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Abstract

A sequence is Thue or nonrepetitive if it does not contain a repetition of any
length. We consider a generalization of this notion. A j-subsequence of a sequence
S is a subsequence in which two consecutive terms are at indices of difference j in S.
A k-Thue sequence is a sequence in which every j-subsequence, for 1 6 j 6 k, is also
Thue. It was conjectured that k + 2 symbols are enough to construct an arbitrarily
long k-Thue sequence and shown that the conjecture holds for k ∈ {2, 3, 5}. In this
paper we present a construction of k-Thue sequences on 2k symbols, which improves
the previous bound of 2k + 10

√
k. Additionally, we define cyclic k-Thue sequences

and present a construction of such sequences of arbitrary lengths when k = 2 using
four symbols, with three exceptions. As a corollary, we obtain tight bounds for total
Thue colorings of cycles. We conclude the paper with some open problems.

Keywords: Thue sequence; k-Thue sequence; total Thue chromatic number

1 Introduction

A subsequence of consecutive terms of a sequence S is called a block. A repetition in
a sequence S is a subsequence ξ1 . . . ξtξt+1 . . . ξ2t of consecutive terms of S such that
ξi = ξt+i for every i = 1, . . . , t. A repetition thus consists of two identical repetition blocks
and hence its length is always even. A sequence is called nonrepetitive or Thue if it does
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not contain a repetition of any length. Throughout the paper, the terms of sequences are
not separated by commas as this is a usual notation in this area of combinatorics.

Repetitions and other regularities in sequences of symbols (words) take an important
part in combinatorics on words (we refer the reader to [4] for a short introduction to
this topic). The origins of their studies date back in 1906, when Thue [28] (see [3] for a
translation) showed that using only three symbols one can construct an arbitrarily long
sequence without a repetition. His famous work attracted a considerable attention and
later many applications have been found in various fields of science [21].

Due to many unexpected applications that sequences without repetitions found in
science, naturally a number of generalizations was presented. The most basic one is
forbidding an appearance of k equal consecutive blocks, where already Thue showed that
for k = 3, only two symbols suffice to construct an infinite sequence [28]. A more restrictive
generalization are the sequences avoiding abelian powers. An abelian k-th power is a
sequence of k consecutive blocks, where in each block every symbol s appears the same
number n(s) of times. Again, the most interesting case is when k equals 2. It was shown
that 25 [13], five [22], and finally four [20] symbols suffice to construct an infinite sequence
without abelian 2-repetitions. For k = 3 and k = 4, Dekking [12] showed that three and
two symbols suffice, respectively. See e.g. [6] for more details on generalizations of Thue
sequences.

In this paper we consider the following generalization of Thue sequences introduced
by Currie and Simpson [11]: a (possibly infinite) sequence S is k-Thue (or nonrepetitive
up to mod k) if every j-subsequence of S is Thue, for 1 6 j 6 k. Here, a j-subsequence
of S is a subsequence ξiξi+jξi+2j . . . , for any i. Notice that a 1-Thue sequence is simply
a Thue sequence. Currie and Simpson [11] introduced this notion in connection with
nonrepetitive tilings, i.e. assignments of symbols to the lattice points of the plane such
that all lines in prescribed directions are nonrepetitive.

As an example, consider a sequence a b d c b c, which is Thue, but not 2-Thue, since the
2-subsequence b c c is not Thue. On the other hand, a b c a d b is 2-Thue, but not 3-Thue.

A natural question arises what is the minimum number of symbols required to con-
struct an arbitrarily long k-Thue sequence. In [11], the authors showed that four symbols
are enough to create 2-Thue sequences and five symbols suffice for 3-Thue sequences of
arbitrary lengths. The lower bound on the number of symbols needed to construct a
k-Thue sequence of an arbitrary length is obvious; for a positive integer k, at least k + 2
symbols are required to construct such sequences.

In 2002 Grytczuk [16] conjectured that, in fact, the upper bound is equal to the lower
bound for any k.

Conjecture 1 ([16]). For any k, k + 2 symbols suffices to construct a k-Thue sequence.

This conjecture is hence true for k = 2 and 3 and moreover, in [9], Currie and Moodie
confirmed it also for k = 5. The case with k = 4 was considered by Currie and Pierce [10]
using an application of the fixing block method. However, the upper bound for general k
is still far from the conjectured. The bound of e33k established in [16] was substantially
improved to 2k +O(

√
k) in [17], which is currently the best known upper bound.
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Theorem 2 ([17]). For an arbitrary k > 1, there is an arbitrarily long k-Thue sequence
using at most 2k + 10

√
k symbols.

Motivated by the paper of Grytczuk et al. we present a construction of arbitrarily
long k-Thue sequences using at most 2k symbols which improves the previous bound. We
also introduce cyclic k-Thue sequences and establish the number of symbols required to
construct a cyclic 2-Thue sequence of arbitrary length.

The paper is organized as follows: in Section 2, we improve the upper bound on the
number of symbols needed to construct k-Thue sequences, in Section 3, we deal with
cyclic 2-Thue sequences, and in Section 4 we briefly describe nonrepetitive colorings of
graphs and present a result establishing tight bounds for total Thue colorings of cycles.
Finally, in Section 5, we propose a conjecture, questions and possibilities for further work.

2 Upper bound on k-Thue sequences

In this section we improve the upper bound for the number of symbols needed to construct
k-Thue sequences, with k > 3, given in [17].

Theorem 3. For an arbitrary k > 3, there is an arbitrarily long k-Thue sequence using
at most 2k symbols.

Notice that our proof is constructive and provides a k-Thue sequence of a given length,
while the proofs of upper bounds known so far just show an existence of such sequences.

Proof. Consider an arbitrary Thue sequence on three symbols α, β and γ. We replace
each of the three symbols by 2k symbols, a1, . . . , ak called a-symbols, and b1, . . . , bk called
b-symbols, in the following way: α by a1 . . . ak b1 . . . bk, β by a1 . . . ak b2 . . . bkb1, and γ
by a1 . . . ak b3 . . . bkb1b2, and denote the obtained sequence τk. We refer to the blocks
replacing α, β and γ as the α-block, β-block and γ-block, respectively, and denote these
blocks replacement blocks. In Figure 1 the scheme of symbol adjacencies in τ1 and τk is
depicted.

We will use the three claims below, to show that the sequence τk is k-Thue. We denote
the i-th term of τk by ξi.

Claim 4. Let S be a j-subsequence of τk, for 1 6 j 6 k. If a term ξ of S is a b-symbol
preceded or followed by an a-symbol, we can uniquely determine the replacement block in
which ξ is contained.

Proof. By construction of τk, it is clear that the distance (the number of terms) between
an a-symbol as and a b-symbol bt, for some fixed s and t, with 1 6 s, t 6 k, within a
replacement block is different in each of the replacement blocks, and so we can uniquely
determine to which replacement block bt belongs. Moreover, this holds also if as is in a
subsequent replacement block of the replacement block of bt.

Claim 5. Let R be a repetition in some j-subsequence of τk starting with the symbol as,
where j < s 6 k. Then there is a repetition in τk starting with the symbol as−j.
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α β

γ

a1...ak b1b2...bk a1...ak b2...bkb1

a1...ak b3...bkb1b2

Figure 1: The scheme of symbol adjacencies in τ1 and τk.

Proof. Let ξiξi+j . . . ξi+(2r−1)j be a repetition of length 2r in a j-subsequence of τk. Since
every a-symbol is always at the same position within a replacement block, from ξi = ξi+rj
it follows that ξi−j = ξi+(r−1)j and so the sequence ξi−jξiξi+j . . . ξi+(2r−2)j is also a repetition
in τk.

Claim 6. If there is a repetition starting with a b-symbol in some j-subsequence of τk,
there is also a repetition starting with an a-symbol.

Proof. Let ξiξi+j . . . ξi+(2r−1)j be a repetition of length 2r in a j-subsequence of τk, where
ξi is a b-symbol bs for some 1 6 s 6 k. We consider two cases regarding the term
ξi+(r−1)j. Suppose first that ξi+(r−1)j is an a-symbol at, 1 6 t 6 k. Let p be the least
positive integer such that ξi+pj is an a-symbol. By Claim 4, the terms ξi+(p−1)j and ξi+pj
uniquely determine the corresponding replacement block, i.e. the block in which also ξi
is contained. Notice that the terms ξi+(r+p−1)j = ξi+(p−1)j and ξi+(r+p)j = ξi+pj determine
the same replacement block in which similarly ξi+rj = bs is contained. Since ξi+(r−1)j = at,
it follows that also ξi−j = at and hence ξi−jξiξi+j . . . ξi+(2r−2)j is also a repetition.

Thus, we may assume that ξi+(r−1)j is a b-symbol bu, 1 6 u 6 k. Let p and q
be the least positive integers such that ξi+pj and ξi+(r−1−q)j are a-symbols. Then, by
Claim 4, the terms ξi+(r−1−q)j and ξi+(r−q)j uniquely determine the corresponding replace-
ment block and so ξi+(r−q)j . . . ξi+(r+p−1)j = ξi+(2r−q)j . . . ξi+(2r+p−1)j. This means that
ξi+pjξi+(p+1)j . . . ξi+(2r+p−1)j is also a repetition.

Suppose now that there is some repetition R in a j-subsequence of τk, with 1 6 j 6 k.
Notice that since each replacement block has length 2k, consecutive a-symbols (resp. b-
symbols) in R correspond to one replacement block. By Claim 6, we may assume that
the first term of R is an a-symbol ξ and by Claim 5, we have that ξ = ai for 1 6 i 6 j. It
follows that the last term of the first repetition block of R (and also of R) is a b-symbol.
Thus, by Claim 4, we infer that the replacement blocks of both repetition blocks in R are
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identical, which means that there is a repetition in τ1 also, a contradiction. Hence, τk is
indeed k-Thue.

3 Cyclic 2-Thue sequences

In this section we introduce the notion of cyclic Thue sequences and their generalization,
cyclic k-Thue sequences, where for k = 2 we establish tight bounds on the number of
symbols needed to construct sequences of arbitrary lengths. Cyclic Thue sequences were
first investigated by Currie [7], who was motivated by the question of Alon et al. [1] asking
which cycles can be Thue colored by three colors.

Let S = ξ1 . . . ξ` be an arbitrary sequence. A sequence S is a conjugate of S if there
is some integer i such that S = ξi . . . ξ`ξ1 . . . ξi−1. A sequence is cyclic Thue if all its
conjugates are Thue (we adopted this definition from [7]).

The definition of cyclic k-Thue sequences is analogous. A cyclic j-subsequence is a
subsequence of S in which every two consecutive terms appear at indices i and i + j
(mod `), for some integer i, and every term from S appears at most once. Hence, for `
even the length of any cyclic 2-subsequence is at most `

2
, while for ` odd, its length is

at most `. A sequence S is cyclic k-Thue if every cyclic j-subsequence of S is Thue, for
1 6 j 6 k. One can imagine the terms of a cyclic sequence on a circle such that the last
term is followed by the first term (see Fig. 3 for an example).

Observe that a cyclic sequence consisting of at least four terms requires at least four
symbols in order to be 2-Thue. Moreover, for cyclic 2-Thue sequences of lengths 5, 7, and
11 at least five symbols are needed.

Lemma 7. Every cyclic 2-Thue sequence of length 5, 7, or 11 is constructed by at least
five symbols.

Proof. Let S = ξ1 . . . ξ` be a cyclic 2-Thue sequence of length ` ∈ {5, 7, 11}. We consider
each of the three cases separately assuming that S contains four distinct symbols a, b, c,
and d, obtaining a contradiction.

` = 5. Clearly, every symbol appears at most b`/3c times in a cyclic 2-Thue sequence
of length `, since the terms at distance at most 2 have distinct symbols assigned. Hence,
all terms must be distinct in S, a contradiction.

` = 7. Every symbol appears at most twice in a seven-term cyclic 2-Thue sequence.
Without loss of generality, we may assume that a appears once, while the other three
symbols appear twice in S. We may assume that ξ1 = c, ξ2 = a, and ξ3 = b. Then,
ξ4 = ξ7 = d, ξ5 = c, and ξ6 = b. But then there is a repetition ξ6ξ1ξ3ξ5 in a cyclic
2-subsequence of S, a contradiction. On the other hand, a sequence abcabde constructed
by five distinct symbols is cyclic 2-Thue.

` = 11. Any symbol of S occurs at most three times. Hence, three symbols appear
three times and one, say d, appears twice. Assume that ξ1 = d. Since the length of a
2-Thue sequence on three symbols is at most 5, the second occurrence of d is determined
up to symmetry. Thus, assume d is at index 7. Moreover, a 2-Thue sequence of length
5 on three symbols has a unique ordering up to isomorphism, so we may assume that
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ξ1 . . . ξ7 = dabcabd. The symbol c appears once at index 4 and the other two occurrences
of this symbols are at index 8 and 11. Therefore, S = dabcabdcxyc. There are two
possibilities: xy = ab or xy = ba. In the former case a repetition cbcb appears in a
2-subsequence of S, and in the latter case there is a repetition adbadb in a cyclic 2-
subsequence, a contradiction. Again, there exists a cyclic 2-Thue sequence abcabdcbace
on five symbols.

Before we prove the main theorem of this section, we present an alternative construc-
tion of 2-Thue sequences using a similar approach as in Section 2. We use such constructed
sequences to construct cyclic 2-Thue sequences. Consider an arbitrary Thue sequence on
an alphabet {α, β, γ} and insert a symbol δ between any two consecutive symbols α and
γ (or γ and α) to obtain a new sequence τ1. By Lemma 8 below, τ1 is also Thue.

First, we present some additional notation used in the sequel. By S(p1, p2) we denote
a subsequence of a sequence S = ξ1 . . . ξn starting (at index p1) with the term ξp1 and
ending (at index p2) with the term ξp2 for some indices p1 and p2.

Lemma 8 ([19]). Let A = a1 . . . am be a nonrepetitive sequence with ai ∈ A for all i =
1, 2, . . . ,m. Let Bi = bi1b

i
2, . . . , b

i
mi
, 0 6 i 6 r + 1, be nonrepetitive sequences with bij ∈ B

for all i = 0, 1, . . . , r+ 1 and j = 1, 2, . . . ,mi. If A∩B = ∅ then S = B0A(1, n1)B
1A(n1 +

1, n2) . . . B
rA(nr + 1,m)Br+1 with 1 6 n1 < n2 < · · · < nr < m is a nonrepetitive

sequence.

Notice that in our case we have A = {α, β, γ}, B = {δ}, Bi = δ, and B0 = Br+1 = ∅.
Using the property that there is no pair of adjacent terms α and γ nor a pair of

adjacent terms β and δ, we obtain the following lemma.

Lemma 9. For every odd integer k there exists a subsequence of τ1 of length k starting
and ending with the same symbol.

Proof. Let k be an arbitrary odd integer. Suppose, for a contradiction, that every subse-
quence of τ1 of length k starts and ends with a different symbol. Let T = ξi+1 . . . ξi+k be
a subsequence of τ1 of length k. Without loss of generality we may assume that T starts
with α. Let j ∈ {i+ 1, . . . , i+ k}. Observe that for every j, with j ≡ i + 1 (mod 2), we
have ξj, ξj+k−1 ∈ {α, γ}, and for j, where j ≡ i (mod 2), we have ξj, ξj+k−1 ∈ {β, δ}. By
the initial assumption, we also have that ξj 6= ξj+k−1 for every j. However, ξj = ξj+2k−2
for every j and hence there is a repetition of length 4k − 4 in τ1, a contradiction.

Now, replace each of the symbols α, β, γ, and δ in τ1 with the four-term blocks abcd,
abdc, bacd, and badc, respectively. We denote the obtained sequence by τ2 (see Figure 2
for the scheme of symbol adjacencies in τ1 and τ2).

Below, we list two basic properties of τ2. Both of them are obvious by the construction
of τ2.

Property 1. In τ2 the symbols a and b appear only at positions 1 or 2 (mod 4) and the
symbols c and d appear only at positions 0 or 3 (mod 4).
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α

δ β

γ

abcd

abdc

bacd

badc

Figure 2: The scheme of symbol adjacencies in τ1 and τ2.

Property 2. In τ2 the symbol pairs cd and dc appear alternately, i.e. ξiξi+1 = cd for
i ≡ 3 (mod 8) and ξiξi+1 = dc for i ≡ 7 (mod 8).

Now we are ready to show that the sequence τ2 is 2-Thue.

Theorem 10. The sequence τ2 is 2-Thue.

Proof. First, we show that τ2 is without a repetition by considering two cases. In the
former, we show that there is no repetition of length at most 8 in τ2 (this case is discussed
in Claim 11).

Claim 11. There is no repetition of length at most 8 in τ2.

Proof. By Property 1, the same symbol appears after at least two other symbols, so
repetitions of lengths 2 or 4 are not possible. Moreover, Property 1 implies that every
block of length 5 in τ2 contains four distinct symbols, hence there is no repetition of length
6 in τ2. Obviously, there is no repetition of length 8 in τ2 due to Property 2.

In the latter case, we show that there is no repetition of length greater than 8. The
proof is divided into several subcases regarding the length of an eventual repetition and
the position of its starting term. We start with the following claim.

Claim 12. There is no repetition of length 2t ≡ 2 (mod 4) in τ2.

Proof. Since the symbols in τ2 come in pairs, a with b and c with d, every block of a
repetition must be of even size.

Let k and t be positive integers and suppose there is a repetition

R = ξk+1 . . . ξk+tξk+t+1 . . . ξk+2t

in τ2 of length 2t starting at the position k + 1 such that ξk+i = ξk+t+i for i = 1, . . . , t.
We distinguish several cases regarding the position of the starting term of R in τ2. First,
consider the values of t. By Claim 12, t is not odd, and moreover t 6≡ 2 (mod 4), since
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the second block would start with a symbol from the second pair. Hence t ≡ 0 (mod 4).
Now, we consider four subcases regarding the values of k.

• k ≡ 0 (mod 4). Since t ≡ 0 (mod 4) an appearance of a repetition R in τ2 implies
that there is also a repetition in τ1, a contradiction.

• k ≡ 1 (mod 4). By Property 1, the term ξk+1 = ξk+t+1 of R is a or b and the
previous term ξk = ξk+t is the other symbol of a or b. Therefore there is a repetition
R′ in τ2 of length 2t starting with the term ξk. According to the former case we
obtain a contradiction.

• k ≡ 2 (mod 4). By Property 2, we have that ξk+1ξk+2 = ξk+2t+1ξk+2t+2, since 2t ≡ 0
(mod 8). Hence, the subsequence ξk+3 . . . ξk+2t+2 is also a repetition of length 2t in
τ2, a contradiction.

• k ≡ 3 (mod 4). As in the previous case, we obtain a repetition of length 2t starting
with the term ξk+2, a contradiction.

It follows that τ2 is a Thue sequence.

To show that the sequence τ2 is 2-Thue it remains to prove that every 2-subsequence
is nonrepetitive. Consider a subsequence τodd (τeven) formed by the terms at odd (even)
positions in τ2. Clearly, there is no repetition of length 2 and 4 in τodd. Now suppose that
there is a repetition Rodd = {ζn}k+tk+1 in τodd of length t, t > 6. Notice that the terms at
even positions are uniquely determined by Property 1. Therefore if there is a repetition
in τodd, there is also a repetition Reven = {ζn}k+t+1

k+2 in τeven. Consequently, these facts lead
to a contradiction, since having a unique determination of the terms at odd and also at
even positions, implies that there is also a repetition in the whole sequence τ2 of length
2t starting at the position k + 1. This establishes the theorem.

Now, we are ready to prove the main theorem of this section.

Theorem 13. For every ` > 4, ` /∈ {5, 7, 11}, there exists a cyclic 2-Thue sequence of
length ` constructed by four symbols.

Proof. In the proof, we proceed as follows. First, we present a construction of sequences
of specified lengths obtained from subsequences of the sequence τ2 described above and
show that such sequences are cyclic 2-Thue. Then we show that we can construct a cyclic
2-Thue sequence of any length.

By Lemma 9, there exists a subsequence S = ξ1 . . . ξ` of τ2 of length ` starting and
ending with equal blocks abdc for every ` = 8t+ 4, with t > 1. Moreover we can assume
that ξ5ξ6ξ7ξ8 = bacd and by Property 2 we have ξ`−5ξ`−4 = cd. Let Sc be the sequence
obtained by replacing the first term a in S with the symbol c, and the last term c with the
symbol a (see Figure 3). Now, we show that Sc is cyclic 2-Thue. Suppose the contrary,
that there is a repetition R in some cyclic j-subsequence of Sc, for j ∈ {1, 2}. It is easy
to verify that the subsequence Sc(`− 3, 4) is 2-Thue. Furthermore, observe that R is not
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c b
d
c

ad
b

a
1

2
3

4

`
`-1

`-2
`-3

a
bd

c
`-4

`-5

5

6

Figure 3: A cyclic 2-Thue sequence Sc obtained by replacing the first and the last term
of S.

within any j-subsequence of Sc(2, `− 1), since its terms are the same as the terms at the
same positions in S, which is 2-Thue. Hence, R contains at least one of the terms at
indices 1 and ` and some of the terms of Sc(5, `− 4).

When j = 1, at least one of the subsequences Sc(1, 5) and Sc(`− 4, `) is contained in
R. In the former case, R contains a block cbd, which is unique in Sc by Property 1; in the
latter case, there is a unique block bda, a contradiction. If j = 2, then the repetition R
contains the terms of at least one pair of indices `−2 and `, `−1 and 1, ` and 2, or 1 and
3. Similarly as above, these terms represent unique blocks ba, dc, ab or cd, a contradiction
implying that Sc is cyclic 2-Thue. Notice that in both cases we assume that the unique
blocks appear in one repetition block of R, since otherwise, if a unique block, say ab, is
divided and appears in both repetition blocks of R, then another block, in this case ba,
appears entirely in one repetition block of R.

In what follows, we show that we can modify the above sequences such that we obtain
cyclic 2-Thue sequences of arbitrary lengths. Consider a cyclic sequence Sc of length
` = 8t + 4 for some t constructed as above. We extend the sequence Sc by appending a
block of symbols Ak from Fig. 4, obtaining a sequence Sck, for k ∈ {4, 9, 10, 11, 13, 14, 15}.
Denote the indices of the terms of Sck corresponding to the terms of Ak by `+ 1, . . . , `+k.

c b
d
c

a
d

b
a

Ak

1
2

3
4

`
`-1

`-2

`-3

k Ak

0 ∅
4 cdba
9 cbadbcdba
10 cbadcabcda
11 cbadcabcdba
13 cdbacbadbcdba
14 cbadbcadcabcda
15 cbadbcadcabcdba

c
d b

a
`-4

`-5

5

6

Figure 4: A list of blocks of symbols to be appended at the end of Sc.

We show that a sequence Sck is cyclic 2-Thue, for every k. Similarly as in the case above,
suppose that there is a repetition Rk in some cyclic j-subsequence of Sck, for j ∈ {1, 2}.
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As above, there is no repetition in any j-subsequence of Sck(2, `− 1) and, since the blocks
cdabdaAkcbdcba are 2-Thue for every k, Rk is not contained in any j-subsequence of
Sck(` − 5, 6) (which is of length k + 12). Now, we consider two cases regarding the value
of j.

Suppose that Rk is a subsequence of some 1-subsequence of Sck. Then, by the obser-
vation above, it must contain the terms of Sck(1, 3) (i.e. cbd) or of Sck(`− 2, `) (i.e. bda).
First, assume that at least one of the two blocks is contained in one repetition block of
Rk. By Property 1 and the choice of Ak’s, both blocks are unique in all the sequences Sck,
a contradiction.

Now, we may assume that none of the blocks cbd and bda is contained in one repetition
block of Rk. Hence only one of them is completely contained in Rk. This implies that one
repetition block is entirely within S(`−1, 2), while the second is entirely within S(2, `−1).
By Properties 1 and 2, the former and the latter block are not the same, a contradiction
implying that all the sequences Sck are cyclic Thue.

We may thus assume that Rk is a subsequence of some cyclic 2-subsequence of Sck. By
the same argumentation as above, at least one of the four triples of indices (1, 3, 5), (`−
4, ` − 2, `), (` − 3, ` − 1, ` + 1) or (` + k, 2, 4) appears in Rk. Recall that when k is odd
(then also `+ k is odd), a cyclic 2-subsequence might be of length `+ k, whereas in cyclic
sequences of even lengths there are two disjoint maximal cyclic 2-subsequences.

As in the previous case, the triples of indices represent unique blocks cdb, dba, adc
and abc, which means that Rk contains entirely exactly one of them, and clearly not in
one repetition block. This implies that one repetition block is entirely within S(`− 2, 3),
while the second is entirely within S(2, `− 1). Notice that from this it follows that in Rk

only the terms with the same parities of indices in Sck appear. Consider now how the four
blocks can be divided between the two repetition blocks of Rk.

Each of the four blocks can be divided in two ways; we consider them separately.
First, if the block cdb (resp. dba, adc, abc) is divided so that cd (resp. ba, dc, ab) appears
in one repetition block, the same block cannot appear in the other repetition block by
Property 1. Hence, we may assume that cdb (resp. dba, adc, abc) is divided so that db
(resp. db, ad, bc) appears in one repetition block. Notice that db does not appear in any
2-subsequence of S(`−2, 3), while ad appears twice but at the indices of different parities.
Only bc appears also at the indices of the same parities (in A13), but it is followed by
different symbols as bc at the indices 2 and 4. Hence, we may conclude that Rk does not
exist and that Sck is indeed cyclic 2-Thue for every k.

By Lemma 7, there are no cyclic 2-Thue sequences on four symbols of lengths 5, 7 and
11. The sequences of the remaining lengths ` that cannot be obtained by our construction,
i.e. ` = 8t + 4 + k, for t > 1 and k ∈ {0, 4, 9, 10, 11, 13, 14, 15}, are presented in Table 1.
This completes the proof.
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` S`
4 abcd
6 cdbcda
8 cbadbcda
9 abcdbacbd
10 cbadcabcda
13 abcabdcbadbcd
14 abcabdacbadbcd
15 abcabdacbdcbacd
17 abcabdacbdcbadbcd
18 abcabdabcdacbadbcd
19 abcabdacbadbcabdcbd

Table 1: Cyclic 2-Thue sequences of lengths that cannot be obtained by the above proce-
dure.

4 On nonrepetitive colorings of graphs

The notion of repetitive sequences has been strongly adopted by the graph theory. It
seems that Currie [5, 8] was the first to consider nonrepetitive sequences in graphs. In
2002, Alon et al. [1] generalized the problem to edge-colorings of graphs. A coloring of
the edges of a graph G is called nonrepetitive if the sequence of colors on any path in
G is nonrepetitive. The authors denote the minimal number of colors needed for such a
coloring the Thue number of G.

That work initiated the study of a number of colorings of graphs with analogous con-
straints; together with already mentioned edge colorings and classical colorings of vertices,
both colorings were defined also with restriction to faces and named facial nonrepetitive
edge or vertex coloring regarding nonrepetitive sequences of colors of consecutive vertices
or edges on the boundary of any face in plane graphs (see [19] and [2]). For more results on
graph colorings we refer the reader to an early survey of Grytczuk [15]. Additionally, a list
version of this problem was studied for paths [18], trees [14], and plane graphs [23, 24, 26]
where in the latter two the entropy compression method was used.

Recently, Schreyer and Škrabǔláková [25] introduced a new type of a nonrepetitive
coloring of graphs, a sort of total colorings: a weak and a (strong) total Thue coloring.
A weak total Thue coloring of a graph G is a coloring of vertices and edges such that the
color sequences of consecutive vertices and edges of every path in G are nonrepetitive. For
a (strong) total Thue coloring of G an additional condition must be satisfied: the induced
vertex-coloring and edge-coloring of G are also nonrepetitive. The minimum number of
colors required in these colorings are called the weak total Thue chromatic number and
the (strong) total Thue chromatic number of a graph G, respectively, and denoted by
πτw(G) and πτ (G), respectively. Among other results, they showed that the total Thue
chromatic number of a graph is at most 15∆2(G) and the bound increases to 18∆2(G) in
the list version of the problem.
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Note that an immediate corollary of the result of Currie and Simpson [11] is the fact
that the total Thue chromatic number of any path of length at least 4 is equal to 4.
In [25], the bounds for cycles were also presented.

Proposition 14 ([25]). For every cycle C on at least 4 vertices it holds 4 6 πτ (C) 6 6.

As a Corollary of Theorem 13, we obtain also the tight bounds for total Thue coloring
of cycles, improving Proposition 14.

Corollary 15. For every cycle Cn it holds πτ (Cn) = 4.

Notice that we need a sequence of length 2n to induce a coloring of the vertices and
edges of a cycle on n vertices.

5 Discussion

In this paper we presented a construction of k-Thue sequences using 2k symbols. We
believe that our method could be improved to obtain better or even tight upper bounds.
However, Conjecture 1 is still wide open for k = 4 and k > 6. While there was some
work already done on the upper bounds for constructing linear sequences, the results in
Section 3 seem to be the first in this area. For cyclic k-Thue sequences we sometimes need
an additional symbol already in the cases with k = 1 and k = 2. Even more, for a cyclic
k-Thue sequence of length 2k+1, we always need 2k+1 symbols. On the other hand, from
the construction used in proof of Theorem 3 one can deduce that for the lengths ` = 2kn,
cyclic k-Thue sequences on 2k symbols exist: instead of an arbitrary Thue sequence τ1,
we just take a cyclic Thue sequence on three symbols of length n. However, if the length
is big enough, we conjecture the following.

Conjecture 16. For every k there exists an integer `k such that at most k + 2 symbols
are needed to construct a cyclic k-Thue sequence of length ` > `k.

If the conjecture is true, what are the lengths, for which k + 2 symbols do not suffice?
Another interesting problem in this area is study of growth properties of Thue se-

quences (see [27] for a survey). An analogous question can be asked for k-Thue sequences.

Question 17. What is the number of k-Thue sequences of length n on k + 2 symbols?

In a k-Thue sequence we forbid repetitions in all j-subsequences, for 1 6 j 6 k.
One can naturally define the following weaker version. A weak k-Thue sequence is a Thue
sequence in which every k-subsequence is also Thue. Intuitively, the condition is at most as
restrictive as the condition for 2-Thue sequences, i.e. there is at least as many weak k-Thue
sequences as 2-Thue sequences on four symbols (note that every weak 2-Thue sequence
is also 2-Thue). Thus one may expect that, for k big enough, three symbols suffice to
construct a weak k-Thue sequence. Computer search shows that there are no weak k-Thue
sequences of arbitrary length on three symbols for k ∈ {2, . . . , 12, 14, 15, 16, 20, 22}.
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Question 18. Is there a positive integer k large enough such that three symbols suffice
to construct an infinite weak k-Thue sequence?

Grytczuk et al. [17] considered the following problem concerning infinite sets of for-
bidden differences. Let K be a fixed (possibly infinite) set of positive integers. A K-
nonrepetitive coloring is a coloring of the integers in which every arithmetic progression
with common difference in K forms a nonrepetitive sequence. They denoted by π(K) the
minimum number of colors needed for K-nonrepetitive coloring of Z. Clearly, by Theo-
rem 3, π(K) is at most 2k for finite sets K, where k is the maximum element of K. For
infinite sets the authors gave an Erdős type conjecture that π(K) is finite also for every
lacunary set K, where a set K = {k1 < k2 < . . . } is lacunary if there is a real number
δ > 0 such that ki+1

ki
> 1 + δ for all indices i.

Notice that the notion of weak k-Thue sequences is just a special case of the above;
namely, taken K = {1, k} the problems are equivalent.
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coloring of plane graphs, J. Graph Theory, 66:38–48, 2010.

[20] V. Keränen. Abelian squares are avoidable on 4 letters, In W. Kuich (Ed.), ICALP
1992, volume 623 of Lecture Notes in Comput. Sci., pages 41–52. Springer, 1992.

[21] M. Lothaire. Applied Combinatorics on Words, Cambridge University Press, 2005

[22] P. A. B. Pleasant. Non-repetitive sequences, Proc. Camb. Philos. Soc., 68:267–274,
1970.

[23] J. Przyby lo. On the facial Thue choice index via entropy conpression, J. Graph The-
ory 77 (2014), 180–189.

[24] J. Przyby lo, J. Schreyer and E. Škrabǔláková. On the facial Thue choice number of
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