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Abstract

Let T' denote a distance-regular graph with diameter D > 3 and intersection
numbers a1 = 0,a2 # 0, and co = 1. We show a connection between the d-bounded
property and the nonexistence of parallelograms of any length up to d + 1. Assume
further that I" is with classical parameters (D, b, o, §), Pan and Weng (2009) showed
that (b, a, ) = (=2, -2, ((—2)P*1 —1)/3). Under the assumption D > 4, we exclude
this class of graphs by an application of the above connection.
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1 Introduction

Let I' = (X, R) be a distance-regular graph with diameter D > 3. A sequence z, z, y of
vertices of I' is geodetic whenever

ANz, z) +9(z,y) = 0(x,y),

where 0 is the distance function of I'. A sequence z, z, y of vertices of I' is weak-geodetic
whenever

ANz, z) +0(z,y) < I(z,y) + 1.

We consider subsets of the vertex set of I' that are closed under the sense of weak-
geodetic sequences as the following definition.

Definition 1. A subset A C X is strongly closed if for any weak-geodetic sequence z, z,
yof I
T,y e A=z € A.

A subgraph of I" which is induced by a strongly closed subset of X is called a strongly
closed subgraph of I'. Strongly closed subgraphs are also called weak-geodetically closed
subgraphs in [14]. If a strongly closed subgraph A of diameter d is regular then it has
valency ag + cq = by — by, where agy, cq, by, by are intersection numbers of I'. Furthermore
A is distance-regular with intersection numbers a;(A) = a;(I") and ¢;(A) = ¢(T") for
1 <i < d[14, Theorem 4.6].

The following property is considered for a distance-regular graph.

Definition 2. T is said to be d-bounded whenever for all z,y € X with d(z,y) < d, there
is a regular strongly closed subgraph of diameter d(z,y) which contains = and y.

Note that a (D — 1)-bounded distance-regular graph is clear to be D-bounded. The
properties of D-bounded distance-regular graphs were studied in [13], and these properties
were used in the classification of classical distance-regular graphs of negative type [15].
Other applications of D-bounded distance-regular graphs are given in [3, 12, 13, 15].
Before stating our main results, we show one more definition and some known results.

Definition 3. A 4-tuple zyzw consisting of vertices of I' is called a parallelogram of length
dif O(z,y) = 0(z,w) =1, O(x,w) = d, and d(z, z) = Ay, w) = I(y,z) =d — 1.

The following theorem is a combination of three previous results.

Theorem 4. Let ' denote a distance-regular graph with diameter D > 3. Suppose that
the intersection numbers ay, as, co satisfy one of the following.

(i) [4, Theorem 2] ay > a; =0, ca > 1;

(ii) [14, Theorem 1] ay # 0, co > 1; or
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(111) [9, Theorem 1.1] ay > ay > co = 1.

Fiz an integer 1 < d < D —1 and suppose that I' contains no parallelograms of any length
up tod~+ 1. Then I is d-bounded.

We deal with the case “ay = 0,ay # 0, and ¢; = 17 in the following, which is the key
point among our main results.

Theorem 5. Let I' = (X, R) denote a distance-reqular graph with diameter D > 3, and
intersection numbers a; = 0, ag # 0 and co = 1. Fix an integer 1 < d < D — 1 and
suppose that I contains no parallelograms of any length up to d+1. Then I' is d-bounded.

The proof of Theorem 5 is given in Section 4. Theorem 5 is a generalization of [2,
Lemma 4.3.13] and [7]. Combining Theorem 4 and Theorem 5, we have the (ii) = (i
part of the following theorem.

Theorem 6. Suppose 1" is a distance-reqular graph with diameter D > 3 and the inter-
section number ay # 0. Fix an integer 2 < d < D — 1. Then the following two conditions
(i), (ii) are equivalent:

(i) T is d-bounded.
(ii) T' contains no parallelograms of any length up to d+ 1 and by > bs.

The complete proof of Theorem 6 is given in Section 4. Theorem 6 answers the problem
proposed in [14, p. 299]. The following is an application of Theorem 6, which excludes a
class of distance-regular graphs mentioned in [8, Theorem 2.2].

Theorem 7. There is no distance-regular graph with classical parameters (D, b, a, f) =
(D, —2,-2,((=2)P** —1)/3), where D > 4.

We prove Theorem 7 in Section 5. Since Witt graph Mss [2, Table 6.1] is a distance-
regular graph with classical parameters (D,b, o, 8) with D = 3, b = —2, « = —2, and
[ =5, the condition D > 4 in Theorem 7 can not be loosened to D > 3.

2 Preliminaries

In this section we review some definitions, basic concepts and some previous results con-
cerning distance-regular graphs. See Bannai and Ito [1] or Terwilliger [10] for more back-
ground information.

Let I'=(X, R) denote a finite undirected, connected graph without loops or multiple
edges with vertex set X, edge set R, distance function 0, and diameter D:=max{ d(z,y) |
x,y € X}. By a pentagon, we mean a 5-tuple ujusuzusus consisting of distinct vertices
in I" such that O(u;, u;41) =1 for 1 < i <4 and 9(us,uy) = 1.

For a vertex z € X and an integer 0 < i < D, set I';(z) := {z € X | O(x,z2) = i}.
The walency k(x) of a vertex x € X is the cardinality of I'y(z). The graph I' is called
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reqular (with valency k) if each vertex in X has valency k. The graph I' is said to be
distance-regular whenever for all integers 0 < h,i,5 < D, and all vertices z,y € X with
d(x,y) = h, the number

h
Dij = ITi(z) N T;(y)]
is independent of x,y. The constants p?j are known as the intersection numbers of I".

From now on let I' = (X, R) be a distance-regular graph with diameter D > 3. For
two vertices z,y € X with d(z,y) = i, set

B(z,y) = Ti(z) Nlial(y),
Clz,y) = Ti(@)NTia(y),
A(r,y) = Ti(x)NTi(y).
Note that
[B(z,y)| = Lt
C(z,y)| = Pil i—1s
[Alz, )l = Pl
are independent of x,y. For convenience, set ¢; := pi, | for 1 <i < D, a; := p} ; for
0<i<D,bj:=p),;for 0<e<D—1andput bp :=0, ¢g := 0, k := by. Note that k
is the valency of each vertex in I'. It is immediate from the definition of p?j that b; # 0

for 0 <i< D—1andc¢ #0for1<7<D. Moreover ¢; = 1 and
k=a;+b+c¢ for 0<i<D. (1)

A subset Q) of X is strongly closed with respect to a vertex x €  if for any z € X
with z, z, y being a weak-geodetic sequence for some y € €2, we have z € €). Note that )
is strongly closed if and only if for any vertex x € €2,  is strongly closed with respect to
x. A subset  of X is strongly closed with respect to a vertex x € € if and only if [14,
Lemma 2.3]

C(y,z) € and A(y,x) CQ for all y € . (2)

We quote two more theorems from [14] that will be used later in this paper to end
this section.

Theorem 8. (14, Theorem 4.6]) Let I be a distance-regular graph with diameter D > 3.
Let Q be a regular subgraph of T' with valency v and set d := min{i | v < ¢; + a;}. Then
the following (i), (ii) are equivalent.

(i) Q is strongly closed with respect to at least one vertex x € Q.

(ii) € is strongly closed with diameter d.
Suppose (i) or (ii) holds. Then Q is a distance-reqular subgraph of I' with diameter d and
YV =€t aqg.

Theorem 9. (/14, Lemma 6.5]) Let ' be a distance-reqular graph with diameter D > 2.
Suppose I' is d-bounded for some 1 < d < D — 1, then I' contains no parallelograms of
any length up to d + 1.
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3 The Shape of Pentagons

Throughout this section, let I' = (X, R) denote a distance-regular graph with diameter
D > 3, and intersection numbers a; = 0, as # 0. Such graphs are also studied in
[4, 5,6, 7, 8.

Fix a vertex x € X, a pentagon ujusususus has shape iy, 12,13, 14, 15 with respect to x
if i; = O(z,u;) for 1 < 7 < 5. Note that under the assumption a; = 0 and ay # 0, any two
vertices at distance 2 in I' are always contained in a pentagon, and two nonconsecutive
vertices in a pentagon of ' have distance 2. In this section we give a few lemmas which
will be used in the next section.

Lemma 10. Fix an integer 1 < d < D — 1, and suppose I' contains no parallelograms of
any length up to d+ 1 for some integer d > 2. Let x be a vertex in ', and let ujususuyus
be a pentagon of T such that O(x,u1) =i—1 and O(z,u3) =i+ 1 for 1 < i < d. Then the
pentagon ujusususus has shape v — 1,4, 4+ 1,4+ 1,4 with respect to x.

Proof. Since O(us,us) = 1 and O(ug,x) = i + 1, O(z,us) = i + 2,0+ 1, or 7. Since
O(ur,ug) = 2 and O(uy,z) =i —1, O(x,us) < i—14+2 =i+ 1. Consequently we we
have O(z,us) =i+ 1 or i. It suffices to prove d(x,us) = ¢ + 1. We prove this lemma by
induction on 7.

The case i = 1 holds otherwise d(z,us) = ¢ = 1 and 9(x,us) = 1, which contradicts
the assumption a; = 0.

Suppose the assertion holds for any ¢+ < ¢ < d. For the case ¢ = ¢, suppose to the
contrary that ujususugus is a pentagon with d(z,u;) = ¢ — 1 and 9(x,u3) = ¢ + 1, but
O(z,uy) = £. We can choose y € C(z,u;) and hence 0(y, u;) = £ —2. Since d(x,u3) = (+1
and d(x,y) = 1, we have d(y, u3) = ¢+2,¢+1 or {. Since I(y,u;) = {—2 and I(uy, u3) = 2,
we have 0(y,u3) < £ —2+ 2 = (. Consequently we have d(y,us) = £. By the induction
hypothesis, the pentagon u;usususus has shape ¢ — 2,0 — 1,0, ¢,¢ — 1 with respect to y.
In particular, 0(y, u3) = O(y,us) = £. Then zyuyus is a parallelogram of length ¢+ 1, a
contradiction.

]

Other versions of Lemma 10 can be seen in [14, Lemma 6.9] and [9, Lemma 4.1] under
various assumptions on intersection numbers.

The following three lemmas were formulated by A. Hiraki in [4] under an additional
assumption ¢ > 1, but this assumption is essentially not used in his proofs. For the sake
of completeness, we still provide the proofs.

Lemma 11. Fix an integer 1 < d < D — 1, and suppose I' contains no parallelograms of
any length up to d + 1. Then for any two vertices z,z" € X such that O(z,z) < d and
2 € A(z,x), we have B(z,z) = B(x,2').

Proof. Note that 2’ € A(z,x) implies 0(z, z) = 0(z, 2’), hence it suffices to show B(zx, z) C
B(x,2') since |B(z, 2)| = |B(x,2")| = by(z,z)- Suppose to the contrary that there exists
w € B(x,z) — B(x,z'). Then d(w, z) = d(z,2) + 1 and d(w, 2") # d(z, z) + 1. Note that
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o(w,?) < O(w,z) +9(z,7') = 1+ 0(x, Z) and O(w, ') > O(w,z) — 0(z,2") = J(z, )
Consequently 0(w, 2’) = 0(x, z) and wzxz'z forms a parallelogram of length 0(z, z) + 1
contradiction. []

Lemma 12. Fix integers 1 <1 < d < D — 1, and suppose I' contains no parallelograms
of any length up tod+1. Let x be a vertex in I'. Then there is no pentagon of shape

Proof. We prove this lemma by induction on 1.

The case © = 1 holds otherwise we have a pentagon having shape 1,1,1,1,2 with
respect to x. In particular we have three vertices x,uj,uy with d(z,u;) = 9(z,up) =
O(u1,ug) = 1, which is a contradiction to the initial assumption a; = 0.

Suppose the assertion holds for any ¢+ < ¢ < d. For the case i = ¢, suppose to
the contrary that wjusuzusus is a pentagon of shape ¢,0,¢,¢,¢ + 1 with respect to x.
This implies up € A(uy, ), uz € A(ug, ), and uy € A(us, ). Hence we have B(z,u;) =
B(z,uz) = B(x,u3) = B(x,uy) by Lemma 11. We shall prove C(z,u;) = C(z,uy) =
C(z,u3) = C(x,uy) in the following.

First we prove C(z,u;) = C(x,us2). It suffices to show C(z,us) C C(x,u;) since
|C(z,u1)| = |C(x,u2)| = ¢o. Suppose to the contrary that there exists v € C(x,us) —
C(z,uy). By our choice of v, we have v ¢ C(x,uy). We also have v ¢ B(x,u;), since
B(z,u;) = B(z,us) and v ¢ B(x,uy). Consequently we have v € A(x,uy) since v is
a neighbor of x. Then B(u;,x) = B(uj,v) by Lemma 11. Note that v € A(x,u;)
implies 0(v, u1) = O(x,uy) = ¢, and hence O(v,uz) = €+ 1 since us € B(uy,z) = B(uy,v).
Applying Lemma 10 to the pentagon uoujususug with 9(v, ug) = ¢—1 and (v, us) = €+1,
we conclude that usujususus has shape £—1, ¢, +1,(+1, ¢ with respect to v. In particular
O(v,us) = £+1 and hence v € B(x,uy) = B(z,uy). This is a contradiction to v € C'(x, uz).
Consequently we have C(x,uy) C C(z,u;) and hence C(z,u;) = C(x,uy) as desired.

By substituting us to u;, ug to us in the last paragraph and consider the shape of
the pentagon wusugqusujus with respect to v/ € C(z,u3) — C(x,uyq), similarly we have
C(x,ug) = C(x,us3).

It remains to show C(z,us) = C(x,ug). It suffices to show C(z,uy) C C(x,uy).
Suppose to the contrary that there exists u € C(z,uz) — C(z,uy). With the similar
arguments in the previous paragraphs, we have u € A(x, uy) and then B(uy, z) = B(uy, u)
by Lemma 11. Hence 0(u, us) = ¢+1 since us € B(uy,x) = B(uy, u). Applying Lemma 10
to the pentagon usujusugug with 0(u, ug) =€ — 1 and 0(u, uz) = £ + 1, we conclude that
uguyusuguz has shape £—1, 0,0+ 1,0+ 1, ¢ with respect to u. In particular O(u, uy) = £+1
and hence u € B(z,u4). This is a contradiction since u € A(x, uy).

Pick a vertex w € C(z,u1) = C(z,uz2) = C(x,u3) = C(x,uy). Since O(z,w
and O(z,us) = ¢ + 1, we have d(w,us) = ¢ + 2,0+ 1 or £. Since O(u4,us) = 1 a d
O(ug, w) =€ —1, we have O(w, us) = ¢, — 1 or £ — 2. Consequently we have 0(w, us) = ¢.
Then ujusuzugus is a pentagon of shape £ —1,¢—1,¢—1,¢—1,¢ with respect to w, which
is a contradiction to the inductive hypothesis.

O
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Lemma 13. Fix integers 1 <1 < d < D — 1, and suppose I' contains no parallelograms
of any length up to d + 1. Let x be a verter and ujusususus be a pentagon of shape
i,i—1,1,1— 1,7 or of shape i,i — 1,i,i — 1,3 — 1 with respect to x in I". Then B(x,u;) =
B(z,us3).

Proof. 1t suffices to show B(x,u3) C B(x,u;) since |B(x,u3)| = |B(z,u1)| = b;. Pick
u € B(x,u3), this implies d(u,uz) = ¢ + 1. Since d(uz,uz) = 1 and d(us,u) = i + 1,
we have O(ug,u) = i + 2,4 + 1, or i. Since O(z,u) = 1 and O(z,us) = i — 1, we have
O(ug,u) = 14,9 — 1, or i — 2. Consequently we have 0(u, us) = i. Substituting uy to us in
the above arguments, we similarly have 0(u, u4) = i. Next we consider O(u, u;). Note that
O(u,uy) =1+1,i0ori—1since d(xz,u) =1 and 9(x,u;) = i. We show that O(u,u;) =i+1
by excluding the other two cases in the following.

(1) Suppose O(u, uy) = i—1, then the pentagon uyususugus has shape i—1,4,i+1,i+1,4
with respect to u by Lemma 10. In particular we have O(u,us) = i + 1, which is a
contradiction to d(u,us) = i obtained in the last paragraph.

(2) Suppose O(u,u;) = i. Since O(uy,us) = 1 and O(uy,u) = i, we have 9(u,us) =
with respect to u, which is a contradiction to Lemma 12. If O(u,us) = i — 1, then the
pentagon ususususuy has shape i —1,4,7+1, 4,7 with respect to u, which is a contradiction
to Lemma 10. Consequently we have 0(u,us) = i + 1. For the case ujusususus having
shape 7,9 — 1,i,i — 1,7 — 1 with respect to z, we have O(u,us) < J(z,us) + 1 = 1,
which is a contradiction to d(u, us) =i + 1. For the other case ujusuzusus having shape
i,i—1,1,1 — 1,7 with respect to x, d(z,us) = i and hence usujzu is a parallelogram of
length ¢ 4+ 1, also a contradiction.

Hence O(u,u;) =i + 1, or equivalently u € B(z,uy). This proves B(x,us) C B(z,uy)
as desired. ]

The following lemma rules out a class of pentagons of certain shapes with respect to
a given vertex.

Lemma 14. Fix integers 1 <1 < d < D — 1, and suppose I' contains no parallelograms
of any length up to d + 1. Let x be a vertex in I'. Then there is no pentagon of shape
1,1,4,1 + 1,1+ 1 with respect to x in I

Proof. We prove this lemma by induction on ¢. The case i = 1 holds otherwise we have
a pentagon of shape 1,1,1,2,2 with respect to x. In particular we have three vertices
x,uy, uy with 9(z,uq) = 0(x,uz) = 9(uy,uz) = 1, which is a contradiction to the initial
assumption a; = 0.

Suppose the assertion holds for any ¢+ < ¢ < d. For the case 1 = ¢, suppose to the
contrary that ujusususus is a pentagon of shape ¢, ¢, ¢,/ + 1, ¢+ 1 with respect to x. Pick
v € C(x,u;) and note that hence d(uy,v) = ¢ — 1. Since d(x,v) = 1 and I(z,us) = £+ 1,
we have O(v,us) = £+ 2,0+ 1, or £. Since d(uy,us) = 1 and d(uy,v) = £ — 1, we have
O(v,us) =€, — 1, or £ — 2. Consequently we have (v, us) = {.

Next we consider (v, u3). Note that d(x,v) = 1 and 9(x,u3) = ¢, hence d(v,u3) =
¢+ 1,0, or £ —1. We show that 0(v,u3) = ¢ — 1 by excluding the other two cases in the
following.
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(1) If O(v,u3) = €+ 1, then v € B(z,u3). Note that uy € A(uy,x) and uz € A(ug, ),
hence we have B(x,u;) = B(x,us) = B(x,u3) by Lemma 11. Then v € B(z,u3) =
B(x,us) = B(z,u,), which is a contradiction to v € C'(z,uy).

(2) If O(v,uz) = £, we have O(v,uy) = £+ 1,¢, or £ — 1 since O(ug,uys) = 1. We also
have O(v,uq) = £+ 2, + 1, or ¢ since O(z,us) = £+ 1 and J(x,v) = 1. Consequently
we have J(v,uy) = £+ 1 or £. For the case d(v,us) = ¢ + 1, applying Lemma 10 to
the pentagon ujususuzus with d(uy,v) = £ — 1 and 9(v,uy) = € + 1, we have that the
pentagon ujusususus is of shape ¢ — 1,0, ¢ + 1,/ + 1, ¢ with respect to v. In particular,
J(v,u3) = ¢ + 1 which contradicts d(v,u3) = ¢. For the case d(v,uq) = ¢, xvusuy is a
parallelogram of length ¢ + 1, a contradiction to our initial assumption.

Next we consider 0(v, uy). Since 0(us, us) = 1 and 9(ug, v) = £ —1, we have O(v, uq) =
0,0 —1,0or £ —2. Since d(x,v) =1 and d(x,uy) = ¢+ 1, we have O(v,uy) = €+ 2,0 + 1,
or {. Consequently we have (v, uy) = {.

Finally we consider (v, us). Since d(z,v) = 1 and d(z,uz) = ¢, we have J(v,uy) =
¢+ 1,0, or £ — 1. Since d(uq,uz) = 1 and O(uy,v) = £ — 1, we have d(v,us) = ¢, — 1,
or ¢ — 2. Consequently we have d(v,us) = £ or £ — 1. If 9(v,uy) = ¢ — 1, the pentagon
uuguzugus is of shape £ — 1,0 — 1,0 — 1, ¢, ¢ with respect to v. This is a contradiction to
the induction hypothesis. Hence 0(v, us) = ¢.

We conclude that the pentagon usujususuy is of shape ¢,¢ — 1,¢,¢ — 1, ¢ with respect
to v. By Lemma 13, we have B(v,us) = B(v,us). Since d(x,us) = £+ 1 and 0(v,us) = ¢,
we have © € B(v,u;). Since O(z,us) = ¢ and 9(v,us) = ¢, we have x ¢ B(v,us).
Consequently we have x € B(v,us) — B(v,ug), which is a contradiction to B(v,us) =
B(’U, U5).

]

4 D-bounded Property and Nonexistence of Parallelograms

Let I' = (X, R) denote a distance-regular graph with diameter D > 3. Fix an integer 1 <
d < D — 1. Throughout this section, we assume that I' satisfies the following conditions.

Assumption:
(i) The intersection numbers satisfy a; = 0, ay # 0,y = 1, and
(ii) I" contains no parallelograms of any length up to d + 1.

We shall prove the d-bounded property of I in this section. By the definition of strongly
closed subgraphs, the following proposition is easily seen.

Proposition 15. Suppose A C X is a strongly closed subgraph of I' and uxivrexs or
ur1rovxs 1S a pentagon in I'. If u,v € A, then x1, 9, x3 are all in A.

Proof. Since a; = 0, it is easily seen that d(u,v) = 2 and u, x;,v is weak-geodetic for
i=1,2,3. 0

We then give a definition.
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Definition 16. For any vertex € X and any subset II C X, define [z,II] to be the set
{v € X | there exists 3y’ € II, such that the sequence x, v,y is geodetic }.
For any =,y € X with d(z,y) = d', set

I, :={y €Tay(z) | B(x,y) = B(x,y')}

and

Az, y) = [z, 1L,

For convenience, we also use A(z,y) to denote the subgraph of I' induced on A(z,y).
Note that A(z,y) contains x,y and Iy () N A(z,y) = II,,. We can also easily see the
following proposition.

Proposition 17. For z,y,z,w € X and w € A(x,y), if z,z,w is geodetic, then z €
Az, y).

Proof. Suppose 0(z,y) = d', d(x,w) = i and d(z,z) = j. Then J(z,w) = i — j. By
the construction of Definition 16, there exists y' € II,, such that z,w,y is geodetic.
Hence O(w,y’) = d' —i. Note that d(z,y') < d(z,w) + d(w,y’) = d' — j, and I(z,y’) >
O(z,y) — 0(x,z) = d — j. So O(z,y') = d — j and thus z,z,y is geodetic. Hence
z € Az, y). O

For any 1 < j < d, we define the following three kinds of conditions:

(B;) For any vertices z,y € X with d(z,y) = j, A(z,y) is a regular strongly closed
subgraph of I' with valency a; + ¢; and diameter j.

(W) For any vertices z,y € X with d(z,y) = j, A(z,y) is strongly closed with respect
to x.

(R;) For any vertices x,y € X with 0(z,y) = j, A(z,y) is a regular subgraph of I' with
valency a; + c;.

By Definition 2, (B;) holds for each 1 < j < d implies that I' is d-bounded since we
can choose A(x,y) as the desired strongly closed subgraphs. By referring to Theorem 8,
we know that for a subgraph €2 of I, if € is regular and €2 is strongly closed with respect
to some vertex x € (), then € is strongly closed and is a distance-regular subgraph of T'.
Thus if (W;) and (Ry) hold for some 1 < ¢ < d, then (By) holds. Consequently (W;) and
(R;) hold for all 1 < j < d provides a sufficient condition for the d-bounded property of
I'. We plan to prove Theorem 5 through the above deduction, that is, to prove (W;) and
(R;) hold for all 1 < j < d under the assumptions in the beginning of this section. We
use induction on j to achieve our objective. To adequately proceed the induction process,
the following lemmas are required.
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Lemma 18. Fix integers i,d" with 1 < i < d' < d and let z,y € X with d(z,y) = d'.
Suppose for all ¢ € {i+1,i1+2,...d'}, if vertex 2" € A(x,y)NTy(x), we have the following

(i), ().

(1) A(Z',x) € Az, y).

(i1) For any vertex w' € I'y(x) N y(2’) with B(z,w') = B(x, z'), we have w' € A(z,y).
Then for any z € Ax,y) NTyi(x), A(z,z) C Az, y).

Proof. Let v € A(z,z). Pick u € A(z,y) NTipq(x) NT1(2). Let uuguzvz be a pentagon
of I' for some uo,u3 € X. Note that uusuzvz cannot have shape i + 1,4,7 — 1,7, 1%, shape
14+ 1,7+ 2,4+ 1,4,¢2 by Lemma 10, cannot have shape i + 1,4,7,7,¢ by Lemma 12, and
cannot have shape ¢ + 1,7 4+ 1,4,4,7 by Lemma 14 with respect to x. Hence uusuzvz has
shape 1 + 1,2+ 1,2 + 1,7,72 or ¢« + 1,4,7 + 1,4,7 with respect to z. In the first case we
have us € A(u,x), us € A(ug,x), and this implies uy, ug € A(z,y) by the assumption (i).
Then v € A(z,y) by Proposition 17 since x, v, ug is geodetic. In the latter case we have
B(z,u) = B(x,u3) by Lemma 13, and consequently u3 € A(z,y) by the assumption (ii).
Then v € A(x,y) by Proposition 17 since z, v, uz is geodetic.

O

Lemma 19. Fix integers i,d" with 1 < i < d' < d and let z,y € X with d(z,y) = d'.
Suppose (W;), (R;) and thus (B;) hold in T for all j < d', and for all ¢ € {i+1,i+2,...d'},
if vertexr 2" € A(z,y) NTy(x), we have the following (i), (ii).

(i) A(#,2) € Ala,y).
(i1) For any vertex w' € T'y(x) N y(2) with B(z,w') = B(x, z'), we have w' € A(z,y).

Then for any z € A(x,y) NTi(z) and w € T';(x) NTe(2) with B(z,w) = B(x, z), we have
w e Az, y).

Proof. Let z € A(x,y) NT;(x). First we note that (B;) holds since 1 < i < d, hence
A(zx, z) is a regular strongly closed subgraph of diameter i.

Suppose to the contrary that there exists w € I';(x)NI'e(2) with B(z,w) = B(z, z) such
that w ¢ A(x,y). Since B(x,w) = B(z, z), we have I1,, = II,,, and thus A(z, z) = A(z, w)
by the construction in Definition 16.

Note that |C(w, z)| = 1 since d(w, z) = 2 and ¢y = 1. Let vy be the unique vertex in
C(w, 2).

Claim 19.1. J(z,vs) =i — 1.

Proof of Claim 19.1. Let zvswvsvs be a pentagon for some vy, v5 € X. Note that this
pentagon exists since we can choose vy € A(w, z) with the assumption ay # 0, and we can
choose vs € C(vy, z) where vs # vy with the assumption a; = 0. Since d(z, z) = i and
J(z,v2) = 1, we have O(z,v9) = i+ 1,4, or i — 1. We prove this claim by excluding the
other two cases.
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(1) Suppose O(x,v9) =i+ 1. Since w € A(x,w) = A(z,2) and z € A(z, z), we have
that vy, vy, v5 € A(x, z) by Proposition 15. In particular, 0(x,vy) < i since A(z, 2) is of
diameter ¢. This is a contradiction.

(2) Suppose O(x,vy) = 4, that is, vy € A(z, x), then vy € A(z,y) by Lemma 18. Since
0(z,v2) = O(x,w) =i, we have w € A(vy, x). Applying Lemma 18 again by viewing v, as
the role of z, we have w € A(z,y). This contradicts our assumption that w ¢ A(z,y).
Hence 0(z,v9) =1 — 1.

Let u be a vertex in A(z,y) NTpq(x) NT(2). Let y3 € A(u,vs) and y4 € C(ys, v2).

Claim 19.2. The pentagon vszuysys has shape ¢ — 1,4,7 + 1,7 + 1,7 with respect to x.
Moreover the pentagon is contained in A(zx,y).

Proof of Claim 19.2. The shape of the pentagon vszuysy, is determined by Lemma 10.
Since O(z,y3) = i + 1, we have y3 € A(u,z) and we can conclude that y3 € A(z,y) by
the assumption (i). We can also conclude that the remaining vo and y4 are in A(z,y) by
Proposition 17 since x,vo,y3 and x, y4, y3 are both geodetic.

If w= y4 then w € A(z,y) by Claim 19.2. This contradicts our assumption that
w ¢ A(z,y). Hence w # y, and we have d(w, y4) = 2 by excluding the other possible case
O(w,y4) = 1 under the assumption a; = 0. Let ws € A(yy, w) and wy € C(ws, w).

Claim 19.3. The pentagon veyswswsw has shape ¢ — 1,4,7+ 1,72 4+ 1,4 with respect to z
and {ws, wy} N {ys,u} = 0.

Proof of Claim 19.3. Recall that A(z,w) = A(z, z) is strongly closed of diameter ¢ since
(B;) holds. Also note that vy € A(z, 2) since x, v9, 2 is geodetic. Since d(w,wy) = 1 and
O(z,w) =i, we have 0(z,wy) =i — 1,4, or i + 1.

If O(x,wy) = i—1 or i, then x, wy, w is weak-geodetic. Since A(x,w) is strongly closed,
we have wy € A(x,w) = A(x, z). This forces y, € A(x, z) by applying Proposition 15 to
the pentagon voy wswyw with vy, wy € A(z, z). By applying Proposition 15 again to the
pentagon zveysysu with z,y4 € A(z, z), we have y3 € A(x, z). This is a contradiction since
A(z, z) has diameter i and O(x,y3) =i+ 1 > 7. Hence 0(z,wy) = i + 1 and vsww,swsy,
has shape ¢+ — 1,4,7 + 1,7 4+ 1,7 with respect to x by Lemma 10.

Since O(x,ws) = d(x,wy) = i + 1 and d(ws, wy) = 1, we have wy € A(ws,x). By the
assumption (i), if ws € A(x,y) then wy € A(x,y). Recall that y;3 and u are both in A(x, y)
by Claim 19.2. Therefore if {ws, ws} N {ys,u} # 0, we can conclude that wy € A(x,y)
for any case. Since x,w,wy is geodetic, we have w € A(x,y) by Proposition 17. This is a
contradiction to our assumption that w ¢ A(x,y).

The two pentagons vozuysy, and vey,wzwsw are shown in Figure 1.
Claim 19.4. B(z,ys) # B(z,w;3).

Proof of Claim 19.4. Note that 0(ys, w3) = 2 since O(yq, w3) = 1, d(y4,y3) = 1, and a; = 0.
Suppose to the contrary that B(z,ys) = B(z,ws). Recall that y3 € A(z,y) by Claim 19.2.
Hence we have ws € A(z,y) by the assumption (ii). Since d(z,w3) = d(z,ws) =i+ 1 and
O(ws,wy) = 1, we have wy € A(ws, z). We then have wy € A(x,y) by the assumption (i).
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Figure 1: Two pentagons in the proof of Lemma 19.

Since z, w, wy is geodetic, we have w € A(z,y) by Proposition 17. This is a contradiction
to our assumption that w ¢ A(z,y).

Let p3 € A(ys,w3) and py € C(ps,ws). Note that these two vertices exist since
O(ys, w3) = 2,as # 0, and cp = 1.

Claim 19.5. The pentagon y,yspspsws has shape i,7 + 1,7 4+ 2,7 4+ 2,7 + 1 with respect
to x.

Proof of Claim 19.5. Since O(ps,y3) = 1 and 9(z,y3) =i + 1, we have d(z,p3) = 4,7+ 1
or i + 2. We show that d(z, p3) = ¢ + 2 by excluding the other two cases in the following.

(1) Suppose O(x,p3) =i+ 1, then d(z,py) =i+ 2,7+ 1, or i since I(ps, ps) = 1.

If O(z, py) = i+2, then the pentagon y,4yspspsws should have shape i, i+1,i+2,i+2, i+1
with respect to by Lemma 10. This is a contradiction to the assumption d(z,p3) = i+1
for this case.

If O(z,p4) = i+ 1, then O(x,y3) = 9(x,p3) = I(x,ps) = I(x,w3) = i + 1. Hence
ps € Ay, x),ps € A(ps,x), and ws € A(py, ). By applying Lemma 11 three times, we
have B(z,ys) = B(z,ps) = B(x,ps) = B(x,ws3). This is a contradiction to Claim 19.4.

If O(x, py) = i, then the pentagon ysy,wspsps should have shape i+1, 1,74 1,4,i+1 with
respect to . By Lemma 13, we have B(z,y3) = B(z,ws3). This is also a contradiction to
Claim 19.4.

(2) Suppose O(x,p3) = i, then d(x,ps) =1 — 1,4, or i + 1 since I(ps, ps) = 1.

If O(x,ps) = i — 1, then we immediately get a contradiction from d(x,ps) = i —
1,0(z,w3) =i+ 1, and O(ws, pg) = 1.

If O(x, py) = i, the pentagon ysy,w3psps should have shape i+1,14,i41, 4,7 with respect
to . By Lemma 13, we have B(x,y3) = B(x,ws). This is a contradiction to Claim 19.4.

If O(x, ps) = i+ 1, the pentagon wsy,yspsps should have shape i+1,4,i+1,4,i+ 1 with
respect to z. By Lemma 13, we have B(z,y3) = B(z,w3). This is also a contradiction to
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Claim 19.4.
We conclude that d(z,ps3) =i + 2. In particular, the pentagon y,yspspsws has shape
,1+ 1,04 2,2+ 2,7+ 1 with respect to x by Lemma 10.

Now we have three pentagons and their shapes with respect to x as shown in Figure 2.

distance to x

o ... 1—1 1 1+ 1 14+ 2
Wy
w
W3 Pa
Ya
e e vy "
b3
z
U

Figure 2: Three pentagons in the proof of Lemma 19.

Claim 19.6. B(z,y,) # B(z, z) and thus B(z,y4) — B(x,2) # 0.

Proof of Claim 19.6. Suppose to the contrary that B(x,ys) = B(z, z). By the construction
in Definition 16, we have A(z,ys) = A(z,z), which is a strongly closed subgraph of
diameter ¢ since (B;) holds. By applying Proposition 15 to the pentagon zvsy,ysu with
z,ys € Az, z), we have y3 € A(z,2). This is a contradiction since d(z,y3) = i + 1 and
A(z, z) is of diameter i. The fact B(x,ys) — B(z,2) # () is easily seen by further observe
that |B(z,y4)| = |B(x, )| = b;, which implies that B(z,vys) € B(z, 2).

Pick p € B(x,ys) — B(x, z). Note that hence d(p,ys) =i + 1.
Claim 19.7. J(p, z) = i.

Proof of Claim 19.7. Note that d(p, z) =i or i — 1 since p ¢ B(z,z) and d(p,z) = 1. We
exclude the case d(p, z) =i — 1 in the following.

Suppose J(p, z) = i — 1. Then zvey,ysu is a pentagon of shape i — 1,4, + 1,7+ 1,4
with respect to p by Lemma 10. More precisely, d(p,z) =i — 1,0(p,v2) = i,0(p,ys) =
i+ 1,0(p,y3s) =i+ 1, and O(p,u) = i.

Next we show that d(p, p3) = ¢ + 2. Since d(p,y3) =i+ 1 and d(ps,y3) = 1, we have
d(p,p3) =i+2,i+1, ori. Since d(x,p3) =i+2 and d(z,p) = 1, we have d(p, p3) = i+ 3,
i+ 2, or i+ 1. Consequently we have d(p,p3) =i+ 2 or i + 1. If (p,p3) = ¢ + 1 then
xpysps is a parallelogram of length 7 +2 < d+ 1, a contradiction to our initial assumption
that no parallelogram of length up to d + 1 exists. Hence 9(p, p3) =i + 2.
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Next we show that J(p,ws) = ¢ 4+ 2. We know that d(p,ws) = i,i 4+ 1 or ¢ 4+ 2 since
O(x,ws) =i+ 1 and d(z,p) = 1. If O(p, w3) = i, then he pentagon wspspsysys has shape
i, + 1,4+ 2,7+ 2,7 + 1 with respect to p by Lemma 10. In particular d(p,ys) = i + 2,
a contradiction to d(p,y3) =i+ 1. If O(p,w3) =i+ 1, we have d(p,ps) =i+ 2ori+1
since d(p,ws) =i+ 1, d(p,p3) = i + 2, and p, is the common neighbor of p3 and ws. If
d(p,ps) = 1 + 2, the pentagon wsy,yspsps has shape i + 1,4 + 1,7 + 1,7 + 2,7 + 2 with
respect to p, a contradiction to Lemma 14. If O(p,ps) = i + 1, the pentagon pjwsysysps
has shape ¢ + 1,72+ 1,74+ 1,7 4+ 1,7 4+ 2 with respect to p, a contradiction to Lemma 12.
Hence 0(p, ws) =i + 2.

We finally consider the shape of the pentagon veyswswsw with respect to p and get a
contradiction. Since d(x,p) =1 and d(x,ve) =i — 1, we have d(p,ve) =4,i — 1, or i — 2.
Since (Y4, v2) = 1 and O(y4,p) = i+ 1, we have O(p,ve) = i+ 2,7+ 1, or i. Consequently
Jd(p,v2) = i. Hence voyswswsw is a pentagon of shape i,7 + 1,7 + 2,7 + 2,7 + 1 with
respect to p by Lemma 10. In particular d(p, w) = ¢ + 1, which implies p € B(z,w), a
contradiction to our assumptions B(x, z) = B(x,w) and p € B(z,y4) — B(z, 2).

Claim 19.8. J(p,w) = i.

Proof of Claim 19.8. Most of the following arguments are similar as the ones in the
previous Claim 19.7, so we omit some details. Since d(x,p) = 1 and d(z,w) = i, we have
d(p,w) =1+ 1,4, or i — 1. We exclude the other two cases in the following.

(1) Suppose d(p,w) =i + 1, then p € B(z,w) = B(z,z). This is a contradiction to
our assumption p € B(x,ys) — B(z, 2).

(2) Suppose 9(p,w) =i — 1. First we have that the pentagon wuvyyswswy is of shape
1—1,7,94+ 1,7+ 1,7 with respect to p by Lemma 10.

Next we show that then d(p,ps) = i + 2. To avoid zpwsp, to be a parallelogram of
length i +2 < d+ 1, we have 9(p,ps) =i + 2.

Then we show that d(p, y3) = i+2. By applying Lemma 10, Lemma 12, and Lemma 14
to the shape of the pentagon y,wspspsys with respect to p, we have that d(p,ys) =i + 2.

We finally consider the shape of the pentagon vsy,ysuz with respect to p and get a
contradiction. Consequently voy,ysuz is a pentagon of shape ¢,1+ 1,7+ 2,714 2,7+ 1 with
respect to p by Lemma 10, which is a contradiction to d(p, z) = i.

Claim 19.9. d(p,u) = 0(p, wq) =1 + 1.

Proof of Claim 19.9. Since O(p, z) = d(x, z) = i, we have p € A(z, z) and thus B(z,x) =
B(z,p) by Lemma 11. In particular u € B(z,p) and hence d(p,u) = i + 1. Similarly,

Claim 19.10. 9(p,y3) = i.

Proof of Claim 19.10. Since O(z,y3) = i+ 1 and d(x,p) = 1, we have O(p,y3) = i+2,i+1,
or . We exclude the other two cases in the following.

(1) Suppose O(p,ys) =i + 2, then p € B(z,ys3) since 0(x,y3) =i+ 1 and 9(x,p) = 1.
Since Jd(x,y3) = O(z,u) = i+ 1 and O(u,y3) = 1, we have y3 € A(u,x) and hence
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B(z,u) = B(z,ys) by Lemma 11. Then we have p € B(z, ), which implies 0(p, u) = i+2.
This is a contradiction to Claim 19.9.

(2) Suppose 9(p,y3) = i+1. We first show that d(p, p3) = i+2. By applying Lemma 11
we have B(ys,z) = B(ys,p). Then as p3 € B(ys,x) = B(ys,p), O(p,p3) =1 + 2.

Next we show that d(p,ws) =i + 2. Applying Lemma 12, Lemma 14 to the pentagon
w3y4y3psps and considering its shape with respect to p, we find 9(p, w3) # i+ 1. Applying
Lemma 10 to the pentagon wspspsysys, we find O(p, ws) # i. Thus d(p, w3) =i + 2.

Recall that O(p,ws) = i+ 1 by Claim 19.9. Then prw,ws is a parallelogram of length
1+ 2 < d+ 1. This contradicts our initial assumption that no parallelogram of length up
to d 4 1 exists.

Claim 19.11. 9(p, w3) = 1.

Proof of Claim 19.11. Since O(x,w3) = i+1 and d(x, p) = 1, we have d(p, ws) = i+2,i+1,
or i. We exclude the other two cases in the following.

(1) Suppose O(p, w3) = i+ 2. Since O(x,w3) = I(x,wy) =i+ 1, we have wy € A(ws, x)
and hence B(z,ws) = B(z,ws) by Lemma 11. Then p € B(x,ws) = B(z,w,), which
implies O(p, wy) = ¢ + 2 since O(x,w,) = i + 1. This is a contradiction to Claim 19.9.

(2) Suppose d(p,ws) =i+ 1. Since I(py, w3) = 1, we have (p,ps) =i+ 2,i+ 1, or i.
Since d(x,p) = 1 and (z, py) = i+2, we have d(p, ps) = i+3,i+2, or i+ 1. Consequently
we have J(p,ps) =i+ 2 or i+ 1.

If O(p,ps) = i + 2, recall that d(p,y3) = i by Claim 19.10. Then the pentagon
Yspspsawsy, has shape ¢,2 + 1,7 + 2,7 + 2,7 + 1 with respect to p by Lemma 10. In
particular O(p, w3) = i + 2, which contradicts the assumption 9(p, w3) =i + 1.

If O(p,ps) = i+ 1, then zpwsp, is a parallelogram of length ¢ + 2 < d + 1. This
contradicts our initial assumption that no parallelogram of length up to d + 1 exists.

Claim 19.12. The pentagon pjwsysysps has shape i +1,7,9+1,4,7+ 1 with respect to p.

Proof of Claim 19.12. Since 0(z,p3) = 1+2 and d(x,p) = 1, we have d(p, p3) = i+3,i+2,
or i+ 1. Since d(ps,y3) = 1 and d(p, y3) = i by Claim 19.10, we have d(p,p3) =i + 1,1,
or i — 1. Consequently we have d(p,p3) =i+ 1. Similarly we have 9(p,ps) = ¢ + 1 since
Jd(p, w3) =1 by Claim 19.11.

Recall that d(p,ys) = i + 1 since p € B(z,ys) — B(z,2). Sum up Claim 19.10,
Claim 19.11 and the above arguments, we conclude that the pentagon pswsysysps has
shape i + 1,7,72 + 1,4,7 + 1 with respect to p.

Applying Lemma 13 to the pentagon pswsysysps yields that B(p, ps) = B(p,ys). Since
O(z,py) =i+ 2 and 9(p,py) = i+ 1 by Claim 19.11, we have z € B(p,ps) = B(p,vya)-
Hence 0(z,y4) = O(p,y4) + 1 = i + 2. This is a contradiction since d(x,ys) = i.

Consequently, w € A(z,y) and this completes the proof.
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Lemma 20. Fiz integer d with 1 < d' < d and let z,y € X with 0(x,y) = d'. Suppose
(W;), (R;) and thus (B;) hold in I" for all j < d'. Then for any vertex z € A(x,y) NTy(x)
where 1 < £ < d', we have the following (i), (ii).

(i) A(z ) C Alay).
(ii) For any vertex w € I'y(x) NTy(z) with B(x,w) = B(x, z), we have w € A(x,y).
In particular (W) holds.

Proof. We prove (i), (ii) by induction on d’ — ¢. For the case ' —¢ = 0, i.e. { = d', we have
z € 11,,. Hence (i), (ii) follows by Lemma 11 and the construction of II,, in Definition 16.

Suppose for all £ with 0 < d' — ¢ < d —i,ie. £ € {i+1,i+2,...d}, if vertex
2l € A(x,y) NTy(x), we have the following (a), (b).

(a) A(',2) C A,y).
(b) For any vertex w’ € I'y(z) N Ty(2") with B(z,w') = B(x, 2’), we have v’ € A(z,y).

Then (i), (ii) hold for ¢ =i, i.e. d —¢ = d' — i, by Lemma 18 and Lemma 19. Then we
conclude that (i), (i) hold for all 0 < d' — ¢ < d' — 1, i.e. 1 < ¢ < d, by induction.

In particular, we have A(z,x) C A(z,y) by (i), and we also have C(z,z) C A(z,y) by
Proposition 17. Hence (Wy ) holds by (2). O

The following proposition proves (Ry) and hence completes the preparation for the
proof of Theorem 5.

Lemma 21. Fiz integer d' with 1 < d' < d and let z,y € X with d(z,y) = d'. Suppose
(W3), (R;) and thus (B;) hold in T" for all j < d'. Then A(x,y) is regular with valency

ag + cg.

Proof. Set A = A(z,y). Clearly for any v € A, the construction ensures us that 0(z,v) <
d'. Hence B(y',x) N A = () for any y' € II,,,. Applying Lemma 20, we have |[I';(y/) N A| =
aq + cq for any y’ S Hmy.

Next we show |['1(z) N A| = ag + c¢o. Note that y € ANTy(x) by the construction
of A. For any z € C(x,y) U A(z,y),

Oz, z)+0(z,y) < O(x,y) + 1.

This implies x, z,y is a weak-geodetic sequence, then z € A since A is strongly closed
with respect to « by Lemma 20. Hence C'(z,y) U A(z,y) C A. Suppose B(z,y) NA # ()
and let t € B(x,y)NA. Then there exists y' € I, such that x, ¢,y is a geodetic sequence
by Definition 16. This implies ¢t € C'(z,y’), a contradiction to B(z,y) = B(z,y’). Hence
B(z,y) NA =0 and T'1(z) N A = C(z,y) U A(x,y). This proves |T'1(z) NA| = ag + ca.

Since each vertex in A appears in a sequence of vertices © = xg, x1,...,zs in A, where
O(x,xe) =¥, O(xp—1,7¢) =1 for 1 <L < d, and zy € I1,,, it suffices to show

Ty (z:) N Al = ag + ca (3)
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for 1 <i < d — 1. For each integer 1 < i < d’, we show
Ti(zio) \ Al < [Ti(zi) \ A (4)

by the 2-way counting of the number of the pairs (z, s) with z € T'y(z;,_1)\A, s € Ty (x;)\ A
and J(z,s) = 2.

For a fixed s € I'1(z;) \ A, we have O(s,x;_1) = 2 since a; = 0. Hence such a z must
be one of the ay vertices in A(z;_1,s). The number of such pairs (z,s) is thus at most
Ty (2:) \ Alas.

On the other hand, we show this number is |T'y(x;_1) \ A|as exactly. Fix z € T'y(x;_1) \
A. Note that d(z;, z) = 2 since a; = 0. Hence the condition “s € I';(x;) with 9(z, s) = 2”
is equivalent to “s € A(x;,2)”. We shall prove s ¢ A for any s € A(z;,z). Recall that
A is strongly closed with respect to = by Lemma 20, which implies C(z;_1,z) C A and
A(x;—1,2) € A. Then z € B(x;_1,x) and hence J(z, z) = 1.

Suppose to the contrary that there exists s € A(x;, 2) NA. Let w € C(s, z). Note that
w # x; since a; = 0. Since d(z;, ) =i and 9(x;,s) = 1, we have d(z,s) =i+ 1,4, or i — 1.

We first show that d(x,s) =i ori— 1. If d(x,s) =i+ 1, applying Lemma 10 to the
pentagon z;_z;swz with d(z,z;_1) =7 —1 and 9(x,s) =i + 1, we see that the pentagon
x;_1x;swz has shape ¢ — 1,4,i+ 1,4+ 1,7 with respect to z. In particular, d(z,w) =i+ 1
and hence w € A(s,z). Then we have w € A by Lemma 20(i). Note that d(x,w) =i+ 1
and O(z, z) = i, which implies that x, z,w is a geodetic sequence. Then we have z € A
by Proposition 17, a contradiction to z € I'y(z;-1) \ A.

We next show that d(z,w) = i or ¢ — 1. Since d(z,x) = i and 0(z,w) = 1, we
have O(z,w) =i+ 1,4, or i — 1. If O(x,w) = i + 1, the pentagon x;_jzwsz; has shape
i— 1,4, 4 1,4+ 1,7 with respect to = by Lemma 10. In particular d(x,s) =i + 1, which
is a contradiction to d(z,s) =i or ¢ — 1 constructed in the last paragraph.

If O(x,w) = O(x,s) =i, then s € A(z;,z), w € A(s,z), and z € A(w,x). Applying
Lemma 20(i) three times we have z € A, which is a contradiction to z € I'y(x;_1) \ A.
Hence O(z,w) <i—1or d(x,s) <i— 1. For the case d(x,s) =i — 1 and 0(x,w) =i we
consider the shape of the pentagon zz; 1z;sw with respect to x. For the case d(z, s) =i
and J(z,w) =i— 1, or the case d(x,s) =i — 1 and d(x,w) =i — 1, we consider the shape
of the pentagon x;z; 1zws with respect to x. Applying Lemma 13 to each of the these
three cases we have B(z,z) = B(x,x;) and then z € A by Lemma 20(ii), a contradiction
to z € I'1(z;-1) \ A.

From the above counting, we have

Ty (2iz1) \ Afag < [Ty (i) \ Alay (5)
for 1 < ¢ < d'. Eliminating the nonzero ay from (5), we find (4) or equivalently
IFi(zia) NA[ = [Fizs) N A| (6)

for 1 < i < d'. We have shown previously that |I'i(xzg) N A| = [T'1(zg) NA| = ag + ca.
Hence (3) follows from (6).

O

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(2) (2015), #P2.37 17



Proof of Theorem 5. For 1 < j < d, we prove (W;) and (R;) by induction on j. Since
a; = 0, there are no edges in I';(x) for any vertex z € X.

For j = 1, then II,, = {y} since for any other v/ € I';(z), v/ € B(z,y) but ¢’ ¢ B(x,y’).
Consequently A(z,y) = {x,y} is an edge; in particular A(z,y) is regular with valency
1 = a1 4+ ¢1 and is strongly closed with respect to x since a; = 0. This proves (R;) and
(Wh).

For j > 2, assume (WW;), (R;) and thus (B;) hold for all 1 < j < d’ < d. By Lemma 20
and Lemma 21, we have that (Wy), (Ry) and thus (Bg) hold.

Then we have (B;) holds for 1 < j < d. By the deduction in the paragraph before
Lemma 18, the proof is completed. O

Combining Theorem 4 and Theorem 5, the Proof of Theorem 6 can be completed.

Proof of Theorem 6. ((i) = (ii)) By Theorem 9, we see that I' contains no parallelo-
grams of any length up to d + 1. Suppose that I' is d-bounded for d > 2. Let Q C A be
two regular strongly closed subgraphs of diameters 1, 2 respectively. Since €2 and A have
different valency by — b; and by — by respectively by Theorem 8, we have b; > bs.

((ii) = (i)) Under the assumptions Theorem 6(ii) (hence by > b)) and ay # 0, consider
the following four cases.

(a) a; = 0 and ¢y > 1: This case follows by Theorem 4 (i).

(b) a3 =0 and ¢y = 1: This case follows by Theorem 5.

(c¢) a1 # 0 and ¢ > 1: This case follows by Theorem 4 (ii).
)

(d) a; # 0 and ¢y = 1 : Note that by equation (1), a; + by +¢; = k = as + by + 5. Since
c1 = co = 1 and by > by, this case is equivalent to the case as > a; > ¢ = 1. Then
the result follows by Theorem 4 (iii). O

5 Classical parameters

Let I' = (X, R) denote a distance-regular graph with diameter D > 3. T" is said to have
classical parameters (D, b, «, ) whenever the intersection numbers of I' satisfy

H(Ha{zlh) 'f0r0<i<D, (7)
- (B EDE) e

il 10404+ i >0,
1/, 10 if 7 < 0.

c =

where
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Applying (1) with (7) and.(8), we have | |
o= o G (-0 -TT])) 0
NGRS RD) w

Classical parameters were introduced in [2, Chapter 6]. Graphs with such parameters
yield P- and @)-polynomial association schemes. Bannai and Ito proposed the classification
of such schemes in [1].

for 0 << D.

The following theorem is a combination of [11, Theorem 2.12] and [14, Lemma 7.3(ii)].

Theorem 22. ([11, Theorem 2.12], [14, Lemma 7.3(ii)]) Let I denote a distance-regular
graph with classical parameters (D,b, «, 3), where b < —1 and D > 3. Then I' contains
no parallelograms of any length.

The following two lemmas are given in [13].

Lemma 23. (/13, Corollary 3.7]) Let I denote a distance-reqular graph with classical
parameters (D,b,«, ) and D > 3. Suppose I' contains no parallelogram of length 2 and
ap > —b—1. Then

Coy = b + ]_
Lemma 24. ([13, Theorem 4.2]) Let T' denote a distance-reqular graph with classical
parameters (D, b, a, ) and D > 4. Suppose I is D-bounded and a; < —b — 1. Then

1+ 0P
f=ag—

By Theorem 22, Lemma 23 and Lemma 24, we have the following theorem.

Theorem 25. Let I" denote a distance-reqular graph with classical parameters (D, b, c, 5)
where b < —1. Suppose that I is D-bounded with D > 4. Then

1+0bP
B—al_b. (11)

Proof. Since b < —1 and D > 3, we have that I contains no parallelograms of any length
by Theorem 22. Note that co = b+ 1 implies b > —1. If a; > —b— 1 in I', then we get a
contradiction by Lemma 23. Hence a; < —b— 1 and (11) follows by Lemma 24. O

The following is a proof of Theorem 7 which demonstrates an application of Theorem 6.

Proof of Theorem 7. Let I' denote a distance-regular graph with classical param-
eters (D, b, o, B) = (D,—2,-2,((—2)P*! — 1)/3), where D > 4. Then I' contains no
parallelograms of any length by Theorem 22. By (7), (9) and (10) we have ¢ = 1
and as = 2 > 0 = a;. Hence I' is D-bounded by Theorem 6 since by > by. By (11),
B = ((=2)P*™! —2)/3, which is a contradiction. O
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