, 2, 4), met in 6a.

Cases 6o to 6s: {T1,T3,T8}, {T1,T3,T9}, {T1,T3,T12}, {T1,T8,T11} {T2,T7,T8}
In each of these cases, the three relations and connectedness give a unique graph that

has been considered already. For example, in case 6s (for the triple {T2,T7,T8}) we have
a3 = 2a1 and 2a2 +a3 = n and a1 + 2a3 = n, which give n−a1 = 2a3 = 4a1, and therefore
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(a1, a2, a3) = (n
5
, 3n
10
, 2n

5
); then by connectedness 1 = gcd(n, n

5
, 3n
10
, 2n

5
) = n

10
, so n = 10, and

we have C10(2, 3, 4) ∼= C10(1, 2, 4), which was met in 6a. Similarly, the cases 6o to 6r give
C9(1, 2, 4), C10(1, 2, 4), C12(1, 2, 4), and C12(2, 4, 5) ∼= C12(1, 2, 4).

Case 6t: {T2,T8,T11}, with a3 = 2a1 and a1 + 2a3 = n and 3a2 = n
In this final case, again n − a1 = 2a3 = 4a1, and this time (a1, a2, a3) = (n

5
, n
3
, 2n

5
), so

by connectedness 1 = gcd(n, n
5
, n
3
, 2n

5
) = n

15
, which gives n = 15 and we have C15(3, 5, 6).

But for this graph there can be at most four triangular faces at any vertex, so at most 20
triangular faces in total, and an embedding of genus 1 or 2 is therefore impossible.

7 Remaining cases

In this section we deal with the remaining unresolved cases, some of which are rather
more difficult than others.

To complete the proof of Theorems 2 and 3, we still need to show or explain why
C12(3, 4, 6) has no genus 1 embedding, and why the minimum genus of each of the cir-
culants Cn(1, 2, 4) for n ∈ {11, 13, 14, 15, 16} and C16(1, 4, 8), C20(1, 5, 10), C20(2, 5, 10),
C20(4, 5, 10), C24(1, 6, 12) and C10(1, 2, 4, 5) is greater than 2. We treat these cases below,
but in a slightly different order, still beginning with a case from Theorem 3.

• C12(3, 4, 6) has no genus 1 embedding

In this case, a genus 1 embedding needs 18 faces, at least 12 of which are triangular,
so the average number of triangular faces at each vertex is at least 3. On the other hand,
there are only four vertex-triples that can bound a triangular face at vertex 0, namely
{0, 3, 6}, {0, 3, 9}, {0, 6, 9} and {0, 4, 8}, and at most three of these can be taken together.
Hence there must be 12 triangular faces, with three at each vertex. Moreover, two of
the three triangular faces at a given vertex share a common edge, and in each case, the
vertices of those two triangles must all differ by multiples of 3, while the other triangular
face is bounded by one of the triples {0, 4, 8}, {1, 5, 9}, {2, 6, 10} and {3, 5, 11}.

Counting edge-face incident pairs gives the average face-size of the larger faces as 4,
and so the six non-triangular faces must be quadrangular. The rotation at vertex 0 can
be taken as (4, 8, x, y, z), where (x, y, z) is some permutation of (3, 6, 9), and then the two
quadrangular faces at 0 are bounded by 4-cycles of the form (x, 0, 8, u) and (4, 0, z, v).
Also by considering common neighbours of 4 and z, we see that (z, v) = (3, 7), (6, 10) or
(9, 1), and note that in each case the difference z−v is ±4.

Now we consider what happens at the vertex y. The edge {0, y} lies in two triangular
faces bounded by the triples {0, x, y} and {0, y, z}, so the other face containing the edge
{y, z} must be quadrangular, bounded say by the 4-cycle (z, y, p, q). Then at vertex z,
the triangular face bounded by the triple {0, y, z} sits in between the two quadrangular
faces bounded by the 4-cycles (4, 0, z, v) and (z, y, p, q). It follows that the other two faces
at vertex z must be triangular, and adjacent, but that is impossible, since the difference
v−z is not divisible by 3. Hence no genus 1 embedding exists, and so C12(3, 4, 6) has
genus 2.
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Next, recall that we showed in case 5b of Section 5 that Cn(1, n
4
, n
2
) has no genus 1

embedding for n > 12, but has one of genus 2 for n = 12, and we claimed that it has no
genus 2 embedding for n = 16, 20 or 24. We verify that claim now.

• Cn(1, n
4
, n
2
) has no embedding of genus 2, for n = 16, 20 or 24

In each case, a genus 2 embedding requires 3n−4
2

faces, but at any vertex there are at
most two triangular faces, so if F3 is the number of triangular faces, then n−8 6 F3 6 2n

3
.

Moreover, if there are two triangular faces at the vertex 0, then the rotation ρ0 must be
of the form (x, y, z, 1,−1) or (x, y, z,−1, 1), where {x, y, z} = {n

4
, n
2
,−n

4
}, and then since

0 is the only common neighbour of 1 and −1, the face at 0 containing the edges {0, 1}
and {0,−1} must have length at least 5.

Now if n = 24, then the conditions n−8 6 F3 6 2n
3

force F3 to be 16, and also there
must be exactly two triangular faces at each vertex, and therefore at least one face of
length 5 or more. But on the other hand, the remaining 72−4

2
−16 = 18 faces use at most

2E − 3F3 = 120− 48 = 72 edges, so they must all be quadrangular, contradiction.
Similarly, if n = 20, then there are 60−4

2
= 28 faces, with 12 or 13 being triangular,

and so there must two triangular faces at 16 or more vertices. If F3 = 12, then the 16
non-triangular faces use at most 2E − 3F3 = 100 − 36 = 64 edges, so they must all be
quadrangular, which is impossible. Hence F3 = 13, and the 15 non-triangular faces use
at most 100− 39 = 61 edges, so there must be 14 quadrangular faces, plus one of length
5. This, however, implies that there can be at most five vertices that are incident with
two triangular faces, again impossible.

Finally, suppose n = 16. Then there are 22 faces, with 8, 9 or 10 of these being
triangular, and the number of vertices incident with two triangular faces is at least 8, 11
or 14 respectively. If F3 = 8 then the other 14 faces use at most 2E− 3F3 = 80− 24 = 56
edges, so they must all be quadrangular, contradiction. Similarly, if F3 = 9 then the other
13 faces use at most 80 − 27 = 53 edges, so there must be 12 quadrangular faces, plus
one of length 5, and hence there can be at most five vertices that are incident with two
triangular faces, again impossible. Thus F3 = 10. But now the other 12 faces use at most
80 − 30 = 50 edges, so there must be either 10 quadrangular faces and two of length 5,
or 11 quadrangular faces and one of length 6, and then the number of of vertices incident
with two triangular faces is at most 2 · 5 = 10 or 1 · 6 = 6 (respectively), so we reach a
contradiction in both cases.

The same kind of argument works for the next two 5-valent circulants as well.

• C20(2, 5, 10) and C20(4, 5, 10) have no embedding of genus 1 or 2

These cases are similar to C20(1, 5, 10). The only possibilities for a triangular face
at vertex 0 are bounded by the triples {0, 5, 10}, {0, 5, 15} and {0, 10, 15}, and so in
any embedding, there can be at most two triangular faces at a vertex, and at most 13
triangular faces in total. Moreover, if there are two triangular faces at vertex 0, then the
other two edges (viz. {0, 2} and {0,−2}, or {0, 4} and {0,−4}) lie in a face of length
greater than 4.

A genus 1 embedding would require 30 faces, with at least 20 being triangular, which
is impossible. On the other hand, a genus 2 embedding requires 28 faces, and just as in

the electronic journal of combinatorics 22(2) (2015), #P2.28 18



the case of C20(1, 5, 10) above, needs 12 or 13 of these to be triangular, with two triangular
faces occurring at 16 or more vertices; but again there are either 12 triangular and 16
quadrangular faces, or 13 triangular and 14 quadrangular faces and one of length 5, and
in both cases we obtain a contradiction.

Next, we deal with the only remaining 7-valent case.

• C10(1, 2, 4, 5) has no embedding of genus 1 or 2

A genus 1 embedding would require 25 faces, which is impossible since these faces
would use at least 25 · 3

2
= 75

2
edges, which is too many. (Also C10(1, 2, 4, 5) has C10(1, 2, 4)

as a subgraph, and we know the genus of C10(1, 2, 4) is 2.)
Now let us suppose C10(1, 2, 4, 5) has an embedding of genus 2. This must have 23

faces, of which 22 are triangular and one has length 4. In contrast to earlier situations,
there are lots of possibilities (in fact a total of 66) for the rotation at a given vertex that
can make all faces at that vertex triangular, so instead, we can focus on the single face
of length 4. By vertex-transitivity, we may suppose this face contains vertex 0. Even
then, there are 160 possibilities for the 4-cycle bounding the face, but up to reflection
and automorphisms of C10(1, 2, 4, 5) this reduces to 41 possibilities. We were not able to
find a short argument to eliminate all of them, and resorted to using a computer (and
specifically, the Magma system [3]) to help prove there is no genus 2 embedding.

For each possibility for the 4-cycle (p, q, r, s) bounding the sole quadrangular face,
we know that the side-edges {p, q}, {q, r}, {r, s} and {s, p} lie also in triangular faces
bounded by triples {p, t, q}, {q, u, r}, {r, v, s} and {s, w, p}, and the numbers of possi-
bilities for t, u, v and w are limited. Moreover, for any choice of u, v, w and x we know
four consecutive points of the rotations at each of the vertices p, q, r and s; for exam-
ple, ρq must be of the form (.., u, r, p, t, ..). This reduces the number of possibilities
for those rotations to at most 3! = 6, and often fewer, and sometimes to zero. For
example, if (p, q, r, s) = (0, 1, 3, 8) and (t, u, v) = (2, 5, 7) (and w = 4, 6 or 9), then
ρp = (2, 1, 8, 4, 9, 5, 6), ρq = (5, 3, 0, 2, 6, 7, 9) and ρr = (7, 8, 1, 5, 9, 4, 2), but that forces ρ2
to have the form (.., 6, 1, 0, 6, ..); contradiction.

Our computation took less than an hour using Magma on a laptop, and showed that
all other possibilities either lead to a similar contradiction, or force choices for rotations at
other vertices that in turn are impossible. (It also found that many possibilities provide
an embedding of genus 3, so the minimum genus of C10(1, 2, 4, 5) is 3.)

This brings us to the most challenging family, namely the circulants Cn(1, 2, 4) for
n ∈ {11, 13, 14, 15, 16}. We know these have no embedding of genus 1, since we cannot
have all faces triangular. In particular, there are at most five triangular faces at any vertex.
Also a genus 2 embedding requires 2n−2 faces, with at least 2n−8 being triangular.

Now let V5 be the number of vertices incident with 5 triangular faces. Then there are
at most 4 triangular faces at each of the other n−V5 vertices, so counting pairs (v,∆)
pairs as previously gives V5 + 4n = 5V5 + 4(n−V5) > 3F3 > 3(2n−8) = 6n−24, and
therefore V5 > 2n−24. In particular, for n ∈ {13, 14, 15, 16}, at least one vertex must be
incident with 5 triangular faces.
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Next, suppose that the vertex 0 is incident with 5 triangular faces. Then since the
only triangular faces containing the edges {0, 4} and {0,−4} are bounded by the triples
{0, 2, 4} and {0,−2,−4}, the rotation ρ0 must be (−4,−2,−1, 1, 2, 4) or its inverse. By
reflecting the surface if necessary, we may suppose that ρ0 = (−4,−2,−1, 1, 2, 4). Then
ρ2 must have the form (.., 4, 0, 1, ..), which is not analogous to ρ0 or ρ−1

0 , and it follows
that the vertex 2 cannot be incident with 5 triangular faces. Similarly, if the vertex 3 were
incident with 5 triangular faces, then ρ3 would have to be (−1, 1, 2, 4, 5, 7) or its inverse,
but then ρ2 would have to be of the form (.., 4, 3, 1, ..) or (.., 1, 3, 4..), both of which are
impossible since ρ2 has the form (4, 0, 1, p, q, r) for some p, q, r.

Also if vertices 0 and 1 are both incident with 5 triangular faces, then it is impossible
for both of vertices 5 and 6 to be, for otherwise if (say) ρ0 = (−4,−2,−1, 1, 2, 4), then
we would have ρ1 = (5, 3, 2, 0,−1,−3) and then ρ5 = (9, 7, 6, 4, 3, 1) and then ρ6 =
(2, 4, 5, 7, 8, 10), but in that case the edge {2, 4} is used in triangular faces with the same
orientation at vertices 0 and 6; contradiction.

By vertex-transitivity, it follows that if a vertex v is incident with 5 triangular faces,
then v ± 2 and v ± 3 are not. We can now proceed, by considering possibilities for the
sequence Y = (y0, y1, y2, . . . , yn−1), where

yi =

{
1 if vertex i is incident with 5 triangular faces, or

0 if not.

At least 2n−24 terms of this sequence must be 1, but also these two conditions must hold:

(a) if yi = 1, then yj = 0 whenever i and j differ by ±2 or ±3 mod n, and
(b) if yi = yi+1 = 1 then we cannot have yj = yj+1 = 1 when i and j differ by ±5 mod n.

• C16(1, 2, 4) has no embedding of genus 2

Here the sequence Y = (y0, y1. . . . , y15) must contain at least eight 1s, but condition
(a) cannot be satisfied when there are more than six 1s.

• C15(1, 2, 4) has no embedding of genus 2

In this case there must be at least six 1s, and up to cyclic rearrangement there is just
one possibility satisfying condition (a), namely Y = (1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0),
but this fails condition (b).

• C14(1, 2, 4) has no embedding of genus 2

For this value of n there must be at least four 1s, and up to cyclic rearrangement and re-
versal (corresponding to automorphisms of the graph) we find there are six possibilities for
the sequence Y satisfying the condition (a), but two of those fail condition (b), which leaves
just the following four: (1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0),
(1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0) and (1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0).

Each of these has exactly four 1s, and it follows that V5 = 4. Hence the inequalities
V5+4n = 5V5+4(n−V5) > 3F3 > 3(2n−8) = 6n−24 observed earlier must be equalities, with
all expressions being 60. In particular, there are 20 triangular faces, and all vertices lie in
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either 4 or 5 triangular faces. Then similarly, from 84 = 4F − F3 = 3F3 + 4F` 6 2E = 84
we find that each of the six non-triangular faces must have length 4.

In all four sub-cases, we may suppose that ρ0 = (−4,−2,−1, 1, 2, 4) and then we have
ρ1 = (5, 3, 2, 0,−1,−3), as previously.

When Y = (1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0) or (1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0), we have
ρ6 = (2, 4, 5, 7, 8, 10) or it inverse, but the first is impossible since again it would create
a problem with the edge {2, 4}, and therefore ρ6 = (2, 10, 8, 7, 5, 4). It follows that ρ4
has the form (.., 0, 2, 6, 5, ..), and so has to be (0, 2, 6, 5, 3, 8) or (0, 2, 6, 5, 8, 3). Now the
second of these is impossible since it would give only three triangular faces at vertex 4, so
ρ4 = (0, 2, 6, 5, 3, 8), and moreover, since the faces partially bounded by the 2-arcs (0, 4, 8)
and (8, 4, 3) cannot be triangular, the face partially bounded by the 2-arc (3, 4, 5) must
be triangular. But this implies that edge {5, 3} is used in triangular faces with the same
orientation at vertices 1 and 4; contradiction.

Similarly, when Y = (1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0), we have ρ7 = (3, 5, 6, 8, 9, 11),
since using the inverse of this would imply that the edge {3, 5} is used in triangular
faces with the same orientation at vertices 1 and 7. It then follows that ρ3 has the form
(. . . , 2, 1, 5, 7, . . .), so must be (2, 1, 5, 7, 4, 13) or (2, 1, 5, 7, 13, 4). The first of these, how-
ever, gives only three triangular faces at vertex 3, so ρ3 = (2, 1, 5, 7, 13, 4), and moreover,
since the faces partially bounded by the 2-arcs (13, 3, 7) and (4, 3, 13) cannot be triangu-
lar, the face partially bounded by the 2-arc (2, 3, 4) must be triangular. But this forces
ρ2 to have the form (. . . , 3, 4, 0, 1, 3, . . .); contradiction.

Thus Y = (1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0). Now we have ρ5 = (9, 7, 6, 4, 3, 1) and so
ρ9 = (13, 11, 10, 8, 7, 5), but from these it follows that the unique non-triangular face at
vertex 5 is partially bound by the 4-arc (13, 9, 5, 1, 11), so cannot be quadrangular; another
contradiction.

• C13(1, 2, 4) has no embedding of genus 2

In this case the sequence Y contains at least two 1s, and up to cyclic rearrangement
and reversal there are exactly ten possibilities satisfying conditions (a) and (b), namely

(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0),

(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0),

(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

(1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0),

(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0).

Note that each of them has at most four 1s.
Next, let Vk be the number of vertices incident with exactly k triangular faces. Then

V0+V1+V2+V3+V4+V5 = 13, and also V5 6 4 (from the ten possibilities for Y ). Moreover,
if we let T be the weighted sum V1+2V2+3V3+4V4+5V5, then T is equal to the number
of triples (v,∆) where ∆ is a triangular face at vertex v, and so T = 3F3. In particular,
T is divisible by 3, and also T > 3 · 18 = 54. It is now an easy exercise to show that
(V0, V1, V2, V3, V4, V5) = (0, 0, 0, 0, 11, 2), (0, 0, 0, 1, 9, 3), (0, 0, 0, 2, 7, 4) or (0, 0, 1, 0, 8, 4).
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In each of these four cases, the weighted sum T is exactly 54, and so the number of
triangular faces is exactly 18, and then from 54+24 = 3F3+4F` 6 2E = 78 we deduce
that the six non-triangular faces must all have length 4.

We can now show that if yi = 1 then yj = 0 whenever j−i ≡ ±4 or ±6 mod n.
For suppose that y0 = y4 = 1. We have already assumed that ρ0 = (9, 11, 12, 1, 2, 4).

By considering the face bounded by the triple {0, 2, 4}, we have also ρ4 = (0, 2, 3, 5, 6, 8).
It follows that ρ2 is either (3, 4, 0, 1, 6, 11) or (3, 4, 0, 1, 11, 6), and in both cases, at
vertex 2 we have three non-triangular faces, which must all be quadrangular. When
ρ2 = (3, 4, 0, 1, 11, 6), the fourth vertex of the quadrangular face partially bounded by the
2-arc (11, 1, 2) cannot be 0 or 12 and so must be 10, and similarly the quadrangular face
partially bounded by the 2-arc (3, 2, 6) cannot be 4 or 5 and so must be 7, but then there
is no possibility for the fourth vertex of the third quadrangular face at vertex 2. The
same kind of argument rules out the possibility that ρ2 = (3, 4, 0, 1, 6, 11), by considering
the faces containing the edges {5, 6} and {11, 12}.

Instead, suppose that y0 = y6 = 1. In this case, we can take ρ0 = (9, 11, 12, 1, 2, 4) and
ρ6 = (10, 8, 7, 5, 4, 2). Then the quadrangular face at vertex 0 must be bounded by the
4-cycle (9, 0, 4, 8), so ρ4 = (0, 2, 6, 5, 3, 8), and similarly, the quadrangular face at vertex
6 must be bounded by the 4-cycle (10, 6, 2, 11) and then ρ2 = (0, 1, 3, 11, 6, 4). It follows
that the fourth vertex of the quadrangular face partially bounded by the 2-arc (8, 4, 3) is
either 7 or 12, and so ρ8 is either (7, 6, 10, 12, 9, 4) or (7, 6, 10, 9, 4, 12), both of which imply
that vertex 8 lies in at most three triangular faces. Similarly, ρ11 is either (12, 0, 9, 10, 2, 7)
or (12, 0, 9, 7, 10, 2), and so vertex 11 is incident with at most three triangular faces. Thus
V4+V5 is at most 11, and therefore (V0, V1, V2, V3, V4, V5) = (0, 0, 0, 2, 7, 4). In particular,
every vertex other than 8 and 11 must be incident with at least four triangular faces. This
implies that the triple {1, 2, 3} must bound a triangular face at vertex 2, and similarly, the
triple {3, 4, 5} bounds a triangular face at vertex 4. It follows that ρ5 = (3, 4, 6, 7, 9, 1),
and then by considering the edge {1, 3} we see that the 2-arc (3, 5, 1) cannot partially
bound a triangular face, so the fourth triangular face at vertex 5 is bounded by {5, 7, 9}.
But then the fourth vertex of the quadrangular face partially bounded by the 2-arc (1, 5, 9)
has to be 10, and that leaves no possibility for ρ1.

It follows that there are just two possibilities for Y , viz. (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
and (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0). Thus exactly two vertices lie in 5 triangular faces, so
(V0, V1, V2, V3, V4, V5) = (0, 0, 0, 0, 11, 2), and all vertices lie in either 4 or 5 triangular faces.

Now suppose again that ρ0 = (9, 11, 12, 1, 2, 4). Then since vertex 2 lies in exactly four
triangular faces, ρ2 = (4, 0, 1, 3, 11, 6), and similarly, ρ11 = (12, 0, 9, 7, 2, 10). But then by
considering ρ11, we see that the quadrangular face at vertex 2 partially bounded by the
2-arc (11, 2, 3) must be bounded by the 3-arc (10, 11, 2, 3), which is impossible since there
is no edge from 3 to 10.

• C11(1, 2, 4) has no embedding of genus 2

This is by far the most challenging case, and so left until last. It is another one for
which we used a computer, and we give only a partial description of how we handled it.

We assume that it has a genus 2 embedding, which must have 20 faces, with at least
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14 being triangular. Again we consider the sequence Y = (y0, y1, y2, . . . , yn−1) as defined
above. This time we cannot show that at least one yi is 1, but condition (a) still holds,
namely that if yi = 1 then yj = 0 whenever i and j differ by ±2 or ±3 mod n.

Up to cyclic rearrangement and reversal we find there are eight possibilities for Y .
One of them is (1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0), and this can be eliminated using condition (b),
but also by showing that if yi = 1 then yj = 0 whenever i and j differ by ±4 or ±5 mod
n (when n = 11). Doing that is not as easy to do as it is in the case n = 13, as there are
many more possibilities to check and eliminate.

For example, consider the case where yi = yj = 1 with i− j ≡ ±5 mod 11. We
can deal with that by assuming ρ0 = (−4,−2,−1, 1, 2, 4) = (7, 9, 10, 1, 2, 4), and ρ5 =
(1, 3, 4, 6, 7, 9) or its inverse. Choosing ρ5 = (1, 3, 4, 6, 7, 9) creates a problem with the
edge {7, 9}, so we must have ρ5 = (1, 9, 7, 6, 4, 3). Then these two rotations at vertices 0
and 5 determine parts of the rotations at the other nine vertices, as follows:

Vertex 1: ρ1 = (2, 0, 10, 5, 3, 8) or (2, 0, 10, 8, 5, 3);

Vertex 2: ρ2 = (4, 0, 1, a, b, c) where {a, b, c} = {3, 6, 9};
Vertex 3: ρ3 = (1, 5, 4, d, e, f) where {d, e, f} = {2, 7, 10};
Vertex 4: ρ4 = (3, 5, 6, 0, 2, 8) or (3, 5, 6, 8, 0, 2);

Vertex 6: ρ6 = (4, 5, 7, g, j, k) where {g, j, k} = {2, 8, 10};
Vertex 7: ρ7 = (6, 5, 9, 0, 3, 8) or (6, 5, 9, 0, 8, 3);

Vertex 8: ρ8 = (1, p, q, r, s, t) where {p, q, r, s, t} = {4, 6, 7, 9, 10};
Vertex 9: ρ9 = (10, 0, 7, 5, 2, 8) or (10, 0, 7, 5, 8, 2);

Vertex 10: ρ10 = (1, 0, 9, x, y, z) where {x, y, z} = {3, 6, 8}.

Hence we have 2 possibilities for the rotations at each of the vertices 1, 4, 7 and 9, and
6 possibilities for the rotations at each of the vertices 2, 3, 6 and 10, and 120 possibilities
for the rotation at vertex 8. These combine to give a total of 24 · 64 · 120 = 2488320.
Clearly further observations can be made to reduce this number, but even so, it is a small
enough number that all possibilities can easily be checked by computer. We carried out
a 35-minute computation using Magma on a laptop, and found that the smallest genus
achievable from such choices of rotations is 3. In particular, genus 2 is impossible when
y0 = y5 = 1.

Similarly, when y0 = y4 = 1 and ρ0 = (7, 9, 10, 1, 2, 4), the total number of possibilities
for the rotation system is 2 · 66 · 242 = 53747712, and a longer (13-hour) computation
shows that the smallest genus achievable is again 3.

Hence if yi = 1 then yj = 0 whenever i and j differ by ±2, ±3, ±4 or ±5 mod n. It
follows that at most two terms in the sequence Y can be 1, and if there are two, they
must be in adjacent positions, so Y = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
or (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

The same kind of computational approach as described immediately above can also
be adapted to show that we cannot have y0 = y1 = 1. This takes rather longer (73 hours
by computer), but again shows that genus 3 is the smallest possible, and so it eliminates
the first of the remaining three possibilities for Y .
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Next, we consider the second possibility, namely Y = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Again
suppose that vertex 0 lies in five triangular faces, and ρ0 = (7, 9, 10, 1, 2, 4), and again let
Vk be the number of vertices incident with exactly k triangular faces. Then V5 = 1, and
the weighted sum T = V1+2V2+3V3+4V4+5V5 is at least 3 · 14 = 42, and we find that
(V0, V1, V2, V3, V4, V5) = (0, 0, 0, 0, 10, 1), (0, 0, 0, 3, 7, 1), (0, 0, 1, 1, 8, 1) or (0, 1, 0, 0, 9, 1).

In the first of these four cases, all vertices except 0 (say) lie in exactly four triangular
faces, and this makes it easy to eliminate. But we can do that another way, more helpfully.
It is easy to prove that if vertex 2 lies in four triangular faces, then vertex 3 cannot, and
similarly, if vertex 9 lies in four triangular faces, then vertex 8 cannot. Hence at least two
vertices lie in three or fewer triangular faces, and this rules out the first and fourth of the
above possibilities for (V0, V1, V2, V3, V4, V5), leaving only (0, 0, 0, 3, 7, 1) and (0, 0, 1, 1, 8, 1).

Hence in particular, the number of vertices lying in at most three triangular faces is
V0+V1+V2+V3, which is either 3 or 2, and moreover, these vertices include at least one
of vertices 2 and 3, and at least one of vertices 8 and 9. It follows that at least one of the
two vertices 4 and 7 must lie in four triangular faces.

Given that ρ0 = (7, 9, 10, 1, 2, 4), we find there are just seven possibilities for ρ4, namely
(0, 2, 3, 5, 6, 8), (0, 2, 3, 5, 8, 6), (0, 2, 3, 8, 6, 5), (0, 2, 6, 5, 3, 8), (0, 2, 6, 8, 3, 5), (0, 2, 6, 8, 5, 3)
and (0, 2, 8, 6, 5, 3). The first, third and fourth of these cases can be eliminated with the
help of a computer, and in the second, fifth and seventh cases, it is easy to prove that
at least two of the vertices 1, 2, 3 and 5 lie in at most three triangular faces, while in
the sixth case, either the latter happens, or vertex 3 lies in at most two triangular faces.
Similarly (by replacing elements of Z11 by their negatives), we find that if vertex 7 lies
in four triangular faces, then either vertex 8 lies in at most two triangular faces, or at
least two of the vertices 6, 8, 9 and 10 lie in at most three triangular faces. Both of these
are impossible since (V0, V1, V2, V3, V4, V5) = (0, 0, 0, 3, 7, 1) or (0, 0, 1, 1, 8, 1), so vertex 7
cannot lie in four triangular faces.

Now we have at least three vertices lying in at most three triangular faces, namely
vertex 7, one of 2 and 3, and one of 8 and 9. Thus (V0, V1, V2, V3, V4, V5) = (0, 0, 0, 3, 7, 1).
In particular, V0+V1+V2 = 0, so vertex 3 cannot lie in at most two triangular faces, and
therefore at least two of the vertices 1, 2, 3 and 5 lie in at most three triangular faces.
This is one too many; contradiction.

Finally, we suppose that Y = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Here V5 = 0, and it is easy to
see that (V0, V1, V2, V3, V4, V5) = (0, 0, 0, 2, 9, 0) or (0, 0, 1, 0, 10, 0).

In both of these two cases, the weighted sum T is 42, so there are 14 triangular faces,
and then from 42+24 = 3F3 +4F` 6 2E = 66 we find that the six non-triangular faces all
have length 4. Moreover, since (V0, V1, V2, V3, V4, V5) = (0, 0, 0, 2, 9, 0) or (0, 0, 1, 0, 10, 0),
we know there are at most two vertices that are not in four triangular faces, say u and v.
In particular, since |u− v| is at most 5, we can suppose that v = u+ j where 1 6 j 6 5,
and then u = v+k where 6 6 k 6 10. It follows that each of the five vertices v+ 1, v+ 2,
v + 3, v + 4 and v + 5 lies in four triangular faces, and without loss of generality we may
take v = 8, and assume that these five vertices are 9, 10, 0, 1 and 2.

Under this assumption, an easy exercise shows that up to reflection there are just eight
possibilities for the rotation ρ0, namely (1, 2, 4, 7, 9, 10), (1, 2, 4, 9, 7, 10), (1, 2, 4, 10, 9, 7),
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(1, 2, 9, 7, 4, 10), (1, 4, 2, 7, 9, 10), (1, 4, 2, 9, 7, 10), (1, 7, 4, 2, 9, 10) and (1, 7, 9, 2, 4, 10),
which we will call π1 to π8.

In the first case, which involves the rotation we took at vertex 0 when we assumed 0
lay in five triangular faces, one of the two non-triangular faces is partially bounded by the
2-arc (7, 0, 4), and the other is bounded by a 4-cycle of the form (u, 0, v, w) where u and
v are adjacent in the graph. In this situation, we can change the rotations at vertices u
and v so that the edge {u, v} becomes a diagonal, splitting the latter face into two faces
of length 3, while the two faces that previously contained the edge {u, v} are merged into
a single face. This achieves a different embedding with the same genus 2, but with five
triangular faces at vertex 0, which we know is impossible. Hence ρ0 is one of π2 to π8.

The same arguments show that the only possibilities for the rotation at each of the
vertices 9, 10, 1 and 2 are the analogues of π2 to π8, obtained by adding respectively 9,
10, 1 or 2 (mod 11) to the points of each πi, and their inverses.

Also we note that under the automorphism of the circulant taking each v to −v,
the possibilities π2 = (1, 2, 4, 9, 7, 10) and π5 = (1, 4, 2, 7, 9, 10) are equivalent to the
inverse of each other, as are π4 = (1, 2, 9, 7, 4, 10) and π7 = (1, 7, 4, 2, 9, 10), while
π3 = (1, 2, 4, 10, 9, 7) is ‘self-equivalent’, and each of π6 = (1, 4, 2, 9, 7, 10) and π8 =
(1, 7, 9, 2, 4, 10) is equivalent to its own inverse. Hence we may assume that ρ0 is π2, π3,
π4, π6 or π8.

Now suppose ρ0 is π2 = (1, 2, 4, 9, 7, 10). Then the two non-triangular faces at 0 are
partially bounded by the 2-arcs (9, 0, 4) and (10, 0, 7), while the four triangular faces are
bounded by the 3-cycles (2, 0, 1), (4, 0, 2), (7, 0, 9) and (1, 0, 10). At vertex 2, the rota-
tion must have the form (.., 4, 0, 1, ..), and by looking at the analogues of π2 to π8, we
find there is just one possibility, namely (3, 9, 6, 4, 0, 1), the analogue of π7. In particu-
lar, the four triangular faces at vertex 2 are bounded by the 3-cycles (1, 2, 0), (0, 2, 4),
(4, 2, 6) and (3, 2, 1). But then it follows that the rotation at vertex 1 must have the form
(.., 3, 2, 0, 10, ..), and therefore cannot be the analogue of any of π2 to π8; contradiction.

Instead, suppose ρ0 is π3 = (1, 2, 4, 10, 9, 7). Then the two non-triangular faces are
partially bounded by the 2-arcs (10, 0, 4) and (1, 0, 7), while other four triangular faces at
vertex 0 are triangular. Again ρ2 must be (3, 9, 6, 4, 0, 1), and it follows that ρ4 has the
form (.., 6, 2, 0, ..). Similarly, at vertex 9 the rotation must have the form (.., 7, 0, 10, ..),
and we find there is just one possibility, namely (7, 0, 10, 8, 2, 5), the analogue of π−1

4 ,
and then ρ7 has the form (.., 0, 9, 5, ..). Now at vertex 1, the rotation has the form
(.., 3, 2, 0, ..), so must be (3, 2, 0, 8, 10, 5) or (3, 2, 0, 5, 8, 10), analogous to π−1

2 or π−1
4 .

Hence the quadrangular face containing the edges {0, 1} and {0, 7} must be bounded by
either (1, 0, 7, 8) or (1, 0, 7, 5), but the latter is inconsistent with the rotation at vertex
7, and it follows that ρ1 = (3, 2, 0, 8, 10, 5). In particular, (1, 8, 10) bounds a triangular
face, and therefore at vertex 10, the rotation has the form (.., 1, 8, 9, 0, ..). It follows that
ρ10 = (0, 6, 3, 1, 8, 9), analogous to π7, but this inconsistent with the rotation at vertex 4;
contradiction.

Similar arguments rule out the possibilities π4, π6 and π8 for ρ0. (When ρ0 = π6, we
find three candidates for ρ1, viz. the analogues of π3, π

−1
5 and π−1

7 , but all are impossible.)

Thus we find no possibility for a rotation system, and it follows that C11(1, 2, 4) has
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no embedding of genus 2. This completes the proof of Theorems 2 and 3.
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