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Abstract

Let N be a finite set, let p ∈ (0, 1), and let Np denote a random binomial subset
of N where every element of N is taken to belong to the subset independently with
probability p. This defines a product measure µp on the power set of N , where
µp(A) := Pr[Np ∈ A] for A ⊆ 2N .

In this paper we study monotone (upward-closed) families A for which all min-
imal sets in A have size at most k, for some positive integer k. We prove that for
such a family µp(A)/pk is a decreasing function, which implies a uniform bound on
the coarseness of the thresholds of such families.

We also prove a structure theorem which enables one to identify in A either a
substantial subfamily A0 for which the first moment method gives a good approxi-
mation of its measure, or a subfamily which can be well approximated by a family
with all minimal sets of size strictly smaller than k.

Finally, we relate the (fractional) expectation threshold and the probability
threshold of such a family, using linear programming duality. This is related to
the threshold conjecture of Kahn and Kalai.
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†Research supported in part by BSF grant 2010247.
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1 Introduction

A family of sets A is called monotone if A ∈ A and A ⊂ B implies B ∈ A. For such
a family, a set which is minimal with respect to inclusion is called a minterm. One of
the fundamental phenomena in random graph theory is that of thresholds of monotone
properties. This dates back to the seminal papers of Erdős and Rényi [5, 6] who defined
the notion of thresholds and discovered that for many interesting graph properties the
probability of the property appearing in the binomial random graph G(n, p), for large n,
behaves much like a step function of the edge probability p, increasing from close to 0 to
close to 1 abruptly as p is varied slightly. The study of thresholds of random structures
in general, and in random graphs specifically, has been a thriving area ever since, and
thousands of papers have covered related problems. Bollobás and Thomason [4] showed
that every monotone property of sets has a threshold function and, using the Kruskal-
Katona theorem, gave optimal quantification of such thresholds. In [8] it was observed
that the KKL theorem [11], and its extension in [3] imply sharp thresholds for properties
which are symmetric under the action of a group on the elements of the ground set, in
particular for graph properties.

For most interesting families of graph properties the threshold function p(n) tends to
zero as n tends to infinity. In this case it is of interest to study the sharpness of the
threshold. Fixing a graph property A, and a parameter ε, one may ask for the width of
the interval of values of p in which the probability of G(n, p) having property A climbs
from ε to 1 − ε. This width is measured with respect to the value of p for which the
probability of G(n, p) ∈ A is, say, 1/2, henceforth the critical p. For a series of properties
An, of graphs on n vertices, we will say that the threshold is sharp if the ratio between
the width of the threshold interval and the critical p tends to 0. We will shortly give a
more precise definition of sharp thresholds in a more general setting.

In his Ph.D. thesis, the first author [7] gave a necessary condition for monotone graph
properties to have a sharp threshold. Roughly speaking, if a property does not have
a sharp threshold it must be well approximable by a local property (e.g. containing a
triangle), as opposed to properties that are global (e.g. connectivity) and cannot be well
approximated by the property of containing a subgraph from a fixed list. In the appendix
to [7] Bourgain proved a similar statement, with a slightly weaker conclusion, in a much
more general setting, without the assumption of symmetry. In a recent paper Hatami, [9]
gives a common generalization of these two results.

Returning to the question of thresholds of local properties, the appearance of any fixed
subgraph in G(n, p) has a coarse threshold, and this is well understood, see Bollobás’ paper
[1] for a complete description. Roughly speaking, if a fixed graph H is strictly balanced
then the number of copies ofH inG(n, p) will be approximately Poisson, and the governing
parameter, the expectation of the random variable, will be of order p|E(H)|n|V (H)|, which
varies smoothly with p: when p is multiplied by a constant c, the expectation changes by a
factor of c|E(H)|. When H is not balanced the situation is only slightly more complicated,
and appearance of copies of H in G(n, p) can be understood by studying the appearances
of the densest subgraphs of H. Intuitively, if H has a subgraph H ′ which is much denser
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than H, then every copy of H ′ that appears in G(n, p) is extremely likely to be contained
in many copies of H. Kahn and Kalai, [10] have a far-reaching conjecture as to what
this looks like for general monotone properties. In the graph setting a variant of their
conjecture (see [10, Conj. 2.1]) says that for a family generated by copies of a single
nonfixed H (e.g. a Hamiltonian cycle) there is at most a logarithmic gap between the
actual threshold and the probability that guarantees that the expected number of copies
of each subgraph of H is at least (say) 1. (It is an open question—see [10, Question
2.2]—whether this variant is implied by the main conjecture of [10].)

The basic question which led to the writing of this paper was: how specific is this
behavior to graphs? The proofs of this behavior use the symmetry of graphs very strongly,
yet it seemed possible that something similar should hold also for properties of random
binomial subsets of a ground set without any symmetry assumptions. This would imply a
converse to the main theorems of [7] and its appendix: not only does a non-sharp threshold
imply that the property in question has local nature, but also any property determined
by small minimal sets has a non-sharp threshold.

We will prove in this paper that this indeed is the case.

2 Setting and main results

Let [n] denote the set {0, 1, . . . , n}, and let [n]p denote a random subset of [n], where
each element is chosen independently with probability p. Recall that a family of sets A
is called monotone if A ∈ A and A ⊂ B implies B ∈ A For A, a family of subsets of [n]
and p ∈ [0, 1] we define µ(A, p) to be the probability that [n]p ∈ A. Note that if A is
monotone and nontrivial (i.e. neither A nor its complement are empty) then this function
is strictly increasing in p. We will also use the notation µp to denote the measure µ(·, p).

For a fixed non-trivial monotone family A and any x ∈ [0, 1] we define px to be the

unique number such that µ(A, px) = x. For 0 < ε < 1/2 define δε(A) =
p1/2−pε
p1/2

. The

numerator is the length of the threshold interval, in which the probability of A climbs from
ε to 1/2. The denominator, p1/2, supplies the correct yardstick with which to measure this
length. The slower δε(A) tends to 1 as ε tends to 0, the sharper the threshold is (in other
words, the smaller the threshold interval is.) Note it would also make sense to study the
interval [pε, p1−ε], but our choice gives a neater normalization, bounding δε(A) between 0
and 1.

Theorem 1. Let A be a monotone family of subsets of [n], with all minterms of size at

most k. Then the function µ(A,p)
pk

is monotone decreasing. Consequently

δε(A) > 1− (2ε)
1
k .

The simple derivation of this theorem from the Margulis-Russo lemma was pointed
out to us by Oliver Riordan. Note that the theorem is tight, e.g., for a family with a
single minterm. We present the proof of Theorem 1 in Section 3 below. An upper bound
on δε will follow from a different approach which we present in Section 5:
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Theorem 2. Let A be a monotone family of subsets of [n], with all minterms of size at
most k, then one has:

1− 2ε
(k − 1)k−1

kk
> δε(A).

To present the results of Section 5 we first need a definition. As usual, let P ([n]) denote
the power set of {1, 2, . . . , n}. For a monotone family A ⊆ P ([n]) with a set of minterms
M we define Ep(A) to be the expected number of minterms of A that are contained in the
random set [n]p. Ep(A) is the expectation of the function f(A) =

∑
M∈M 1A⊂M , which

takes positive integer values on all A in A, and consequently gives an upper bound on
µ(p,A). This upper bound can be tightened by a fractional version, which we call the
fractional expectation of A.

Definition 3. For a monotone family A ⊂ P ([n]), with a set of minterms M, we define
the fractional expectation of A with respect to µp to be

E∗p(A) = min
∑

β(B)p|B|,

where the minimum is taken over all functions β : P ([n])→ R>0 such that∑
B⊆A

β(B) > 1 for all A ∈M.

If β is a function for which the minimum in the definition of the fractional expectation
is achieved, then E∗(A) is the expectation of the function g(A) =

∑
B β(B)1B⊆A, which

is non negative and assumes values at least 1 on all A in A, hence this too gives a (better)
upper bound on µ(A), namely

Ep(A) > E∗p(A) > µp(A).

The main result of Section 5 is that for monotone families with minterms of bounded size
this bound is not too far off mark.

Theorem 4. Let A be a monotone family with all minterms of size at most k. Then for
any α > 0

E∗p(A) > µp(A) > E∗αp(A)(1 + α)−k.

As a corollary we deduce a special case of the expectation-threshold conjecture of [10].

Corollary 5. Let A be a monotone family of subsets of [n], with all minterms of size at
most k. If E∗p(A) = 1 then µkp(A) > 1/e.

Note that for a family A with minterms of size at most k the expectation threshold (p
for which Ep(A) = 1), and the fractional expectation threshold (p for which E∗p(A) = 1),
differ only by a multiplicative factor of 2k. Talagrand conjectures in [16] that the gap
between the thresholds for families with minterms of size at most k, is of order at most
log(k).
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In Section 4 we approach the question of understanding the threshold behavior of a
monotone family A ⊆ P ([n]) via the parameter Ep(A), the expected number of minterms
of A in a random set [n]p. If we have good control over the second moment of this
random variable, the expectation gives us a good indication as to the probability µp(A).
An example of this setting is, say, the family of all subgraphs of Km that contain a copy
of K4, when p = Θ(m−2/3). It is easy to verify that in this case the expected number
of minterms (i.e. the expected number of copies of K4 in G(m, p)) is Θ(1), whereas the
variance is also of this order of magnitude, which enables us to get an effective lower
bound on the measure of the family using the Payley-Zygmond bound

Pr[Z > 0] >
E[Z2]

(E[Z])2
,

which holds for any non-negative random variable Z. On the other hand, consider the
example where the minterms are all subgraphs of Km containing a copy of “K4 with
a tail”, a graph consisting of K4 with a fifth vertex connected to precisely one of the
four. We again set p = m−2/3 and a moment of thought shows that although this family
is properly contained in the previous one, the measure of their symmetric difference is
negligible, as any copy of K4 that appears in G(m,m−2/3) is overwhelmingly likely to have
many tails. This is reflected by the fact that the expectation now is huge rather than
constant. In this case one has to realize that the tail connected to K4 is a red herring,
and proper analysis can, and should, focus on the previous family.

Such examples are almost canonical in any introductory course on random graphs.
Our main theorem in Section 4 guarantees that something similar to one of these two case
should hold in any family A defined by minterms of bounded size k. Either there is a
substantial subfamily B for which the first and second moments are well behaved, or a sub-
stantial subfamily B that may be approximated by a different family with minterms of size
strictly smaller than k. This structure theorem then allows us to deduce a theorem quite
similar to Theorem 1, with a slightly worse rate of decay (e.g. µp/2(A) > µp(A)/(k8k), as
opposed to the truth which is µp/2(A) > µp(A)/2k.)

3 The Margulis-Russo lemma, and proof of Theorem 1

For a monotone family A, the Margulis-Russo lemma, ([14], [15]) relates the derivative
of µ(A, p) with respect to p with the edge boundary of A. If A ∈ A, but (A \ a) is not
in A we say that a is a pivotal element of A and that there is a boundary edge “leaving
A in the direction of a”. Let Piv(A) denote the number of pivotal elements in A (which
is necessarily 0 if A 6∈ A). This quantity is sometimes called the sensitivity of A. Let
A be a random set chosen according to µ(p), then Piv(A) is a random variable, and its
expectation is a measure of the size of the boundary of A. As the lemma below shows,
this is a parameter intimately correlated with the threshold behavior of A.

Lemma 6. [Margulis,Russo]

p
dµ(A, p)

dp
= E[Piv(A)].
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This lemma, which is so simple to state, and, as we shall see shortly, very easy to
prove, is extremely useful. See, e.g., [8], [7], [2]. It is not surprising that this lemma
is relevant when studying thresholds, as the expression on the right hand side is clearly
related to the ratio between the width of the threshold interval and the value of p within
the interval (it is an approximation of its reciprocal). Both Russo and Margulis proved
this lemma by induction on n, the size of the ground set from which A is chosen. For
the sake of being self contained we present a different proof, which is well known folklore,
perhaps due to Gil Kalai.

Proof of Lemma 6: Let A be a monotone family of subsets of [n], and for some fixed
(p1, p2, . . . , pn) consider the following product measure µ(p1,p2,...,pn) on P ([n]). The measure
of a set A is

∏
i∈A pi

∏
j 6∈A(1 − pj). For i ∈ [n] and a random set A chosen according to

µ(p1,p2,...,pn) let ai denote the probability that (A ∈ A and (A\{i}) ∈ A), and let bi denote
the probability that i is pivotal in A ∪ {i}, i.e. ((A ∪ {i}) ∈ A and (A \ {i}) 6∈ A). This
means that the probability that i is pivotal is pibi. Recalling that A is monotone, for all
i we have µ(p1,p2,...,pn)(A) = ai + pibi, and E[Piv(A)] =

∑
i pibi.

We now let all of the pi depend on a common parameter p in the following trivial way:
pi(p) = p, and note that the resulting measure is µp. The Margulis-Russo formula now
follows from a simple application of the chain rule.

dµ(A, p)
dp

=
∑
i

∂µ(p1,p2,...,pn)(A)

∂pi
· dpi
dp

=
∑

bi =
E[Piv(A)]

p
.

The fact that Theorem 1 follows immediately from the Margulis-Russo formula, as
pointed out to us by Oliver Riordan, is yet another example of how useful this result is.

Proof of Theorem 1: Let A be a monotone family with all minterms of size at most
k. Let A be a random set chosen according to µp. Note that A can never have more than
k pivotal elements, and that if A 6∈ A then, by definition there are no pivotal elements.
Therefor

E[Piv(A)] 6 k · µp(A).

Using this in conjunction with the Margulis-Russo formula, and deriving with respect to
p gives (

µp(A)

pk

)′
=
µ′pk − kpk−1µ

p2k
6 0.

4 Structure theorem for monotone families with small minterms

We begin with some notation. Let A be a monotone family and let M(A) be the set of
its minterms. Throughout this section we will assume that all minterms are of size at
most k. Let XA be the random variable that counts the number of minterms of A in [n]p.
For a set V ⊂ [n] we will define the family of its m−supplements with respect to A to
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be the family of sets W of size m whose disjoint union with V form a minterm, namely
Nm
A (V ) = {W ⊂ [n] s.t. |W | = m and ∃M ∈M(A) s.t. W ] V = M}.

We say that A is tame with respect to p if for any 1 6 m 6 k− 1 and for any V ⊂ [n]
one has |Nm

B (V )| < p−m. We say that B is a tame m-approximation of A at p, if there is
a subfamily A′ ⊂ A, such that for all minterms B ∈ M(B) it holds that the set Nm

A′(B)
has size at least p−m and is tame.

The definition of a tame family is useful because it implies that for such a family the
first moment bound on the measure is not too far from the truth. This is captured by the
following lemma.

Lemma 7. Let A be a tame family with respect to p with minterms of size at most k.
Then

µp(A) >
min{Ep[XA], 1}

k2k

Proof. We would like to use the Paley-Zygmund inequality to bound the probability from
below:

µp(A) >
E2[XA]

E[(XA)2]
(1)

Let us calculate the numerator and denominator separately. Denoting M(m) =
|{Mi ∈M s.t. |Mi| = m}| it’s easy to see that:

E[XA]2 =
k∑

m,`=1

pm+lM(m)M(l)

The denominator needs a bit more careful work. Remembering that M(A) = {Mi}
and that XA is the random variable counting the number of minterms, we can define Xi

to be the indicator of Mi and write XA =
∑

iXi. With this we have:

E[X2] = E[
∑
i,j

XiXj] = E[
∑
i

X2
i ] + E[

∑
i 6=j

Mi∩Mj 6=∅

XiXj] + E[
∑

Mi∩Mj=∅

XiXj].

It’s easy to see that:

E[
∑

Mi∩Mj=∅

XiXj] 6
k∑

m,l=1

pm+lM(m)M(l) = E[XA]2

and as the Xis are indicators we get

E[
∑
i

X2
i ] = E[

∑
i

Xi] = E[XA]

and so we are left with taking care of the second summand.
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Note that A is a tame family, thus for any Mi and 1 6 m 6 k − 1 one has:

|{Mj s.t. Mi ∩Mj 6= ∅, |Mj \Mi| = l}| =
∑
V⊂Mi

N l
A(V ) 6 2kp−l.

With this we are ready to do the calculation. We break the sum into sums corresponding
to the different sizes of minterms and supplements.

E[
∑
i 6=j

Mi∩Mj 6=∅

XiXj] =
k∑

m=1

∑
i:|Mi|=m

(
k−1∑
j=1

∑
j:Mj∩Mi 6=∅
|Mj\Mi|=l

E[XiXj])

=
k∑

m=1

∑
i:|Mi|=m

(
k−1∑
j=1

|{Mj s.t. Mi ∩Mj 6= ∅, |Mj \Mi| = l}|pm+l)

6
k∑

m=1

∑
i:|Mi|=m

(
k−1∑
j=1

2kpm)

= (k − 1)2k
k∑

m=1

∑
i:|Mi|=m

pm

= (k − 1)2k
k∑

m=1

M(m)pm

= (k − 1)2k E[XA]

Summing everything together we get that:

E[(XA)2] 6 ((k − 1)2k + 1)E[XA] + E[XA]2

And now plugging this in to Paley-Zygmund we get:

µp(A) >
E[XA]2

E[(XA)2]
>

E[XA]2

((k − 1)2k + 1)E[XA] + E[XA]2
>

min{E[XA], 1}
(k − 1)2k + 2

For the simplicity of further calculations we can obviously write:

µp(A) >
min{E[XA], 1}

k2k

as needed.

Corollary 8. Let A be a monotone family with minterms of size at most k. Then

(i) If A is tame with respect to p/2 then µp/2(A) > µp(A)/(k22k).

(ii) If B is a tame m-approximation of A at p then µp(A) > µp(B)/(m2m)
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Note that (i) is weaker than what can be deduced using Theorem 1, nonetheless we
include it with its proof in order to demonstrate the information one can deduce from the
structural approach.

Proof. To see (i) we only need to note that as the minterms of A are of size at most k one
has Ep/2[XA] > 1

2k Ep[X
A], together with the inequality on the first moment Ep[XA] >

µp(A) and Lemma 7 we get

µp/2(A) >
min{Ep/2[XA], 1}

k2k
>

min{Ep[XA], 1}
k22k

>
µp(A)

k22k

as needed.
For (ii) note that as any B ∈ M(B) is a subset of a minterm of A the following

inequality holds for any p:

µp(A) > µp(B) min
B∈B

µp(N
m
A (B))

It is left to show that for any B ∈ B one has µp(N
m
A (B)) > 1

m2m
. B is an m−approximation

so there is a family A′ ⊂ A for which |Nm
A′(B)| > p−m, furthermore each minterm in

Nm
A′(B) is of size m, so E[XNm

A′ (B)] > 1. As Nm
A′(B) is tame we can apply Lemma 7 and

get:

µp(N
m
A′(B)) >

min{Ep/2[XNm
A′ (B)], 1}

m2m
>

1

m2m

Finally as A′ ⊂ A we get µp(N
m
A (B)) > µp(N

m
A′(B)) > 1

m2m
as needed.

Now we are ready to present the structural result and its corollaries.

Theorem 9. Let A be a monotone with minterms of size at most k, and let p ∈ [0, 1].
Then at least one of the following two possibilities holds.

1. There exists a subfamily B ⊆ A, with µp(B) > µp(A)/2, which is tame with respect
to p/2.

2. There exists m between 1 and k−1, and a family B which is a tame m-approximation
of A at p/2 with µp(B) > µp(A)/2m+1.

By induction on the size of the minterms and application of the Theorem 9 and
corollary 8 we deduce the following corollary, whose proof we defer until after the proof
of the theorem.

Corollary 10. Let A be a monotone family of subsets of [n] with all minterms of size at
most k. Then

µp/2(A) >
1

k23k−1µp(A),

By repeated application of the corollary above one gets:
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Corollary 11. Let A be a monotone family of subsets of [n] with minterms of size at
most k. Then:

δε(A) > 1− (2ε)
1

3k+log k−1

Note, again, that this is weaker than what follows from Theorem 1.

Proof of Theorem 9. Let us iteratively define new families, one of which will be either a
tame family or a tame approximation. Let A1 := A, for each 1 6 m 6 k − 1:

Bm = {V ⊂ [n] s.t. |Nm
Am(V )| > (p/2)−m}

M(Am+1) =M(Am) \ {M | ∃V ∈ Bm, V ⊂M}

and let Am+1 be the family spanned by M(Am+1).
As A = A1 ⊇ A2 · · · ⊇ Ak−1 ⊇ Ak there are two possible options. Either there is

some m for which µp(Am \ Am+1) is large, or if for all m we have that µp(Am \ Am+1) is
small then µp(Ak) is large.

Note that Ak is tame with respect to p/2 as we removed all subsets V ⊂ [n] that have
many supplements (of any size.) If µp(Ak) > 1

2
µp(A) this gives us immediately the first

case of the theorem.
If µp(Ak) < 1

2
µp(A) then there must be some m for which µp(Am) − µp(Am+1) >

1
2m+1µp(A). Let us show that in this case Bm is a tame m−approximation as guaranteed
in the second case of the theorem.

Taking A′ to be Am ⊂ A we see that from the definition of Bm one has that for any
B ∈ Bm |Nm

Am(B)| > (p/2)−m so we only need to show that Nm
Am(B) is tame. Indeed,

denote N to be the family spanned by Nm
Am(B) and assume there is some U ⊂ [n] and

some l < m such that |N l
N (U)| > (p/2)−l, then |N l

Am(U ∪ B)| > |N l
N (U)| > (p/2)−l and

thus B ∪ U ∈ Bl for l < m in contradiction to the definition of Am.
Finally note that µp(Bm) = µp(Am) − µp(Am + 1) > 1

2m+1µp(A). From this and the
above B is as guaranteed in the second case of the theorem.

Proof of Corollary 10. We will use induction on the size of the minterms. For k = 1 we
note that A is tame by definition, so we can directly apply Lemma 7 and together with
the first moment we get the required inequality:

µp/2(A) >
min{Ep/2[XA], 1}

2
>

min{Ep[XA], 1}
4

>
1

4
µp(A)

Now assume we have proved for any ` < k and let us proof for k. Theorem 9 gives us
two options. If we have the first one, then there is a tame family B which is a subfamily
of A and µp(B) > 1

2
µp(A). Then together with Corollary 8 we have:

µp/2(A) > µp/2(B) >
µp(B)

k2k
>
µp(A)

k2k+1

which is stronger then the required inequality.
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If we are in the second case of the theorem note that any B ∈M(B) has supplements
of size m and so the size of each minterm in B is at most k −m. Thus we can use the
induction assumption on B and get that µp/2(B) > 1

(k−m)23(k−m)−1µp(B).

Recalling that from Theorem 9 µpB > 1
2m+1µp(A), it is left to apply Corollary 8 and

get:

µp/2(A) >
1

m2m
µp/2(B) >

1

m(k −m)23k−2m−1µp(B) > µp(A)
1

m(k −m)23k−m

a simple calculation will give us the fact that 1
m(k−m)23k−m

> 1
k23k−1 and so we get :

µp/2(A) >
1

k23k−1µp(A)

as required

5 Fractional expectation and the expectation threshold

The technique we apply in this section, using duality of linear programming, follows an
idea presented by Talagrand in the same context (see “weakly p-small” vs. “p-spread” in
[16]). This leads to a calculation of a weighted-second-moment, as done by Lyons in [12].

We begin by proving Theorem 4.
Proof: Let A ⊆ P ([n]) be a monotone family with M = M(A) as a set of minterms,
all of which have size at most k. Note that whenever f : P ([n]) → R>0 assumes values
greater than 1 on all A ∈ A then E(f) > µ(A), and whenever g : P ([n]) → R>0 has its
support contained in A then by Payley-Zygmund,

µ(A) >
E(g)2

E(g2)
. (2)

To get good control on µ(A) it makes sense to try and find such a function f which
is as small as possible, and a function g for which the second moment is well behaved
(say, not too much weight on the upset generated by any single set, a quantity that arises
naturally when calculating the second moment.) The trick will be to relate these two
functions via LP duality. First, for q ∈ [0, 1], define

E∗q(A) = min
∑

β(B)q|B|,

where the minimum is taken over all functions β : P ([n])→ R>0 such that∑
B⊆A

β(B) > 1 for all A ∈M. (3)

By LP duality E∗q(A) = L∗q(A) where

L∗q(A) = max
∑
A∈M

ν(A),
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where the maximum is taken over all functions ν :M(A)→ R>0 such that∑
B⊆A

ν(A) 6 q|B| for all B. (4)

Now, for any p, q ∈ (0, 1) we let α = q/p and proceed to relate µp and E∗q. Let ν be a
function achieving the maximum in the definition of L∗q(A) and define

g(X) =
∑
A∈M

ν(A)p−|A|1A⊆X

and note that

Ep(g) = L∗q(A). (5)

So to complete the calculation of a Payley-Zygmond type lower bound on µp(A) what is
left is to calculate Ep(g2). (This is the “weighted second moment” calculation, as in [12].)
With A,B running over M(A) we have

Ep(g2) =
∑∑

ν(a)ν(B)p−|A∩B|

6
∑
I⊆[n]

p−|I|

(∑
A⊇I

ν(A)

)2

6
∑
i

p−i

(
max
|I|=i

∑
A⊇I

ν(A)

)∑
|I|=i

∑
A⊇I

ν(A)


6
∑
i

p−i(αp)i
∑
A

ν(A)

(
|A|
i

)
(6)

6
∑
A

ν(A)
∑
i

αi
(
|A|
i

)
6
∑
A

ν(A)(1 + α)|A|

6 L∗q(A)(1 + α)k (7)

where (6) follows from (4), and (7) follows from the definition of ν and the fact that all
minterms are of size at most k. We now use (7) and (5) in (2), together with the fact
that L∗ = E∗:

µp(A) >
E(g)2

E(g2)
>

(L∗q(A))2

L∗q(A)(1 + α)k
= E∗αp(A)(1 + α)−k.

A nice feature of Theorem 4 is that it gives sufficient control over the rate of change
of µp (as a function of p) to give both lower and upper bounds. This is embodied in the
following corollary which also implies theorem 2.
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Corollary 12. Let b < a and for a fixed non-trivial family A and any x ∈ [0, 1] let px be
the unique probability that µ(A, px) = x. Then(a

b

)1/k
− 1 6

pa
pb

6
kk

(k − 1)k−1
a

b
.

Note that setting b := ε, a := 1/2 implies Theorem 2. Also, note that Theorem 1

yields the bound
(
a
b

)1/k
6 pa

pb
, so that when a/b is large this is almost as good.

Proof: For the lower bound observe that Theorem 4 implies for any p and α

µαp
(1 + α)k

6 µp.

Setting p := pb and α := pa/pb gives the required result.
For the upper bound it is useful to use the inverse function to E∗. Let qx be the value

q for which E∗q(A) = x. Theorem 4 implies for any x and α

px 6
qx(1+α)k

α
.

Also, it is easy to see that for y 6 x it holds that qx 6 qy
x
y
. Furthermore, for every x 6 1

we have qx 6 px. Putting these together gives

pa 6
qa(1+α)k

α
6 qb

(1 + α)k

α

a

b
6 pb

(1 + α)k

α

a

b
.

The function (1+α)k

α
is minimized at α = 1/(k−1). Plugging this value of α into the above

expression yields the result.
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