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Abstract

We study intersection numbers of invariant divisors in the toric manifold asso-

ciated with the fan determined by the collection of Weyl chambers for each root

system of classical type and of exceptional type G2. We give a combinatorial for-

mula for intersection numbers of certain subvarieties which are naturally indexed

by elements of the Weyl group. These numbers describe the ring structure of the

cohomology of the toric manifold.
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1 Introduction

Let Φ be a root system in the n-dimensional Euclidean space E with its inner product. We
denote by ∆(Φ) the fan determined by the collection of Weyl chambers in E∗, and consider
the toric manifold X associated with ∆(Φ). This toric manifold arises as the closure of a
general orbit in the flag variety with respect to the standard torus action which makes X a
regular semisimple Hessenberg variety ([4]). The Weyl groupW naturally acts on the Weyl
chambers and hence also on X. The representation of W on the cohomology H∗(X;C)
has been extensively studied by Procesi [9], Dolgachev-Lunts [5], and Stembridge [10]. For
the classical root system of type An, Losev-Manin [8] described X as the moduli space of
stable (n+ 1)-pointed chains of projective lines (cf. Batyrev-Blume [1]).

Let Π = {α1, · · · , αn} ⊂ Φ be a set of simple roots, then we have a torus invariant
non-singular subvariety Xu in X of codimension |u(Π) ∩ Φ−| such that the associated
cohomology classes {[Xu]}u∈W form a module basis of the integral singular cohomology
H∗(X). The cohomology class [Xu] is written as a monomial of torus invariant divisors

the electronic journal of combinatorics 22(2) (2015), #P2.4 1



Duωi
of X for all coweights uωi satisfying uαi ∈ Φ− where {ω1, · · · , ωn} is the set of

fundamental coweights (see Section 2 and (17) for details). In this paper, we study the
case for the root systems of classical type and of exceptional type G2, and we give a
combinatorial formula of the intersection numbers

(µX , [w0Xw0w][Xu][Xv])

of three subvarieties Xu, Xv and w0Xw0w for u, v, w ∈ W where µX is the fundamental
homology class of X and w0 is the longest element. As an application, we will obtain a
recursive formula for the structure constants cwu,v in the expansion of the product

[Xu][Xv] =
∑

w∈W

cwu,v[Xw] where cwu,v ∈ Z

as discussed in Section 4.

Let us state our formula for (µX , [w0Xw0w][Xu][Xv]) in the case of the classical root
system of type An (the results for the classical root systems of type Bn, Cn, and Dn are
stated in Section 5). In this case, the Weyl group W is the (n+ 1)-th permutation group
Sn+1. For each u ∈ Sn+1, we let

D(u) := {{u(1), u(2), · · · , u(i)} | u(i) > u(i+ 1)}, (1)

A(u) := {{u(1), u(2), · · · , u(i)} | u(i) < u(i+ 1)} (2)

where each {u(1), u(2), · · · , u(i)} is a subset of [n + 1]. We define a Young diagram λw
uv

as follows. Assume d(u) + d(v) = d(w), and the collection D(u)
∐

D(v)
∐

A(w) forms a
nested chain of subsets of [n + 1]. In this case, λw

uv is defined to be the Young diagram
consisting of the cardinalities of those chains ordered as a weakly decreasing sequence.
Otherwise, λw

uv = ∅. For example, suppose n = 4 and, let u = 12354, v = 31254, and
w = 35421. Then, we have that D(u) = {1235}, D(v) = {3, 3125} = {3, 1235}, and
A(w) = {3} where 1235 denotes the set {1, 2, 3, 5} and we use the same notation for
others. These sets forms a nested chain of subsets 3 ⊂ 3 ⊂ 1235 ⊂ 1235, and hence we
obtain λ35421

12354,31254 = (4, 4, 1, 1).
For a Young diagram λ = (λ1 > · · · > λn) with n rows (i.e. λn > 0) fitting into the

n × n square, we define I(λ) ∈ Z to be the following integer. Let s be the number of
lower-right corners of λ, i.e., s = |{i ∈ [n] | λi > λi+1}| where λn+1 := 0. Write

{i ∈ [n] | λi > λi+1} = {i1, · · · , is}.

We impose the condition i1 < i2 < · · · < is to determine them uniquely. Observe that
is = n. For example, if n = 4 and λ = (4, 2, 2, 1), then s = 3 and {i1, i2, i3} = {1, 3, 4}.
For r = 1, · · · , s, define

ar := ir − ir−1 − 1, br := λir − λir+1
− 1, cr := λir + ir − n− 1
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where we write i0 = 0, and let

yr :=

(
ar
cr

)(
br
cr

)
for r = 1, · · · , s.

We use the convention
(
x
y

)
= 0 unless 0 6 y 6 x. By shading each lower-right corner of λ,

the pictorial meanings of ar, br, and cr become clear (as shown in Figure 1). Namely, ar
is the number of boxes between the north side of the shaded box and the the upper-left
corner placed above, br is the similar number for the horizontal segment of the corner,
and cr is the number of boxes between the north side of the shaded box and the crossing
point of the vertical segment and the anti-diagonal line where we count negatively if that
part of the vertical segment is above the anti-diagonal.

cr

ar

br
cr

s = 4 is the number of lower-right corners.

λ

Figure 1: Three numbers ar, br and cr

Now, let

I(λ) := (−1)n+sy1 · · · ys,

and put I(∅) = 0. The following is our main statement for type An.

Theorem 1. (µX , [w0Xw0w][Xu][Xv]) = I(λw
uv) for any u, v, w ∈ Sn+1 where µX is the

fundamental homology class of X.

We will prove Theorem 1 by computing general intersection numbers of invariant
divisors of X in Section 3 and 4. Section 5 is devoted to the classical root systems of type
Bn, Cn and Dn.

2 Preliminaries

Let Φ be a root system in the n-dimensional Euclidean space E with its inner product.
Let M ⊂ E be the root lattice of Φ and N ⊂ E∗ be the coweight lattice of Φ. Then M
is the dual lattice of N with respect to the natural pairing.

We choose a set of simple roots Π = {α1, · · · , αn} ⊂ Φ, and let Π∗ := {ω1, · · · , ωn} ⊂
E∗ be the dual basis of Π defined by 〈ωi, αj〉 = δij, i.e., ω1, · · · , ωn are the fundamental
coweights. For each u ∈ W , denote

σu := cone(uω1, · · · , uωn) = {
∑n

i=1λiuωi | λi > 0}.

the electronic journal of combinatorics 22(2) (2015), #P2.4 3



These cones {σu}u∈W form a non-singular complete fan ∆(Φ) in E∗ by including all their
faces. The set of minimal generators of these cones are the set of coweights :

Φ∗ =
⋃

v∈W

{vω1, · · · , vωn}.

For each element u ∈ W , the maximal cones containing a minimal generator uωi are σv

for v ∈ W such that uωi = vωj for some j. There is a cone of ∆(Φ) generated by minimal
generators x1, · · · , xk ∈ Φ∗ if and only if there exists u ∈ W such that each xi can be
written as uωj for some j.

We consider the toric manifold X = X(Φ) associated with the fan ∆(Φ). For root
systems Φ and Φ′, it is easily verified that X(Φ) ∼= X(Φ′) as toric varieties (in the sense
of [3] Sec. 3.3.) if and only if Φ ∼= Φ′ as root systems (in the sense that their Cartan
matrices are the same up to permuting the indexes). We refer to [1] and [7] for general
properties of X. Let Dx ⊂ X be the invariant divisor corresponding to the ray generated
by x ∈ Φ∗. The Poincaré dual τx := [Dx] gives us a cohomology class of degree 2 in
the integral singular cohomology H∗(X). The cohomology ring H∗(X) is isomorphic to
the face ring of the underlying simplicial complex of the fan ∆(Φ) modulo some linear
relations ([6]). More precisely, we have

H∗(X) = Z[τx | x ∈ Φ∗]/I

where the ideal I is generated by τx1
· · · τxk

for which x1, · · · , xk do not generate a face
of σu for some u ∈ W and

∑
x∈Φ∗〈x, α〉τx for any root α. Namely, we have the following

equalities in H∗(X) :
∑

x∈Φ∗

〈x, α〉τx = 0 for any root α. (3)

The above observation about rays of ∆(Φ) implies that

Lemma 2. We have τx1
· · · τxk

= 0 unless there exists u ∈ W such that each xi can be
written as uωj for some j.

Let µX be the fundamental homology class of X. For subvarieties Z1, · · · , Zk ⊂ X,
we call (µX , [Z1] · · · [Zk]) the intersection number of Z1, · · · , Zk where [Zi] denotes the
Poincaré dual of Zi. Note that the Weyl group W acts on the fan ∆(Φ), and hence acts
on the toric manifold X. We have uXx = Xux for any u ∈ W and x ∈ Φ∗ which means
that (u−1)∗τx = τux. The next lemma says that intersection numbers for divisors Duωi

are
invariant under the Weyl group action.

Lemma 3. Let x1, · · · , xn ∈ Φ∗. Then for any u ∈ W , we have

(µX , τux1
· · · τuxn

) = (µX , τx1
· · · τxn

).

Proof. Observe that τux1
· · · τuxn

= (u−1)∗(τx1
· · · τxn

). Both of τux1
· · · τuxn

and τx1
· · · τxn

can be written as the cohomology class [p] of a point p in X multiplied by some integer,
and these integers are the corresponding intersection numbers. Since u preserves the
orientation of X, we have (u−1)∗([p]) = [u · p] = [p] which proves the claim.
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For any u ∈ W , the product τuω1
· · · τuωn

is the Poincaré dual of a point in X since
the invariant divisors Xuω1

, · · · , Xuωn
intersect transversally which means that

(µX , τuω1
· · · τuωn

) = 1. (4)

We will compute the intersection number (µX , τx1
· · · τxn

) for arbitrary x1, · · · , xn ∈ Φ∗

for the root systems of classical type. By Lemma 2, we can assume that this number is of
the form (µX , (τuωi1

)m1 · · · (τuωis
)ms) for some 1 6 i1 < · · · < is 6 n and 1 6 mk 6 n (k =

1, · · · , s) satisfying m1 + · · ·+ms = n without loss of generality. We call the number mk

the multiplicity of τuωik
. We compute this number by applying the linear relations (3) to

reduce the multiplicities m1, · · · ,ms. Although Lemma 3 shows that this number is equal
to (µX , (τωi1

)m1 · · · (τωis
)ms), we will need Lemma 3 again after applying the relations (3).

In the next section, we will consider the classical root system of type An, and compute
the intersection numbers.

3 Intersection numbers for Type An

In this section, we compute the intersection numbers for the toric manifold X of type An.
Let E = {x ∈ Rn+1 | x1 + · · · + xn+1 = 0}. The roots are ti − tj ∈ E (1 6 i, j 6 n + 1)
where ti ∈ Rn+1 is the i-th standard vector. We choose Π = {ti − ti+1 | 1 6 i 6 n} as the
set of simple roots, and write αi = ti − ti+1 for each i. The Weyl group W = Sn+1 is the
(n+1)-th permutation group acting on E by u(ti− tj) = tu(i)− tu(j) for each u ∈ W . The
minimal generators ω1, · · · , ωn ∈ E∗ of the fundamental Weyl chamber σid are

ωi = (e1 + · · ·+ ei)−
i

n+ 1
(e1 + · · ·+ en+1) for i = 1, · · · , n

where {ei}i ⊂ (Rn+1)∗ is the dual basis of {ti}i ⊂ Rn+1.
Denoting by 2[n+1] the set of all subsets of [n + 1] = {1, · · · , n + 1}, we have a well-

defined map Φ∗ → 2[n+1] by sending uωi 7→ {u(1), · · · , u(i)}. It is easy to see that this is
an injection, and this establishes an identification

Φ∗ ←→ the set of non-empty proper subsets of [n+ 1]. (5)

In particular, the well-definedness implies that if uωi = vωj then i = j. Now, for each
∅ ( S ( [n+1], we define τS := τuωi

where uωi ∈ Φ∗ corresponds to S by this identification.
Then, for ∅ ( S1, · · · , Sq ( [n+1] (1 6 q 6 n), it follows by Lemma 2 that τS1

· · · τSq
= 0

unless these sets form a nested chain of subsets, i.e. S1 ⊂ · · · ⊂ Sq up to reordering.
With Lemma 3, it is easy to show the following invariance property of intersection

numbers which implies that (µX , τS1
· · · τSn

) for ∅ ( S1 ⊂ · · · ⊂ Sn ( [n+1] is determined
by the set of integers 1 6 |S1| 6 · · · 6 |Sn| 6 n.

Lemma 4. Let ∅ ( S1 ⊂ · · · ⊂ Sn ( [n + 1] and ∅ ( S ′
1 ⊂ · · · ⊂ S ′

n ( [n + 1]. If
|Si| = |S

′
i| for all i = 1, · · · , n, then (µX , τS1

· · · τSn
) = (µX , τS′

1
· · · τS′

n
).
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Motivated by this property, we compute intersection numbers in terms of Young di-
agrams consisting of the cardinalities of the sets corresponding to the given invariant
divisors. The linear relations (3) are translated to

∑

∅(S([n+1]
k∈S,l/∈S

τS −
∑

∅(S([n+1]
k/∈S,l∈S

τS = 0 for each k, l ∈ [n+ 1]. (6)

In the following, we write τ∅ = τ[n+1] = 1. This equality together with the above observa-
tion about τS1

· · · τSq
being 0 implies the next lemma.

Lemma 5. Let ∅ ⊂ A ( B ( C ⊂ [n+ 1]. For any b ∈ B\A and c ∈ C\B, we have

τAτB
2τC = −

∑

A(B′(C
B′ 6=B,b∈B′,c/∈B′

τAτBτB′τC .

For a Young diagram fitting into the n × n square, we write the dotted anti-diagonal
line shifted down half the length of a single box from the standard anti-diagonal. (See
Figure 2).

Figure 2: Young diagrams and the dotted anti-diagonal line

Let ∅ ( S1 ⊂ · · · ⊂ Sn ( [n + 1], and denote by λ the Young diagram consisting
of λi = |Sn+1−i| for each i. We write λn+1 = 0. Let s be the number of the lower-right
corners of λ, that is,

s := |{i ∈ [n] | λi > λi+1}|.

Proposition 6. (Vanishing property) (µX , τS1
· · · τSn

) = 0 unless each step of the zigzag
line of the lower-right corners of λ crosses the dotted anti-diagonal.

Proof. We suppose that there is a step of the zigzag line of λ which does not cross the
dotted anti-diagonal, and show (µX , τS1

· · · τSn
) = 0 by induction on k := n − s. Since

there is no such case for k = 0, we consider the case k = 1. In this case, there is a unique
vertical segment of length 2 in the zigzag line of λ. If there is a (unique) horizontal
segment of length 2, then the vertical and horizontal segments are not adjacent because
of our assumption. By applying Lemma 5 for the square corresponding to this vertical
segment, it follows that the intersection number is zero since there is no summand.
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For the general case, take a vertical segment of length > 2. Let us say that this vertical
segment contains Si and Si+1 (i.e. Si = Si+1). We separate this square in τS1

· · · τSn
by

Lemma 5. Let λ′ be the Young diagram corresponding to a summand in the right-hand-
side. Then the zigzag line of λ′ has a step which does not cross the dotted anti-diagonal.
In fact, if the vertical segment does not cross the dotted anti-diagonal, then this segment
survives as a non-crossing segment of length at least 1, and if it does then we can find
another vertical segment which does not, and this segment is preserved for each λ′ in the
summands. Now the induction hypothesis shows that each term will vanish after taking
the intersection number, and we get (µX , τS1

· · · τSn
) = 0.

Let λ = (λ1 > · · · > λn) be a Young diagram with n rows (i.e. λn > 0) fitting into the
n× n square. Let I(λ) ∈ Z be the one defined in Section 1. We here recall the definition
for the convenience of the reader. Let s be the number of lower-right corners of λ, i.e.,
s = |{i ∈ [n] | λi > λi+1}| where λn+1 := 0. Write

{i ∈ [n] | λi > λi+1} = {i1, · · · , is}.

We impose the condition i1 < i2 < · · · < is to determine them uniquely. Observe that
is = n. For r = 1, · · · , s, define

ar := ir − ir−1 − 1, br := λir − λir+1
− 1, cr := λir + ir − n− 1 (7)

where we write i0 = 0, and let

yr :=

(
ar
cr

)(
br
cr

)
for r = 1, · · · , s. (8)

See Figure 1 for the pictorial meaning of these numbers. We use the convention
(
x
y

)
= 0

unless 0 6 y 6 x. Now, let

I(λ) := (−1)n+sy1 · · · ys. (9)

The next is the main theorem of this section.

Theorem 7. If S1, · · · , Sn form a nested chain of subsets, then we have

(µX , τS1
· · · τSn

) = I(λ)

where µX is the fundamental homology class and λ is the Young diagram consisting of
|S1|, · · · , |Sn| reordered as a weakly decreasing sequence. Otherwise, the intersection num-
ber is zero.
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Proof. Recall that λ is the Young diagram defined by λi = |Sn+1−i| for i = 1, · · · , n.
We denote J(λ) := (µX , τS1

· · · τSn
), and we show that J(λ) = I(λ). Observe that the

condition 0 6 cr 6 br for all r = 1, · · · , s is equivalent to the condition that each step of
the zigzag line of the corners of λ crosses the dotted anti-diagonal. If this condition is not
satisfied, then both of J(λ) and I(λ) are zero. Hence, in the following, we can assume
that this condition holds.

We prove the claim by induction on k := n − s. For the case k = 0, we have λi =
|Sn+1−i| = n+1− i for all 1 6 i 6 n. So we have J(λ) = 1 by (4). Since y1 = · · · = yn = 1
in this case, we have I(λ) = 1, and the claim follows. For a general case, there is a
lower-right corner (say r-th corner from the top) of λ whose vertical line has length > 2.
Then, Lemma 4 and Proposition 6 combined together show that

J(λ) =





−

(
br−1

cr−1

)
J(λ′)−

(
br

cr

)
J(λ′′) (if λ 6= λ′, λ′′)

−

(
br−1

cr−1

)
J(λ′) (if λ 6= λ′, λ = λ′′)

−

(
br

cr

)
J(λ′′) (if λ = λ′, λ 6= λ′′)

(10)

where ar, br, and cr are those for λ, and the Young diagrams λ′ and λ′′ are given by

λ′
j =

{
n+ 1− j if j = ir−1 + 1,

λj otherwise,
λ′′
j =

{
n+ 1− j if j = ir,

λj otherwise.

(See Figure 3.) Note that there are no cases that λ = λ′ = λ′′ since our vertical line has
length > 2.

λ λ′ λ′′

Figure 3: The Young diagrams λ, λ′ and λ′′

If λ 6= λ′, by the induction hypothesis, we have

J(λ′) = (−1)n+(s+1)y1 · · · yr−2 ·

(
ar−1

cr−1

)
· 1 ·

(
ar − 1

cr

)(
br
cr

)
· yr+1 · · · ys. (11)
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Similarly, if λ 6= λ′′, we have

J(λ′′) = (−1)n+(s+1)y1 · · · yr−1 ·

(
ar − 1

cr − 1

)
· 1 · yr+1 · · · ys. (12)

Observe that the right-hand-sides of (11) and (12) vanish when λ = λ′ and λ = λ′′,
respectively. Hence, the right-hand-side of the equation (10) can be written as

J(λ) = −

(
br−1

cr−1

)
· (−1)n+s+1y1 · · · yr−2

(
ar−1

cr−1

)(
ar − 1

cr

)(
br
cr

)
yr+1 · · · ys

−

(
br
cr

)
· (−1)n+s+1y1 · · · yr−2yr−1

(
ar − 1

cr − 1

)
yr+1 · · · ys

= (−1)n+sy1 · · · ys = I(λ).

4 The ring structure of the cohomology

The cohomology ring H∗(X) of the toric manifold X associated with the fan ∆(An) is
given by the face ring of ∆(An) modulo the linear relations (3) ([6]). As an application
of Theorem 7, we describe the ring structure of the cohomology H∗(X) in terms of an
additive basis.

Recall that Duωi
for some i ∈ [n] and permutation u ∈ Sn+1 is the invariant divisor

of X associated with the ray generated by uωi ∈ N . Let

Xu :=
⋂

i

Duωi

for each permutation u ∈ Sn+1 where i runs over all descents in u. Here, a descent in u
is a number i ∈ [n] which satisfies u(i) > u(i+ 1), and we denote by d(u) the number of
descents in u. Denote by [Xu] ∈ H2d(u)(X) the Poincaré dual of Xu, then we have

[Xu] =
∏

i

τ{u(1),··· ,u(i)}

where i runs over all descents in u since invariant divisors of X intersect transversely.
{[Xu]}u∈Sn+1

forms a module basis of H∗(X) (See [7] or [1] for combinatorial proofs and
[4] for a geometric proof). The class [Xu] can be expressed by a Young diagram consisting
of the descents in u with the numbers in the nested chain of subsets inD(u) (see (1) for the
definition) written above the diagram so that each column represents the written number
above it. This expression effectively encodes the descents in u and the information of the
chain of subsets. (See Figure 4.) Denoting Y u := w0Xw0u = ∩Xu[i] where the intersection
runs over all ascents i in u, the similar expression works for [Y u] and the chain of subsets
in A(u). Here, w0 is the longest element of Sn+1.

For u, v, w ∈ Sn+1, we have the Young diagram λw
uv constructed in Section 1. Recall

that µX is the fundamental homology class of X. The following corollary provides the
combinatorial rule to compute the intersection number of Xu, Xv, and Y w in X.
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2 1 6 4
[X216435] : [Y 534162] :

5 3 4 1

Figure 4: Two examples for n = 5 in one-line notations

Corollary 8. (µX , [Y
w][Xu][Xv]) = I(λw

uv).

For example, for n = 4, we have

(µX , [Y
35421][X12354][X31254]) = 2.

In Figure 5, we left the numbers on the Young diagram so that we can see the nested
chain of subsets appeared in the construction of λw

uv.

3 1 2 5

λ35421
12354,31254 =

Figure 5:

Since {[Xu]}u∈Sn+1
forms a module basis of H∗(X), we can consider the expansion

coefficients of the product

[Xu][Xv] =
∑

w

cwuv[Xw]. (13)

For example, these coefficients for the product [Xsi ][Xsj ] can be calculated directly if
|i− j| > 1 where si is the simple reflection exchanging i and i+ 1. In fact, we have

[Xsi ][Xsj ] =

{
[Xsisj ](= [Xsjsi ]) if |i− j| > 2,

0 if |i− j| = 1.
(14)

since {1, · · · , i− 1, i+ 1} and {1, · · · , i, i+ 2} do not form a chain of subsets.
Let us describe each structure constant cwu,v in terms of intersection numbers computed

above. Since a Weyl chamber σu = cone(uω1, · · · , uωn) is a maximal cone of the fan, σu

is identified with a fixed point of the canonical torus action on X denoted by pu ∈ X
where pu is the intersection ∩n

i=1Duωi
. Then from the definition of Xw′ , one can show

that pu ∈ Xw′ implies u > w′ (e.g. [2]; Theorem 2.6.3) where > is the Bruhat order.
If Y w ∩ Xw′ 6= ∅, then Y w ∩ Xw′ must contain a fixed point since it is an intersection
of invariant divisors of X, and hence it follows that w > w′. From this observation,
we see that Y w ∩ Xw′ = ∅ unless w > w′. Also, it is easy to see that Y w and Xw′
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intersect transversally when w = w′. Recalling that the class [Y w][Xw′ ] is supported on
the intersection Y w ∩Xw′ , we obtain

(µX , [Y
w][Xw′ ]) =

{
0 unless w > w′ and d(w) = d(w′),

1 if w = w′.
(15)

See [4] for a proof using a cellular decomposition of X. Let I be the matrix whose (u, v)-
component is given by Iuv = (µX , [Y

u][Xv]) = I(λu
v id) for all u, v ∈ W . This matrix I is

invertible over Z because of (15). Now, each coefficient cwuv in (13) is a linear transform
of the intersection numbers I(λw

uv);

cwuv =
∑

w′

(I−1)ww′I(λw′

uv). (16)

We note that it suffices to take the sum for w′ satisfying d(w) = d(w′) and w > w′ since
(I−1)ww′ is also upper-triangular in the sense of the right-hand-side of (15).
So the formula (16) exhibits the upper-triangularity of cwuv in the sense that cwuv = 0 unless
u, v 6 w since I(λw

uv) satisfies the same property.
The transition formula (16) together with (15) provides us a recursive formula for the

structure constants cwuv which is manifestly integral;

cwuv = I(λw
uv)−

∑

w>w′

Iww′cw
′

uv.

Note again that it is enough to take the sum for all w′ satisfying d(w) = d(w′) and w > w′.
From this recursion, we recover (14), and we can compute the expansion of [Xsi ]

2. For
example, if n = 3, we obtain

[X2134]
2 = [X2431]− [X4213]− [X3421]− [X3241]− [X3214].

5 Other classical types

Note that the argument in the previous section can be naturally generalized to arbitrary
root systems by considering the non-singular subvariety

Xu =
⋂

i

Duωi
(17)

for each u ∈ W whereDuωi
is the invariant divisor ofX corresponding to the ray generated

by uωi and i runs over all i satisfying u(αi) ∈ Φ−. Here, Φ− is the set of negative roots. It
follows that the Poincaré duals {[Xu]}u∈W form an additive basis of the integral cohomlogy
H∗(X) (see [4]).

Remark 9. The collections {cwu,v}u,v,w∈W and {(µX , [Y
w][Xu][Xv])}u,v,w∈W are independent

on the choice of the simple roots Π.
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5.1 Intersection numbers for type Bn

For the classical root system of type Bn, the roots are {ti − tj, ±(ti + tj), ±ti ∈ E | 1 6

i 6= j 6 n} where E = Rn. We choose Π = {ti − ti+1, tn | 1 6 i 6 n − 1} as a set of

simple roots, and write αi = ti − ti+1(1 6 i 6 n− 1), αn = tn. The Weyl group S̃n is the

n-th signed permutation group. Letting t−i := −ti for all 1 6 i 6 n, u ∈ S̃n acts on E by
uti = tu(i). The minimal generators ω1, · · · , ωn ∈ E∗ of the fundamental Weyl chamber
are ωi = e1 + · · ·+ ei for i = 1, · · · , n.

Let [±n] = {1, · · · , n,−1, · · · ,−n}. For S ∈ 2[±n], consider a condition

for any i ∈ [±n], if i ∈ S then −i /∈ S. (∗)

We have a well-defined map Φ∗ → 2[±n] by uωi 7→ {u(1), · · · , u(i)}. This leads us to an
identification

Φ∗ ←→ the set of non-empty subsets of [±n] satisfying (∗).

Now, for each ∅ ( S ⊂ [±n] satisfying (∗), we define τS := τuωi
where uωi ∈ Φ∗ corre-

sponds to S by this identification. For ∅ ( S1, · · · , Sq ⊂ [±n] (1 6 q 6 n) satisfying (∗),
we have that τS1

· · · τSq
= 0 unless these sets form a nested chain of subsets, as in the case

for type An.
For each k ∈ [±n], let B ⊂ [±n] satisfy (∗), k ∈ B, and |B| = n. From the linear

relation (3) for the root α = tk, we can deduce that

τB
2 = −

∑

k∈B′

B′(B

τB′τB

where the sum is taken over all ∅ ( B′ ⊂ [±n] satisfying (∗) with the prescribed conditions.
Similarly, for each k, l ∈ [±n], let B ⊂ [±n] satisfy (∗), k ∈ B, and ±l /∈ B (hence
1 6 |B| 6 n− 1). Then from (3) for the root α = tk − tl, we obtain

τB
2 = −

∑

k∈B′, ±l /∈B′

B′ 6=B

τB′τB −
∑

k,−l∈B′

2τB′τB.

Observe that the second summand will vanish after multiplying τA and τC for A ⊂ B\{k}
and B

∐
{l} ⊂ C where we write τ∅ = 0. So these two equations can be used to prove the

separation rule similar to Lemma 5, and we obtain the same type of vanishing property
as in Proposition 6. Now the argument in the proof of Theorem 7 also works for this case,
and it follows that

Theorem 10. If ∅ ( S1, · · · , Sn ⊂ [±n] satisfying (∗) form a nested chain of subsets,
then we have

(µX , τS1
· · · τSn

) = 2n−λ1I(λ)

where µX is the fundamental homology class of X and λ is the Young diagram consisting
of |S1|, · · · , |Sn| reordered as a weakly decreasing sequence and I is the function defined
in (9). Otherwise, the intersection number is zero.
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Let αi := ti − ti+1 for 1 6 i 6 n − 1 and αn := tn. For each signed permutation
u ∈ S̃n, an element i ∈ [n] satisfies u(αi) ∈ Φ− if and only if

(D-1) if i 6 n− 1, then u(i) > u(i+1) with the same sign or u(i) < u(i+1) with different
signs,

(D-2) if i = n, then u(i) < 0.

Similarly, consider the conditions

(A-1) if i 6 n− 1, then u(i) < u(i+1) with the same sign or u(i) > u(i+1) with different
signs,

(A-2) if i = n, then u(i) > 0.

Denoting

D(u) := {u[i] | i satisfies (D)} and A(u) := {u[i] | i satisfies (A)},

we define a Young diagram λw
u,v in the manner described in the last section. Note that we

put I(∅) = 0 as a convention.

Now, for signed permutations u, v, w ∈ S̃n, the intersection number of Y w, Xu, and
Xv in X of type Bn is given by the following.

Corollary 11. For signed permutations u, v, w ∈ S̃n, we have

(µX , [Y
w][Xu][Xv]) = 2n−(λw

u,v)1I(λw
uv)

where I is the function defined in (9).

For example, for n = 4 with the convention k̄ = −k, Corollary 11 computes

(µX , [Y
23̄1̄4̄][X23̄14][X23̄14]) = 4.

(See Figure 6.)

3̄2

λ23̄1̄4̄
23̄14,23̄14 =

Figure 6: An example for type Bn
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5.2 Intersection numbers for type Cn

For the classical root system of type Cn, the roots are {ti − tj, ±(ti + tj), ±2ti ∈ E |
1 6 i 6= j 6 n} where E = Rn. We choose Π = {ti − ti+1, 2tn | 1 6 i 6 n − 1}
as a set of simple roots, and write αi = ti − ti+1(1 6 i 6 n − 1), αn = 2tn. The

Weyl group S̃n is the n-th signed permutation group as above. The minimal generators
ω1, · · · , ωn of the fundamental Weyl chamber are ωi = e1 + · · · + ei for i = 1, · · · , n − 1
and ωn = 1

2
(e1 + · · ·+ en).

We have a well-defined map Φ∗ → 2[±n] by vωi 7→ {v(1), · · · , v(i)}, and obtain an iden-
tification Φ∗ and the set of non-empty subsets of [±n] satisfying (∗). For ∅ ( S1, · · · , Sq (

[±n] (1 6 q 6 n) satisfying (∗), we have that τS1
· · · τSq

= 0 unless these sets form a nested
chain of subsets where τS is defined as in Section 5.1.

For each k ∈ [±n], let B ⊂ [±n] satisfy (∗), k ∈ B, and |B| = n. Then (3) for the
root α = 2tk shows that

τB
2 = −

∑

k∈B′

B′(B

2τB′τB

where the sum is taken over all ∅ ( B′ ⊂ [±n] satisfying (∗) with the prescribed conditions.
For each k, l ∈ [±n], let B ⊂ [±n] satisfy (∗), k ∈ B, and ±l /∈ B (hence 1 6 |B| 6 n−1).
Then from (3) for the root α = tk − tl, we obtain

τB
2 = −

∑

k∈B′, ±l /∈B′

B′ 6=B

τB′τB −
∑

k∈B′, −l∈B′

|B′|6=n

2τB′τB −
∑

k∈B′, −l∈B′

|B′|=n

τB′τB.

With a similar observation made for type Bn, we again have the same type of vanishing
property as in Proposition 6. Hence, we obtain

Theorem 12. If ∅ ( S1, · · · , Sn ( [±n] satisfying (∗) form a nested chain of subsets,
then we have

(µX , τS1
· · · τSn

) = 2n−λ1+m−1I(λ)

where µX is the fundamental homology class of X and λ is the Young diagram consisting of
the numbers |S1|, · · · , |Sn| reordered as a weakly decreasing sequence and I is the function
defined in (9) and m is the number of rows of λ of length n. Otherwise, the intersection
number is zero.

For signed permutations u, v, w ∈ S̃n, let λ
w
u,v be the Young diagram defined in Section

5.1. The intersection number of Y w, Xu, and Xv in X of type Cn is given by the following.

Corollary 13. For signed permutations u, v, w ∈ S̃n, we have

(µX , [Y
w][Xu][Xv]) = 2n−(λw

u,v)1+m−1I(λw
uv)

where I is the function defined in (9) and and m is the number of rows of λw
u,v of length

n.
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5.3 Intersection numbers for type Dn

For the classical root system of type Dn, the roots are {ti − tj, ±(ti + tj) ∈ E | 1 6 i 6=
j 6 n} where E = Rn. We choose Π = {ti − ti+1, tn−1 + tn | 1 6 i 6 n − 1} as a set of
simple roots, and write αi = ti − ti+1(1 6 i 6 n − 2), αn−1 = tn−1 + tn, αn = tn−1 − tn.

The Weyl group S̃
+
n is the n-th even signed permutation group defined by

S̃
+
n := {w ∈ S̃n | the number of i with w(i) < 0 is even}

where S̃n is the n-th signed permutation group. The minimal generators ω1, · · · , ωn

∈ E∗ of the fundamental Weyl chamber are ωi = e1 + · · · + ei for i = 1, · · · , n − 2,
ωn−1 =

1
2
(e1 + · · ·+ en−1 + en) and ωn = 1

2
(e1 + · · ·+ en−1 − en).

For S ∈ 2[±n], consider a condition

|S| 6= n− 1, and if i ∈ S then −i /∈ S for any i ∈ [±n] . (∗∗)

We have a well-defined map Φ∗ → 2[±n] given by

uωi 7→ u[i] = {u(1), · · · , u(i)} for 1 6 i 6 n− 2,

uωn−1 7→ u[n]+ = {u(1), · · · , u(n− 1), u(n)},

uωn 7→ u[n]− = {u(1), · · · , u(n− 1),−u(n)}.

where [n]+ = {1, 2, · · · , n− 1, n} and [n]− = {1, 2, · · · , n− 1,−n}.
It follows that this map Φ∗ → 2[±n] is an injection. In fact, we cannot have

{u(1), · · · , u(n− 1), u(n)} = {v(1), · · · , v(n− 1),−v(n)}

for any u, v ∈ S̃
+
n since the number of negative integers in the left hand side and the right-

hand-side are different, and so uωn−1 and vωn are never mapped to the same element.
The other cases are left to the reader. So we can make an identification

Φ∗ ←→ the set of non-empty subsets of [±n] satisfying (∗∗). (18)

Hence, for each ∅ ( S ⊂ [±n] satisfying (∗∗), we define τS := τuωi
where uωi ∈ Φ∗

corresponds to S by this identification.
Let us denote by C the set of chains of subsets {S◦

i }i of [±n] of the following form:

there exists u ∈ S̃
+
n such that S◦

i = u[i] for 1 6 i 6 n− 2, S◦
n−1 = u[n]+, and S◦

n = u[n]−.
Note that {S◦

i }i does not have a set of order n−1 and satisfies the same inclusion relation
shown in Figure 7. A subchain {Si}i of a chain {S◦

i }i in C is a sequence satisfying
Sj ∈ {S

◦
i }i for 1 6 j 6 n and Sj ⊂ Sj′ for 1 6 j 6 j′ 6 n unless |Sj| = |Sj′ | = n. For

∅ ( S1, · · · , Sq ( [±n] (1 6 q 6 n) satisfying (∗∗), we have τS1
· · · τSq

= 0 unless the
sequence forms a subchain of a chain in C up to reordering. Let {Si}i be a subchain of a
chain in C. For Si satisfying |Si| = n, we say that Si is even (resp. odd) if the number of
negative elements of Si is even (resp. odd). Recall that µX is the fundamental homology
class of X. The following is Lemma 3 for type Dn.
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· · · [1] ⊂ [2] ⊂ · · · ⊂ [n− 2]
{1, · · · , n− 1, n}

{1, · · · , n− 1,−n}
⊂
⊂

Figure 7: The Dynkin diagram and a maximal chain of subsets for type Dn

Lemma 14. Let {Si}i and {S ′
i}i be subchains of some chains in C. If |Si| = |S

′
i| for

i = 1, · · · , n and the number of even Si’s and the number of even S ′
i’s are the same, then

(µX , τS1
· · · τSn

) = (µX , τS′

1
· · · τS′

n
).

Let {Si}i be a subchain of a chain in C. We denote by λ the signed Young diagram
consisting of λi = |Sn+1−i| for i = 1, · · · , n where the label of λ is defined as follows: if we
have λi = n, then we label this row by + (resp. −) if Sn+1−i is even (resp. odd). Recall
from Section 3 that the dotted anti-diagonal line drawn on the Young diagram is the
dotted line shifted down half the length of a single box from the standard anti-diagonal.
Our first aim is to prove the following.

Proposition 15. (The vanishing property) (µX , τS1
· · · τSn

) = 0 unless each step of the
zigzag line of the lower-right corners of λ crosses the dotted anti-diagonal.

+ +
+
−

For each k, l ∈ [±n], let B ⊂ [±n] satisfy (∗∗), k ∈ B, and ±l /∈ B (hence |B| 6 n−2).
By the linear relation (3) for the root α = tk − tl, it follows that

τB
2 = −

∑

k∈B′, ±l /∈B′

B′ 6=B

τB′τB −
∑

k∈B′, −l∈B′

|B′|6=n

2τB′τB −
∑

k∈B′, −l∈B′

|B′|=n

τB′τB (19)

where the sum is taken over all ∅ ( B′ ⊂ [±n] satisfying (∗∗) with the prescribed
conditions. If A ( B with k /∈ A, and if B ( C with l ∈ C then,

τAτB
2τC = −

∑

k∈B′, ±l /∈B′

A(B′(C, B′ 6=B

τAτB′τBτC − δ|C|,nτAτBτ(l,−l)CτC . (20)

where δ|C|,n is the Kronecker delta. If |C| = n, then after multiplying (20) by τC where
C = (p,−p)C for some p ∈ C\{l}, we obtain

τAτB
2τCτC = −

∑

k∈B′, ±l,±p/∈B′

A(B′(C, B′ 6=B

τAτB′τBτCτC . (21)
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Let λ as above. We denote

m+(λ) := |{i | λi = n and the label of λi is +}|,

m−(λ) := |{i | λi = n and the label of λi is −}|.

Lemma 16. Suppose that one of the following holds:

(i) m+(λ) = m−(λ) = 1

(ii) (m+(λ),m−(λ)) is equal to (1, 0) or (0, 1),

(iii) m+(λ) = m−(λ) = 0.

Then (µX , τS1
· · · τSn

) = 0 unless each step of the zigzag line of the corners of λ crosses
the dotted anti-diagonal.

Proof. The claim for the case (i) can be proved by (20) and (21) as in the proof of
Proposition 6. For the case (ii), the same argument works together with (20), since we
have already proved the claim for the case (i). Now, the case (iii) is shown again by the
same proof used for Proposition 6 together with (19), (20), and the case (ii).

For each k, l ∈ [±n], let ∅ ( B ( [±n] satisfy (∗∗), k, l ∈ B, and |B| = n. If
A ⊂ B\{k, l}, then from the linear relation (3) for the root α = tk + tl, we obtain

τAτB
2 =−

∑

k∈B′, ±l /∈B′

τAτB′τB −
∑

±k/∈B′, l∈B′

τAτB′τB

−
∑

k,l∈B′,
|B′|6=n

2τAτB′τB −
∑

k,l∈B′, B′ 6=B,
|B′|=n

τAτB′τB (22)

where we denote τ∅ = 1. Especially if A = B\{k, l}, then |A| = n− 2 and we have

τAτB
2 = −

∑

k,l∈B′, B′ 6=B,
|B′|=n

τAτB′τB = 0. (23)

The second equality follows since an element of B′ which is neither k nor l has to be
−1 times an element of B, which implies that A 6⊂ B′. On the other hand, letting
B = (−k, k)B, we obtain from (22) that

τAτB
2τB =−

∑

±k/∈B′, l∈B′

A(B′(B

τAτB′τBτB. (24)

Lemma 17. Suppose that one of the following holds:

(i) m+(λ),m−(λ) > 1,

(ii) m+(λ) > 1 and m−(λ) = 0,
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(iii) m+(λ) = 0 and m−(λ) > 1.

Then (µX , τS1
· · · τSn

) = 0 unless each step of the zigzag line of the lower-right corners of
λ crosses the dotted anti-diagonal.

Proof. The claim for the case (i) follows from (24) and the case (i) of Lemma 16 by
induction on m+(λ) + m−(λ). Let us consider the case (ii). We prove the claim by
induction on m+(λ). For the case m+(λ) = 1, the claim follows from the case (ii) of
Lemma 16. For the general case, the induction hypothesis and the claim for the case (i)
shows our claim by applying (22) to reduce the multiplicity for τSn

in τS1
· · · τSn

. The
claim for the case (iii) can be proved similarly.

Now, Proposition 15 follows from Lemma 17 and the case (iii) of Lemma 16.

For a signed Young diagram λ with n rows fitting into the n× n-square, let

m := |{i | λi = n}| = m+(λ) +m−(λ)

be the number of rows of λ of length n. Recall that the numbers ar, br, cr, and yr are
defined in (7) and (8). We now define

ỹ1 :=





2(n−λ1−1)(1−m)

(
a1
c1

)(
b1
c1

)
if m 6 1,

−

(
b1 − 1

c1 − 1

)
if m > 2 and m+(λ)m−(λ) 6= 0,

(2a1 − a1 − 1)

(
b1
c1

)
+

(
b1 − 1

c1

)
if m > 2 and m+(λ)m−(λ) = 0

Theorem 18. If ∅ ( S1, · · · , Sn ( [±n] satisfying (∗∗) form a subchain of a chain in C,
then we have

(µX , τS1
· · · τSn

) = (−1)n+sỹ1y2 · · · ys.

where µX is the fundamental homology class of X and λ is the signed Young diagram
consisting of |S1|, · · · , |Sn| reordered as a weakly decreasing sequence and m is the number
of rows of λ of length n. Otherwise, the intersection number is zero.

Remark 19. In each case, the given number vanishes unless each step of the zigzag line
of the lower-right corners of λ crosses the dotted anti-diagonal.

Proof of Theorem 18. We compute the intersection number

J(λ) := (−1)n−s(µX , τS1
· · · τSn

)

with sign where we can assume that each step of the zigzag line of the corners of λ crosses
the dotted anti-diagonal by Proposition 15 and the remark above. We first prove the
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case (i). If m+(λ) = 1 and m−(λ) = 0 (or m+(λ) = 1 and m−(λ) = 0), then it follows
that J(λ) = y1 · · · ys. This can be proved by induction similar to that used in the proof
of Theorem 7 because of the separating properties (20). So, let us consider the case of
m+(λ) = m−(λ) = 0. In this case, Proposition 15 shows that the separation rule (19)
replaces the square τ 2Sn

in τS1
· · · τSn

to

∑

k∈S′, ±l /∈S′

S′(Sn, |B′|6=n

τS′τSn
+

∑

k∈S′, −l∈S′

|S′|=n

τS′τSn

for some k ∈ Sn and ±l ∈ Sn when we compute the intersection number J(λ) with sign.
Namely, this replacement can be pictured as

= +

±

where we omit the coefficients in the picture. Hence, with the claim for the previous case,
we get J(λ) = 2n−λ1−1y1 · · · ys as in the case of type Bn.

Let us consider the case (ii-a). We prove the claim by induction on the sum of the
multiplicities for Si’s satisfying |Si| 6= n. The base case has λi = n+ 1− i for all λi 6= n,
so it is obvious that −J(λ) = (−1)n−s−1(µX , τS1

· · · τSn
) is equal to 1 by iterating (24).

For the general case, we apply (20) and (21) to some square τSi

2 with |Si| 6= n in J(λ). If
i2 < i, the computation with (20) works as in the proof of Theorem 7. If i1 < i 6 i2, then
the right-hand-side of (21) applied to −J(λ) can be calculated as follows by the induction
hypothesis:

(
b2
c2

)
·

(
b1 − 1

c1 − 1

)(
a2 − 1

c2 − 1

)
y3 · · · ys +

(
b1 − 1

c1 − 1

)
·

(
a2 − 1

c2

)(
b2
c2

)
y3 · · · ys

which is equal to
(
b1−1
c1−1

)
y2 · · · ys, and the claim follows.

Let us consider the case (ii-b). We can assume m = m+(λ)(= a1 + 1) without loss of
generality. We first consider the case that λi = n+1−i for all λi 6= n. Note that

(
b1−1
c1

)
= 0

in this case. For this special case, we prove the claim by induction on m = m+(λ). For
the case m = a1 + 1 = 2, the intersection number is zero by (23), and the claim follows
since 2a1−a1−1 = 0. For the general case, we have an inductive formula by (22), namely,

+
+

+
+

+
−
+
+

=
+
+
+

+ 2(a1 − 1)
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where the first coefficient a1 − 1 comes from the choices of an element in B′\(A ∪ {k, l})
turned to be negative, and the second coefficient 2 comes from the two summands corre-
sponding to k ∈ B′,±l /∈ B′ and ±k /∈ B′, l ∈ B′. Noticing that the intersection number
for the first summand is equal to 1 as we already saw, it follows that

J(λ) =

a1∑

i=0

2i(a1 − 1− i) = 2a1 − a1 − 1.

We now prove the claim (ii-b) by induction on the sum of the multiplicities for Si

satisfying |Si| 6= n. The base case λi = n + 1 − i for all λi 6= n is proved above. For the
general case, we apply (20). If i2 < i, the computation with (20) again works as in the
proof of Theorem 7. If i1 < i 6 i2, we also apply (20) to a square Si

2 in −J(λ). Namely,
we have

+
+
+

+
+
+

+
+
+

+
+
+
−

= + +

with omitting the coefficients. The right-hand-side can be calculated by the induction
hypothesis and the claim for the case (ii-a), and J(λ) = (−1)n−s(µX , τS1

· · · τSn
) is

(
b2
c2

)
·

{
(2a1 − a1 − 1)

(
b1
c1

)(
a2 − 1

c2 − 1

)
y3 · · · ys +

(
b1 − 1

c1

)(
a2 − 1

c2 − 1

)
y3 · · · ys

}

+

(
b1
c1

)
·

{
(2a1 − a1 − 1)

(
a2 − 1

c2

)(
b2
c2

)
y3 · · · ys + 0

}

+

(
b1 − 1

c1 + 1− 1

)(
a2 − 1

c2

)(
b2
c2

)
y3 · · · ys

= (2a1 − a1 − 1)

(
b1
c1

)
y2 · · · ys +

(
b1 − 1

c1

)
y2 · · · ys.

For example, for n = 5 with the convention k̄ = −k, we can calculate

(µX , τ{1̄}
2τ{1̄,3,4,5,2̄}

3) = −4

by the case (ii-b) of Theorem 18 (See Figure 8).
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Figure 8: The Young diagram corresponding to τ{1̄}
2τ{1̄,3,4,5,2̄}

3

For each even signed permutation u ∈ S̃
+
n , an element i ∈ [n] satisfies u(αi) ∈ Φ− if

and only if

(D-1) if i 6 n−2, then u(i) > u(i+1) with the same sign, or u(i) < u(i+1) with different
signs,

(D-2) if i = n− 1, then u(n− 1), u(n) < 0, or u(n− 1) and u(n) have different signs and
the absolute value of the negative one is less than the positive one,

(D-3) if i = n, then u(n− 1) > u(n) with the same sign, or u(n− 1) < u(n) with different
signs.

Consider the similar condition

(A-1) if i 6 n− 2, then u(i) < u(i+1) with the same sign or u(i) > u(i+1) with different
signs,

(A-2) if i = n− 1, then u(n− 1), u(n) > 0, or u(n− 1) and u(n) have different signs and
the absolute value of the negative one is greater than the positive one,

(A-3) if i 6= n, then u(n− 1) < u(n) with the same sign or u(n− 1) > u(n) with different
signs,

Denote

D(u) :={u[i] | i 6 n− 2 and i satisfies (D)}

∪ {u[n]+ | i = n− 1 satisfies (D)} ∪ {u[n]− | i = n satisfies (D)}

A(u) :={u[i] | i satisfies (A)}

∪ {u[n]+ | i = n− 1 satisfies (A)} ∪ {u[n]− | i = n satisfies (A)}

where

[n]+ = {1, 2, · · · , n− 1, n} and [n]− = {1, 2, · · · , n− 1,−n}

(cf. Figure 7). We define a signed Young diagram λw
u,v for u, v, w ∈ S̃

+
n in the manner

described in Section 4. Note that we put I(∅) = 0 as a convention.
Now, the intersection number of Y w, Xu and Xv in X of type Dn is given by the

following.
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Corollary 20. For even signed permutations u, v, w ∈ S̃
+
n , we have

(µX , [Y
w][Xu][Xv]) = Ĩ(λw

uv)

where Ĩ = (−1)n+sỹ1y2 · · · ys is the function described in Theorem 18.

For example, for n = 5 with the convention k̄ = −k, the Young diagram λ1̄2̄543
1̄3452̄,1̄3452̄ is

the one in Figure 8, and hence we obtain

(µX , [Y
1̄2̄543][X1̄3452̄][X1̄3452̄]) = −4.

6 On exceptional types

In this section, we include the computation of intersection numbers of invariant divisors
of the toric manifold X for the root system of exceptional type G2. For other exceptional
types F4, E6, E7, and E8, it would be interesting to find combinatorial objects which ef-
fectively compute the intersection numbers of invariant divisors.

Let E = {x ∈ R3 | x1 + x2 + x3 = 0}. The roots are

± (t1 − t2), ±(t1 − t3), ±(t2 − t3),

± (2t1 − t2 − t3), ±(2t2 − t1 − t3), ±(2t3 − t1 − t2)

where ti ∈ R3 is the i-th standard vector. We choose Π = {t1 − t2,−2t1 + t2 + t3} as the
set of simple roots, and write α1 = t1 − t2 and α2 = −2t1 + t2 + t3. The Weyl group W
is the dihedral group of order 12 which is identified with the subgroup

WG2
:= {u ∈ S̃3 | u(1), u(2), and u(3) have the same sign}

of the 3rd signed permutation group. Under this identification, the action of the Weyl
group on E is written as the natural action of WG2

on the indexes i of ti; u · t = tu(1) for
u ∈ WG2

where t−i := −ti (1 6 i 6 3). This action of WG2
preserves Φ. The minimal

generators ω1, ω2 ∈ E∗ of the fundamental Weyl chamber σid are

ω1 = e3 − e2, ω2 =
1

3
(2e3 − e1 − e2)

where {ei}i ⊂ (R3)∗ is the dual basis of {ti}i ⊂ R3.
Denoting by 2[±3] the set of all subsets of [±3] = {1, 2, 3,−1,−2,−3}, we have a

well-defined map Φ∗ → 2[n+1] by sending

eu(3) − eu(2) 7→ {u(3),−u(2)},
1

3
(2eu(3) − eu(1) − eu(2)) 7→ {u(3)}

for u ∈ WG2
. This is an injection, and hence we can identify Φ∗ with the following subset

of 2[±3];

S := {32̄, 3̄2, 31̄, 3̄1, 21̄, 2̄1, 3, 3̄, 2, 2̄, 1, 1̄}
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where k̄ = −k for 1 6 k 6 3 and each sequence ab in S is the set {a, b}, i.e. 32̄ = {3,−2}
for example. Now, for each S ∈ S, we have τS := τuωi

∈ H2(X) where uωi ∈ Φ∗

corresponds to S by this identification. Then, for S1, S2 ∈ S, it follows by Lemma 2 that
τS1

τS2
= 0 unless these sets form a nested chain of subsets, i.e. S1 ⊂ S2 or S1 ⊃ S2.

The linear relations (3) for α = α1, α2 are translated to

τ32̄ + τ3̄1 + 2τ2̄1 + τ2̄ + τ1 = τ3̄2 + τ31̄ + 2τ21̄ + τ2 + τ1̄,

3τ31̄ + 3τ21̄ + τ3 + τ2 + 2τ1̄ = 3τ3̄1 + 3τ2̄1 + τ3̄ + τ2̄ + 2τ1,

respectively. From these relations together with the above observation about the vanishing
of τS1

τS2
, we see that

τ32̄τ3 = 1, τ32̄τ32̄ = −1, τ3τ3 = −3.

Now, let
IG2

(2, 1) := 1, IG2
(1, 1) := −3, IG2

(2, 2) := −1

where (2, 1), (1, 1), and (2, 2) are Young diagrams with 2 rows. Now the next claim follows
from Lemma 3; if S1, S2 ∈ S form a nested chain of subsets, then we have

(µX , τS1
τS2

) = IG2
(λ) (25)

where µX is the fundamental homology class and λ is the Young diagram consisting of |S1|
and |S2| reordered as a weakly decreasing sequence. Otherwise, the intersection number
is zero.

Finally, we list the presentations of [Xu] as monomials of τS for all u ∈ WG2
in one-line

notations;

[X123] = 1, [X213] = τ31̄, [X132] = τ23̄, [X231] = τ13̄, [X312] = τ2, [X321] = τ1,

[X1̄2̄3̄] = τ3̄2τ3̄, [X2̄1̄3̄] = τ3̄, [X1̄3̄2̄] = τ2̄, [X2̄3̄1̄] = τ1̄, [X3̄1̄2̄] = τ2̄1, [X3̄2̄1̄] = τ1̄2.

Since we have [Y u] = (w−1
0 )∗[Xw0u] = w∗

0[Xw0u] where w0 = 1̄2̄3̄ is the longest permutation,
we obtain the list of [Y u];

[Y 1̄2̄3̄] = 1, [Y 2̄1̄3̄] = τ3̄1, [Y
1̄3̄2̄] = τ2̄3, [Y

2̄3̄1̄] = τ1̄3, [Y
3̄1̄2̄] = τ2̄, [Y 3̄2̄1̄] = τ1̄,

[Y 123] = τ32̄τ3, [Y 213] = τ3, [Y 132] = τ2, [Y 231] = τ1, [Y 312] = τ21̄, [Y 321] = τ12̄.

With these lists, we can compute intersection numbers (µX , [Y
w][Xu][Xv]) for all u, v, w ∈

WG2
by (25).
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